You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1341 lines
41KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include "avcodec.h"
  20. #include "dsputil.h"
  21. //#define DEBUG_PARAMS
  22. //#define DEBUG_TRACE
  23. /* size of blocks */
  24. #define BLOCK_MIN_BITS 7
  25. #define BLOCK_MAX_BITS 11
  26. #define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
  27. #define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
  28. /* XXX: find exact max size */
  29. #define HIGH_BAND_MAX_SIZE 16
  30. #define NB_LSP_COEFS 10
  31. /* XXX: is it a suitable value ? */
  32. #define MAX_CODED_SUPERFRAME_SIZE 4096
  33. #define MAX_CHANNELS 2
  34. #define NOISE_TAB_SIZE 8192
  35. #define LSP_POW_BITS 7
  36. typedef struct WMADecodeContext {
  37. GetBitContext gb;
  38. int sample_rate;
  39. int nb_channels;
  40. int bit_rate;
  41. int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
  42. int block_align;
  43. int use_bit_reservoir;
  44. int use_variable_block_len;
  45. int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */
  46. int use_noise_coding; /* true if perceptual noise is added */
  47. int byte_offset_bits;
  48. VLC exp_vlc;
  49. int exponent_sizes[BLOCK_NB_SIZES];
  50. uint16_t exponent_bands[BLOCK_NB_SIZES][25];
  51. int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
  52. int coefs_start; /* first coded coef */
  53. int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
  54. int exponent_high_sizes[BLOCK_NB_SIZES];
  55. int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
  56. VLC hgain_vlc;
  57. /* coded values in high bands */
  58. int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
  59. int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
  60. /* there are two possible tables for spectral coefficients */
  61. VLC coef_vlc[2];
  62. uint16_t *run_table[2];
  63. uint16_t *level_table[2];
  64. /* frame info */
  65. int frame_len; /* frame length in samples */
  66. int frame_len_bits; /* frame_len = 1 << frame_len_bits */
  67. int nb_block_sizes; /* number of block sizes */
  68. /* block info */
  69. int reset_block_lengths;
  70. int block_len_bits; /* log2 of current block length */
  71. int next_block_len_bits; /* log2 of next block length */
  72. int prev_block_len_bits; /* log2 of prev block length */
  73. int block_len; /* block length in samples */
  74. int block_num; /* block number in current frame */
  75. int block_pos; /* current position in frame */
  76. uint8_t ms_stereo; /* true if mid/side stereo mode */
  77. uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
  78. float exponents[MAX_CHANNELS][BLOCK_MAX_SIZE];
  79. float max_exponent[MAX_CHANNELS];
  80. int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
  81. float coefs[MAX_CHANNELS][BLOCK_MAX_SIZE];
  82. MDCTContext mdct_ctx[BLOCK_NB_SIZES];
  83. float *windows[BLOCK_NB_SIZES];
  84. FFTSample mdct_tmp[BLOCK_MAX_SIZE]; /* temporary storage for imdct */
  85. /* output buffer for one frame and the last for IMDCT windowing */
  86. float frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2];
  87. /* last frame info */
  88. uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
  89. int last_bitoffset;
  90. int last_superframe_len;
  91. float noise_table[NOISE_TAB_SIZE];
  92. int noise_index;
  93. float noise_mult; /* XXX: suppress that and integrate it in the noise array */
  94. /* lsp_to_curve tables */
  95. float lsp_cos_table[BLOCK_MAX_SIZE];
  96. float lsp_pow_e_table[256];
  97. float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
  98. float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
  99. } WMADecodeContext;
  100. typedef struct CoefVLCTable {
  101. int n; /* total number of codes */
  102. const uint32_t *huffcodes; /* VLC bit values */
  103. const uint8_t *huffbits; /* VLC bit size */
  104. const uint16_t *levels; /* table to build run/level tables */
  105. } CoefVLCTable;
  106. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
  107. #include "wmadata.h"
  108. #ifdef DEBUG_TRACE
  109. int frame_count;
  110. static FILE *flog;
  111. void trace(const char *fmt, ...)
  112. {
  113. va_list ap;
  114. if (!flog) {
  115. flog = fopen("/tmp/out.log", "w");
  116. setlinebuf(flog);
  117. }
  118. va_start(ap, fmt);
  119. vfprintf(flog, fmt, ap);
  120. va_end(ap);
  121. }
  122. #define get_bits(s, n) get_bits_trace(s, n)
  123. #define get_vlc(s, vlc) get_vlc_trace(s, vlc)
  124. unsigned int get_bits_trace(GetBitContext *s, int n)
  125. {
  126. unsigned int val;
  127. val = (get_bits)(s, n);
  128. trace("get_bits(%d) : 0x%x\n", n, val);
  129. return val;
  130. }
  131. static int get_vlc_trace(GetBitContext *s, VLC *vlc)
  132. {
  133. int code;
  134. code = (get_vlc)(s, vlc);
  135. trace("get_vlc() : %d\n", code);
  136. return code;
  137. }
  138. static void dump_shorts(const char *name, const short *tab, int n)
  139. {
  140. int i;
  141. trace("%s[%d]:\n", name, n);
  142. for(i=0;i<n;i++) {
  143. if ((i & 7) == 0)
  144. trace("%4d: ", i);
  145. trace(" %5d.0", tab[i]);
  146. if ((i & 7) == 7)
  147. trace("\n");
  148. }
  149. }
  150. static void dump_floats(const char *name, int prec, const float *tab, int n)
  151. {
  152. int i;
  153. trace("%s[%d]:\n", name, n);
  154. for(i=0;i<n;i++) {
  155. if ((i & 7) == 0)
  156. trace("%4d: ", i);
  157. trace(" %8.*f", prec, tab[i]);
  158. if ((i & 7) == 7)
  159. trace("\n");
  160. }
  161. if ((i & 7) != 0)
  162. trace("\n");
  163. }
  164. #else
  165. #define trace(fmt, ...)
  166. #endif
  167. /* XXX: use same run/length optimization as mpeg decoders */
  168. static void init_coef_vlc(VLC *vlc,
  169. uint16_t **prun_table, uint16_t **plevel_table,
  170. const CoefVLCTable *vlc_table)
  171. {
  172. int n = vlc_table->n;
  173. const uint8_t *table_bits = vlc_table->huffbits;
  174. const uint32_t *table_codes = vlc_table->huffcodes;
  175. const uint16_t *levels_table = vlc_table->levels;
  176. uint16_t *run_table, *level_table;
  177. const uint16_t *p;
  178. int i, l, j, level;
  179. init_vlc(vlc, 9, n, table_bits, 1, 1, table_codes, 4, 4);
  180. run_table = malloc(n * sizeof(uint16_t));
  181. level_table = malloc(n * sizeof(uint16_t));
  182. p = levels_table;
  183. i = 2;
  184. level = 1;
  185. while (i < n) {
  186. l = *p++;
  187. for(j=0;j<l;j++) {
  188. run_table[i] = j;
  189. level_table[i] = level;
  190. i++;
  191. }
  192. level++;
  193. }
  194. *prun_table = run_table;
  195. *plevel_table = level_table;
  196. }
  197. static int wma_decode_init(AVCodecContext * avctx)
  198. {
  199. WMADecodeContext *s = avctx->priv_data;
  200. int i, flags1, flags2;
  201. float *window;
  202. uint8_t *extradata;
  203. float bps1, high_freq, bps;
  204. int sample_rate1;
  205. int coef_vlc_table;
  206. s->sample_rate = avctx->sample_rate;
  207. s->nb_channels = avctx->channels;
  208. s->bit_rate = avctx->bit_rate;
  209. s->block_align = avctx->block_align;
  210. if (avctx->codec_id == CODEC_ID_WMAV1) {
  211. s->version = 1;
  212. } else {
  213. s->version = 2;
  214. }
  215. /* extract flag infos */
  216. flags1 = 0;
  217. flags2 = 0;
  218. extradata = avctx->extradata;
  219. if (s->version == 1 && avctx->extradata_size >= 4) {
  220. flags1 = extradata[0] | (extradata[1] << 8);
  221. flags2 = extradata[2] | (extradata[3] << 8);
  222. } else if (s->version == 2 && avctx->extradata_size >= 6) {
  223. flags1 = extradata[0] | (extradata[1] << 8) |
  224. (extradata[2] << 16) | (extradata[3] << 24);
  225. flags2 = extradata[4] | (extradata[5] << 8);
  226. }
  227. s->use_exp_vlc = flags2 & 0x0001;
  228. s->use_bit_reservoir = flags2 & 0x0002;
  229. s->use_variable_block_len = flags2 & 0x0004;
  230. /* compute MDCT block size */
  231. if (s->sample_rate <= 16000) {
  232. s->frame_len_bits = 9;
  233. } else if (s->sample_rate <= 22050 ||
  234. (s->sample_rate <= 32000 && s->version == 1)) {
  235. s->frame_len_bits = 10;
  236. } else {
  237. s->frame_len_bits = 11;
  238. }
  239. s->frame_len = 1 << s->frame_len_bits;
  240. if (s->use_variable_block_len) {
  241. s->nb_block_sizes = s->frame_len_bits - BLOCK_MIN_BITS + 1;
  242. } else {
  243. s->nb_block_sizes = 1;
  244. }
  245. /* init rate dependant parameters */
  246. s->use_noise_coding = 1;
  247. high_freq = s->sample_rate * 0.5;
  248. /* if version 2, then the rates are normalized */
  249. sample_rate1 = s->sample_rate;
  250. if (s->version == 2) {
  251. if (sample_rate1 >= 44100)
  252. sample_rate1 = 44100;
  253. else if (sample_rate1 >= 22050)
  254. sample_rate1 = 22050;
  255. else if (sample_rate1 >= 16000)
  256. sample_rate1 = 16000;
  257. else if (sample_rate1 >= 11025)
  258. sample_rate1 = 11025;
  259. else if (sample_rate1 >= 8000)
  260. sample_rate1 = 8000;
  261. }
  262. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  263. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0)) + 2;
  264. /* compute high frequency value and choose if noise coding should
  265. be activated */
  266. bps1 = bps;
  267. if (s->nb_channels == 2)
  268. bps1 = bps * 1.6;
  269. if (sample_rate1 == 44100) {
  270. if (bps1 >= 0.61)
  271. s->use_noise_coding = 0;
  272. else
  273. high_freq = high_freq * 0.4;
  274. } else if (sample_rate1 == 22050) {
  275. if (bps1 >= 1.16)
  276. s->use_noise_coding = 0;
  277. else if (bps1 >= 0.72)
  278. high_freq = high_freq * 0.7;
  279. else
  280. high_freq = high_freq * 0.6;
  281. } else if (sample_rate1 == 16000) {
  282. if (bps > 0.5)
  283. high_freq = high_freq * 0.5;
  284. else
  285. high_freq = high_freq * 0.3;
  286. } else if (sample_rate1 == 11025) {
  287. high_freq = high_freq * 0.7;
  288. } else if (sample_rate1 == 8000) {
  289. if (bps <= 0.625) {
  290. high_freq = high_freq * 0.5;
  291. } else if (bps > 0.75) {
  292. s->use_noise_coding = 0;
  293. } else {
  294. high_freq = high_freq * 0.65;
  295. }
  296. } else {
  297. if (bps >= 0.8) {
  298. high_freq = high_freq * 0.75;
  299. } else if (bps >= 0.6) {
  300. high_freq = high_freq * 0.6;
  301. } else {
  302. high_freq = high_freq * 0.5;
  303. }
  304. }
  305. #ifdef DEBUG_PARAMS
  306. printf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
  307. printf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  308. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  309. s->block_align);
  310. printf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  311. bps, bps1, high_freq, s->byte_offset_bits);
  312. printf("use_noise_coding=%d use_exp_vlc=%d\n",
  313. s->use_noise_coding, s->use_exp_vlc);
  314. #endif
  315. /* compute the scale factor band sizes for each MDCT block size */
  316. {
  317. int a, b, pos, lpos, k, block_len, i, j, n;
  318. const uint8_t *table;
  319. if (s->version == 1) {
  320. s->coefs_start = 3;
  321. } else {
  322. s->coefs_start = 0;
  323. }
  324. for(k = 0; k < s->nb_block_sizes; k++) {
  325. block_len = s->frame_len >> k;
  326. if (s->version == 1) {
  327. lpos = 0;
  328. for(i=0;i<25;i++) {
  329. a = wma_critical_freqs[i];
  330. b = s->sample_rate;
  331. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  332. if (pos > block_len)
  333. pos = block_len;
  334. s->exponent_bands[0][i] = pos - lpos;
  335. if (pos >= block_len) {
  336. i++;
  337. break;
  338. }
  339. lpos = pos;
  340. }
  341. s->exponent_sizes[0] = i;
  342. } else {
  343. /* hardcoded tables */
  344. table = NULL;
  345. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  346. if (a < 3) {
  347. if (s->sample_rate >= 44100)
  348. table = exponent_band_44100[a];
  349. else if (s->sample_rate >= 32000)
  350. table = exponent_band_32000[a];
  351. else if (s->sample_rate >= 22050)
  352. table = exponent_band_22050[a];
  353. }
  354. if (table) {
  355. n = *table++;
  356. for(i=0;i<n;i++)
  357. s->exponent_bands[k][i] = table[i];
  358. s->exponent_sizes[k] = n;
  359. } else {
  360. j = 0;
  361. lpos = 0;
  362. for(i=0;i<25;i++) {
  363. a = wma_critical_freqs[i];
  364. b = s->sample_rate;
  365. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  366. pos <<= 2;
  367. if (pos > block_len)
  368. pos = block_len;
  369. if (pos > lpos)
  370. s->exponent_bands[k][j++] = pos - lpos;
  371. if (pos >= block_len)
  372. break;
  373. lpos = pos;
  374. }
  375. s->exponent_sizes[k] = j;
  376. }
  377. }
  378. /* max number of coefs */
  379. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  380. /* high freq computation */
  381. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  382. s->sample_rate + 0.5);
  383. n = s->exponent_sizes[k];
  384. j = 0;
  385. pos = 0;
  386. for(i=0;i<n;i++) {
  387. int start, end;
  388. start = pos;
  389. pos += s->exponent_bands[k][i];
  390. end = pos;
  391. if (start < s->high_band_start[k])
  392. start = s->high_band_start[k];
  393. if (end > s->coefs_end[k])
  394. end = s->coefs_end[k];
  395. if (end > start)
  396. s->exponent_high_bands[k][j++] = end - start;
  397. }
  398. s->exponent_high_sizes[k] = j;
  399. #if 0
  400. trace("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  401. s->frame_len >> k,
  402. s->coefs_end[k],
  403. s->high_band_start[k],
  404. s->exponent_high_sizes[k]);
  405. for(j=0;j<s->exponent_high_sizes[k];j++)
  406. trace(" %d", s->exponent_high_bands[k][j]);
  407. trace("\n");
  408. #endif
  409. }
  410. }
  411. #ifdef DEBUG_TRACE
  412. {
  413. int i, j;
  414. for(i = 0; i < s->nb_block_sizes; i++) {
  415. trace("%5d: n=%2d:",
  416. s->frame_len >> i,
  417. s->exponent_sizes[i]);
  418. for(j=0;j<s->exponent_sizes[i];j++)
  419. trace(" %d", s->exponent_bands[i][j]);
  420. trace("\n");
  421. }
  422. }
  423. #endif
  424. /* init MDCT */
  425. for(i = 0; i < s->nb_block_sizes; i++)
  426. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
  427. /* init MDCT windows : simple sinus window */
  428. for(i = 0; i < s->nb_block_sizes; i++) {
  429. int n, j;
  430. float alpha;
  431. n = 1 << (s->frame_len_bits - i);
  432. window = av_malloc(sizeof(float) * n);
  433. alpha = M_PI / (2.0 * n);
  434. for(j=0;j<n;j++) {
  435. window[n - j - 1] = sin((j + 0.5) * alpha);
  436. }
  437. s->windows[i] = window;
  438. }
  439. s->reset_block_lengths = 1;
  440. if (s->use_noise_coding) {
  441. /* init the noise generator */
  442. if (s->use_exp_vlc)
  443. s->noise_mult = 0.02;
  444. else
  445. s->noise_mult = 0.04;
  446. #if defined(DEBUG_TRACE)
  447. for(i=0;i<NOISE_TAB_SIZE;i++)
  448. s->noise_table[i] = 1.0 * s->noise_mult;
  449. #else
  450. {
  451. unsigned int seed;
  452. float norm;
  453. seed = 1;
  454. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  455. for(i=0;i<NOISE_TAB_SIZE;i++) {
  456. seed = seed * 314159 + 1;
  457. s->noise_table[i] = (float)((int)seed) * norm;
  458. }
  459. }
  460. #endif
  461. init_vlc(&s->hgain_vlc, 9, sizeof(hgain_huffbits),
  462. hgain_huffbits, 1, 1,
  463. hgain_huffcodes, 2, 2);
  464. }
  465. if (s->use_exp_vlc) {
  466. init_vlc(&s->exp_vlc, 9, sizeof(scale_huffbits),
  467. scale_huffbits, 1, 1,
  468. scale_huffcodes, 4, 4);
  469. } else {
  470. wma_lsp_to_curve_init(s, s->frame_len);
  471. }
  472. /* choose the VLC tables for the coefficients */
  473. coef_vlc_table = 2;
  474. if (s->sample_rate >= 32000) {
  475. if (bps1 < 0.72)
  476. coef_vlc_table = 0;
  477. else if (bps1 < 1.16)
  478. coef_vlc_table = 1;
  479. }
  480. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  481. &coef_vlcs[coef_vlc_table * 2]);
  482. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  483. &coef_vlcs[coef_vlc_table * 2 + 1]);
  484. return 0;
  485. }
  486. /* interpolate values for a bigger or smaller block. The block must
  487. have multiple sizes */
  488. static void interpolate_array(float *scale, int old_size, int new_size)
  489. {
  490. int i, j, jincr, k;
  491. float v;
  492. if (new_size > old_size) {
  493. jincr = new_size / old_size;
  494. j = new_size;
  495. for(i = old_size - 1; i >=0; i--) {
  496. v = scale[i];
  497. k = jincr;
  498. do {
  499. scale[--j] = v;
  500. } while (--k);
  501. }
  502. } else if (new_size < old_size) {
  503. j = 0;
  504. jincr = old_size / new_size;
  505. for(i = 0; i < new_size; i++) {
  506. scale[i] = scale[j];
  507. j += jincr;
  508. }
  509. }
  510. }
  511. /* compute x^-0.25 with an exponent and mantissa table. We use linear
  512. interpolation to reduce the mantissa table size at a small speed
  513. expense (linear interpolation approximately doubles the number of
  514. bits of precision). */
  515. static inline float pow_m1_4(WMADecodeContext *s, float x)
  516. {
  517. union {
  518. float f;
  519. unsigned int v;
  520. } u, t;
  521. unsigned int e, m;
  522. float a, b;
  523. u.f = x;
  524. e = u.v >> 23;
  525. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  526. /* build interpolation scale: 1 <= t < 2. */
  527. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  528. a = s->lsp_pow_m_table1[m];
  529. b = s->lsp_pow_m_table2[m];
  530. return s->lsp_pow_e_table[e] * (a + b * t.f);
  531. }
  532. static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
  533. {
  534. float wdel, a, b;
  535. int i, e, m;
  536. wdel = M_PI / frame_len;
  537. for(i=0;i<frame_len;i++)
  538. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  539. /* tables for x^-0.25 computation */
  540. for(i=0;i<256;i++) {
  541. e = i - 126;
  542. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  543. }
  544. /* NOTE: these two tables are needed to avoid two operations in
  545. pow_m1_4 */
  546. b = 1.0;
  547. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  548. m = (1 << LSP_POW_BITS) + i;
  549. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  550. a = pow(a, -0.25);
  551. s->lsp_pow_m_table1[i] = 2 * a - b;
  552. s->lsp_pow_m_table2[i] = b - a;
  553. b = a;
  554. }
  555. #if 0
  556. for(i=1;i<20;i++) {
  557. float v, r1, r2;
  558. v = 5.0 / i;
  559. r1 = pow_m1_4(s, v);
  560. r2 = pow(v,-0.25);
  561. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  562. }
  563. #endif
  564. }
  565. /* NOTE: We use the same code as Vorbis here */
  566. /* XXX: optimize it further with SSE/3Dnow */
  567. static void wma_lsp_to_curve(WMADecodeContext *s,
  568. float *out, float *val_max_ptr,
  569. int n, float *lsp)
  570. {
  571. int i, j;
  572. float p, q, w, v, val_max;
  573. val_max = 0;
  574. for(i=0;i<n;i++) {
  575. p = 0.5f;
  576. q = 0.5f;
  577. w = s->lsp_cos_table[i];
  578. for(j=1;j<NB_LSP_COEFS;j+=2){
  579. q *= w - lsp[j - 1];
  580. p *= w - lsp[j];
  581. }
  582. p *= p * (2.0f - w);
  583. q *= q * (2.0f + w);
  584. v = p + q;
  585. v = pow_m1_4(s, v);
  586. if (v > val_max)
  587. val_max = v;
  588. out[i] = v;
  589. }
  590. *val_max_ptr = val_max;
  591. }
  592. /* decode exponents coded with LSP coefficients (same idea as Vorbis) */
  593. static void decode_exp_lsp(WMADecodeContext *s, int ch)
  594. {
  595. float lsp_coefs[NB_LSP_COEFS];
  596. int val, i;
  597. for(i = 0; i < NB_LSP_COEFS; i++) {
  598. if (i == 0 || i >= 8)
  599. val = get_bits(&s->gb, 3);
  600. else
  601. val = get_bits(&s->gb, 4);
  602. lsp_coefs[i] = lsp_codebook[i][val];
  603. }
  604. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  605. s->block_len, lsp_coefs);
  606. }
  607. /* decode exponents coded with VLC codes */
  608. static int decode_exp_vlc(WMADecodeContext *s, int ch)
  609. {
  610. int last_exp, n, code;
  611. const uint16_t *ptr, *band_ptr;
  612. float v, *q, max_scale, *q_end;
  613. band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  614. ptr = band_ptr;
  615. q = s->exponents[ch];
  616. q_end = q + s->block_len;
  617. max_scale = 0;
  618. if (s->version == 1) {
  619. last_exp = get_bits(&s->gb, 5) + 10;
  620. /* XXX: use a table */
  621. v = pow(10, last_exp * (1.0 / 16.0));
  622. max_scale = v;
  623. n = *ptr++;
  624. do {
  625. *q++ = v;
  626. } while (--n);
  627. }
  628. last_exp = 36;
  629. while (q < q_end) {
  630. code = get_vlc(&s->gb, &s->exp_vlc);
  631. if (code < 0)
  632. return -1;
  633. /* NOTE: this offset is the same as MPEG4 AAC ! */
  634. last_exp += code - 60;
  635. /* XXX: use a table */
  636. v = pow(10, last_exp * (1.0 / 16.0));
  637. if (v > max_scale)
  638. max_scale = v;
  639. n = *ptr++;
  640. do {
  641. *q++ = v;
  642. } while (--n);
  643. }
  644. s->max_exponent[ch] = max_scale;
  645. return 0;
  646. }
  647. /* return 0 if OK. return 1 if last block of frame. return -1 if
  648. unrecorrable error. */
  649. static int wma_decode_block(WMADecodeContext *s)
  650. {
  651. int n, v, a, ch, code, bsize;
  652. int coef_nb_bits, total_gain, parse_exponents;
  653. float window[BLOCK_MAX_SIZE * 2];
  654. int nb_coefs[MAX_CHANNELS];
  655. float mdct_norm;
  656. trace("***decode_block: %d:%d\n", frame_count - 1, s->block_num);
  657. /* compute current block length */
  658. if (s->use_variable_block_len) {
  659. n = av_log2(s->nb_block_sizes - 1) + 1;
  660. if (s->reset_block_lengths) {
  661. s->reset_block_lengths = 0;
  662. v = get_bits(&s->gb, n);
  663. if (v >= s->nb_block_sizes)
  664. return -1;
  665. s->prev_block_len_bits = s->frame_len_bits - v;
  666. v = get_bits(&s->gb, n);
  667. if (v >= s->nb_block_sizes)
  668. return -1;
  669. s->block_len_bits = s->frame_len_bits - v;
  670. } else {
  671. /* update block lengths */
  672. s->prev_block_len_bits = s->block_len_bits;
  673. s->block_len_bits = s->next_block_len_bits;
  674. }
  675. v = get_bits(&s->gb, n);
  676. if (v >= s->nb_block_sizes)
  677. return -1;
  678. s->next_block_len_bits = s->frame_len_bits - v;
  679. } else {
  680. /* fixed block len */
  681. s->next_block_len_bits = s->frame_len_bits;
  682. s->prev_block_len_bits = s->frame_len_bits;
  683. s->block_len_bits = s->frame_len_bits;
  684. }
  685. /* now check if the block length is coherent with the frame length */
  686. s->block_len = 1 << s->block_len_bits;
  687. if ((s->block_pos + s->block_len) > s->frame_len)
  688. return -1;
  689. if (s->nb_channels == 2) {
  690. s->ms_stereo = get_bits(&s->gb, 1);
  691. }
  692. v = 0;
  693. for(ch = 0; ch < s->nb_channels; ch++) {
  694. a = get_bits(&s->gb, 1);
  695. s->channel_coded[ch] = a;
  696. v |= a;
  697. }
  698. /* if no channel coded, no need to go further */
  699. /* XXX: fix potential framing problems */
  700. if (!v)
  701. goto next;
  702. bsize = s->frame_len_bits - s->block_len_bits;
  703. /* read total gain and extract corresponding number of bits for
  704. coef escape coding */
  705. total_gain = 1;
  706. for(;;) {
  707. a = get_bits(&s->gb, 7);
  708. total_gain += a;
  709. if (a != 127)
  710. break;
  711. }
  712. if (total_gain < 15)
  713. coef_nb_bits = 13;
  714. else if (total_gain < 32)
  715. coef_nb_bits = 12;
  716. else if (total_gain < 40)
  717. coef_nb_bits = 11;
  718. else if (total_gain < 45)
  719. coef_nb_bits = 10;
  720. else
  721. coef_nb_bits = 9;
  722. /* compute number of coefficients */
  723. n = s->coefs_end[bsize] - s->coefs_start;
  724. for(ch = 0; ch < s->nb_channels; ch++)
  725. nb_coefs[ch] = n;
  726. /* complex coding */
  727. if (s->use_noise_coding) {
  728. for(ch = 0; ch < s->nb_channels; ch++) {
  729. if (s->channel_coded[ch]) {
  730. int i, n, a;
  731. n = s->exponent_high_sizes[bsize];
  732. for(i=0;i<n;i++) {
  733. a = get_bits(&s->gb, 1);
  734. s->high_band_coded[ch][i] = a;
  735. /* if noise coding, the coefficients are not transmitted */
  736. if (a)
  737. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  738. }
  739. }
  740. }
  741. for(ch = 0; ch < s->nb_channels; ch++) {
  742. if (s->channel_coded[ch]) {
  743. int i, n, val, code;
  744. n = s->exponent_high_sizes[bsize];
  745. val = (int)0x80000000;
  746. for(i=0;i<n;i++) {
  747. if (s->high_band_coded[ch][i]) {
  748. if (val == (int)0x80000000) {
  749. val = get_bits(&s->gb, 7) - 19;
  750. } else {
  751. code = get_vlc(&s->gb, &s->hgain_vlc);
  752. if (code < 0)
  753. return -1;
  754. val += code - 18;
  755. }
  756. s->high_band_values[ch][i] = val;
  757. }
  758. }
  759. }
  760. }
  761. }
  762. /* exposant can be interpolated in short blocks. */
  763. parse_exponents = 1;
  764. if (s->block_len_bits != s->frame_len_bits) {
  765. parse_exponents = get_bits(&s->gb, 1);
  766. }
  767. if (parse_exponents) {
  768. for(ch = 0; ch < s->nb_channels; ch++) {
  769. if (s->channel_coded[ch]) {
  770. if (s->use_exp_vlc) {
  771. if (decode_exp_vlc(s, ch) < 0)
  772. return -1;
  773. } else {
  774. decode_exp_lsp(s, ch);
  775. }
  776. }
  777. }
  778. } else {
  779. for(ch = 0; ch < s->nb_channels; ch++) {
  780. if (s->channel_coded[ch]) {
  781. interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
  782. s->block_len);
  783. }
  784. }
  785. }
  786. /* parse spectral coefficients : just RLE encoding */
  787. for(ch = 0; ch < s->nb_channels; ch++) {
  788. if (s->channel_coded[ch]) {
  789. VLC *coef_vlc;
  790. int level, run, sign, tindex;
  791. int16_t *ptr, *eptr;
  792. const int16_t *level_table, *run_table;
  793. /* special VLC tables are used for ms stereo because
  794. there is potentially less energy there */
  795. tindex = (ch == 1 && s->ms_stereo);
  796. coef_vlc = &s->coef_vlc[tindex];
  797. run_table = s->run_table[tindex];
  798. level_table = s->level_table[tindex];
  799. /* XXX: optimize */
  800. ptr = &s->coefs1[ch][0];
  801. eptr = ptr + nb_coefs[ch];
  802. memset(ptr, 0, s->block_len * sizeof(int16_t));
  803. for(;;) {
  804. code = get_vlc(&s->gb, coef_vlc);
  805. if (code < 0)
  806. return -1;
  807. if (code == 1) {
  808. /* EOB */
  809. break;
  810. } else if (code == 0) {
  811. /* escape */
  812. level = get_bits(&s->gb, coef_nb_bits);
  813. /* NOTE: this is rather suboptimal. reading
  814. block_len_bits would be better */
  815. run = get_bits(&s->gb, s->frame_len_bits);
  816. } else {
  817. /* normal code */
  818. run = run_table[code];
  819. level = level_table[code];
  820. }
  821. sign = get_bits(&s->gb, 1);
  822. if (!sign)
  823. level = -level;
  824. ptr += run;
  825. if (ptr >= eptr)
  826. return -1;
  827. *ptr++ = level;
  828. /* NOTE: EOB can be omitted */
  829. if (ptr >= eptr)
  830. break;
  831. }
  832. }
  833. if (s->version == 1 && s->nb_channels >= 2) {
  834. align_get_bits(&s->gb);
  835. }
  836. }
  837. /* normalize */
  838. {
  839. int n4 = s->block_len / 2;
  840. mdct_norm = 1.0 / (float)n4;
  841. if (s->version == 1) {
  842. mdct_norm *= sqrt(n4);
  843. }
  844. }
  845. /* finally compute the MDCT coefficients */
  846. for(ch = 0; ch < s->nb_channels; ch++) {
  847. if (s->channel_coded[ch]) {
  848. int16_t *coefs1;
  849. float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
  850. int i, j, n, n1, last_high_band;
  851. float exp_power[HIGH_BAND_MAX_SIZE];
  852. coefs1 = s->coefs1[ch];
  853. exponents = s->exponents[ch];
  854. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  855. mult *= mdct_norm;
  856. coefs = s->coefs[ch];
  857. if (s->use_noise_coding) {
  858. mult1 = mult;
  859. /* very low freqs : noise */
  860. for(i = 0;i < s->coefs_start; i++) {
  861. *coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
  862. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  863. }
  864. n1 = s->exponent_high_sizes[bsize];
  865. /* compute power of high bands */
  866. exp_ptr = exponents +
  867. s->high_band_start[bsize] -
  868. s->coefs_start;
  869. last_high_band = 0; /* avoid warning */
  870. for(j=0;j<n1;j++) {
  871. n = s->exponent_high_bands[s->frame_len_bits -
  872. s->block_len_bits][j];
  873. if (s->high_band_coded[ch][j]) {
  874. float e2, v;
  875. e2 = 0;
  876. for(i = 0;i < n; i++) {
  877. v = exp_ptr[i];
  878. e2 += v * v;
  879. }
  880. exp_power[j] = e2 / n;
  881. last_high_band = j;
  882. trace("%d: power=%f (%d)\n", j, exp_power[j], n);
  883. }
  884. exp_ptr += n;
  885. }
  886. /* main freqs and high freqs */
  887. for(j=-1;j<n1;j++) {
  888. if (j < 0) {
  889. n = s->high_band_start[bsize] -
  890. s->coefs_start;
  891. } else {
  892. n = s->exponent_high_bands[s->frame_len_bits -
  893. s->block_len_bits][j];
  894. }
  895. if (j >= 0 && s->high_band_coded[ch][j]) {
  896. /* use noise with specified power */
  897. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  898. /* XXX: use a table */
  899. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  900. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  901. mult1 *= mdct_norm;
  902. for(i = 0;i < n; i++) {
  903. noise = s->noise_table[s->noise_index];
  904. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  905. *coefs++ = (*exponents++) * noise * mult1;
  906. }
  907. } else {
  908. /* coded values + small noise */
  909. for(i = 0;i < n; i++) {
  910. noise = s->noise_table[s->noise_index];
  911. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  912. *coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
  913. }
  914. }
  915. }
  916. /* very high freqs : noise */
  917. n = s->block_len - s->coefs_end[bsize];
  918. mult1 = mult * exponents[-1];
  919. for(i = 0; i < n; i++) {
  920. *coefs++ = s->noise_table[s->noise_index] * mult1;
  921. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  922. }
  923. } else {
  924. /* XXX: optimize more */
  925. for(i = 0;i < s->coefs_start; i++)
  926. *coefs++ = 0.0;
  927. n = nb_coefs[ch];
  928. for(i = 0;i < n; i++) {
  929. *coefs++ = coefs1[i] * exponents[i] * mult;
  930. }
  931. n = s->block_len - s->coefs_end[bsize];
  932. for(i = 0;i < n; i++)
  933. *coefs++ = 0.0;
  934. }
  935. }
  936. }
  937. #ifdef DEBUG_TRACE
  938. for(ch = 0; ch < s->nb_channels; ch++) {
  939. if (s->channel_coded[ch]) {
  940. dump_floats("exponents", 3, s->exponents[ch], s->block_len);
  941. dump_floats("coefs", 1, s->coefs[ch], s->block_len);
  942. }
  943. }
  944. #endif
  945. if (s->ms_stereo && s->channel_coded[1]) {
  946. float a, b;
  947. int i;
  948. /* nominal case for ms stereo: we do it before mdct */
  949. /* no need to optimize this case because it should almost
  950. never happen */
  951. if (!s->channel_coded[0]) {
  952. #ifdef DEBUG_TRACE
  953. trace("rare ms-stereo case happened\n");
  954. #endif
  955. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  956. s->channel_coded[0] = 1;
  957. }
  958. for(i = 0; i < s->block_len; i++) {
  959. a = s->coefs[0][i];
  960. b = s->coefs[1][i];
  961. s->coefs[0][i] = a + b;
  962. s->coefs[1][i] = a - b;
  963. }
  964. }
  965. /* build the window : we ensure that when the windows overlap
  966. their squared sum is always 1 (MDCT reconstruction rule) */
  967. /* XXX: merge with output */
  968. {
  969. int i, next_block_len, block_len, prev_block_len, n;
  970. float *wptr;
  971. block_len = s->block_len;
  972. prev_block_len = 1 << s->prev_block_len_bits;
  973. next_block_len = 1 << s->next_block_len_bits;
  974. /* right part */
  975. wptr = window + block_len;
  976. if (block_len <= next_block_len) {
  977. for(i=0;i<block_len;i++)
  978. *wptr++ = s->windows[bsize][i];
  979. } else {
  980. /* overlap */
  981. n = (block_len / 2) - (next_block_len / 2);
  982. for(i=0;i<n;i++)
  983. *wptr++ = 1.0;
  984. for(i=0;i<next_block_len;i++)
  985. *wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
  986. for(i=0;i<n;i++)
  987. *wptr++ = 0.0;
  988. }
  989. /* left part */
  990. wptr = window + block_len;
  991. if (block_len <= prev_block_len) {
  992. for(i=0;i<block_len;i++)
  993. *--wptr = s->windows[bsize][i];
  994. } else {
  995. /* overlap */
  996. n = (block_len / 2) - (prev_block_len / 2);
  997. for(i=0;i<n;i++)
  998. *--wptr = 1.0;
  999. for(i=0;i<prev_block_len;i++)
  1000. *--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
  1001. for(i=0;i<n;i++)
  1002. *--wptr = 0.0;
  1003. }
  1004. }
  1005. for(ch = 0; ch < s->nb_channels; ch++) {
  1006. if (s->channel_coded[ch]) {
  1007. FFTSample output[BLOCK_MAX_SIZE * 2];
  1008. float *ptr;
  1009. int i, n4, index, n;
  1010. n = s->block_len;
  1011. n4 = s->block_len / 2;
  1012. ff_imdct_calc(&s->mdct_ctx[bsize],
  1013. output, s->coefs[ch], s->mdct_tmp);
  1014. /* XXX: optimize all that by build the window and
  1015. multipying/adding at the same time */
  1016. /* multiply by the window */
  1017. for(i=0;i<n * 2;i++) {
  1018. output[i] *= window[i];
  1019. }
  1020. /* add in the frame */
  1021. index = (s->frame_len / 2) + s->block_pos - n4;
  1022. ptr = &s->frame_out[ch][index];
  1023. for(i=0;i<n * 2;i++) {
  1024. *ptr += output[i];
  1025. ptr++;
  1026. }
  1027. /* specific fast case for ms-stereo : add to second
  1028. channel if it is not coded */
  1029. if (s->ms_stereo && !s->channel_coded[1]) {
  1030. ptr = &s->frame_out[1][index];
  1031. for(i=0;i<n * 2;i++) {
  1032. *ptr += output[i];
  1033. ptr++;
  1034. }
  1035. }
  1036. }
  1037. }
  1038. next:
  1039. /* update block number */
  1040. s->block_num++;
  1041. s->block_pos += s->block_len;
  1042. if (s->block_pos >= s->frame_len)
  1043. return 1;
  1044. else
  1045. return 0;
  1046. }
  1047. /* decode a frame of frame_len samples */
  1048. static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
  1049. {
  1050. int ret, i, n, a, ch, incr;
  1051. int16_t *ptr;
  1052. float *iptr;
  1053. trace("***decode_frame: %d size=%d\n", frame_count++, s->frame_len);
  1054. /* read each block */
  1055. s->block_num = 0;
  1056. s->block_pos = 0;
  1057. for(;;) {
  1058. ret = wma_decode_block(s);
  1059. if (ret < 0)
  1060. return -1;
  1061. if (ret)
  1062. break;
  1063. }
  1064. /* convert frame to integer */
  1065. n = s->frame_len;
  1066. incr = s->nb_channels;
  1067. for(ch = 0; ch < s->nb_channels; ch++) {
  1068. ptr = samples + ch;
  1069. iptr = s->frame_out[ch];
  1070. for(i=0;i<n;i++) {
  1071. a = lrintf(*iptr++);
  1072. if (a > 32767)
  1073. a = 32767;
  1074. else if (a < -32768)
  1075. a = -32768;
  1076. *ptr = a;
  1077. ptr += incr;
  1078. }
  1079. /* prepare for next block */
  1080. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  1081. s->frame_len * sizeof(float));
  1082. /* XXX: suppress this */
  1083. memset(&s->frame_out[ch][s->frame_len], 0,
  1084. s->frame_len * sizeof(float));
  1085. }
  1086. #ifdef DEBUG_TRACE
  1087. dump_shorts("samples", samples, n * s->nb_channels);
  1088. #endif
  1089. return 0;
  1090. }
  1091. static int wma_decode_superframe(AVCodecContext *avctx,
  1092. void *data, int *data_size,
  1093. UINT8 *buf, int buf_size)
  1094. {
  1095. WMADecodeContext *s = avctx->priv_data;
  1096. int nb_frames, bit_offset, i, pos, len;
  1097. uint8_t *q;
  1098. int16_t *samples;
  1099. trace("***decode_superframe:\n");
  1100. samples = data;
  1101. init_get_bits(&s->gb, buf, buf_size);
  1102. if (s->use_bit_reservoir) {
  1103. /* read super frame header */
  1104. get_bits(&s->gb, 4); /* super frame index */
  1105. nb_frames = get_bits(&s->gb, 4) - 1;
  1106. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  1107. if (s->last_superframe_len > 0) {
  1108. // printf("skip=%d\n", s->last_bitoffset);
  1109. /* add bit_offset bits to last frame */
  1110. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  1111. MAX_CODED_SUPERFRAME_SIZE)
  1112. return -1;
  1113. q = s->last_superframe + s->last_superframe_len;
  1114. len = bit_offset;
  1115. while (len > 0) {
  1116. *q++ = (get_bits)(&s->gb, 8);
  1117. len -= 8;
  1118. }
  1119. if (len > 0) {
  1120. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  1121. }
  1122. /* XXX: bit_offset bits into last frame */
  1123. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE);
  1124. /* skip unused bits */
  1125. if (s->last_bitoffset > 0)
  1126. skip_bits(&s->gb, s->last_bitoffset);
  1127. /* this frame is stored in the last superframe and in the
  1128. current one */
  1129. if (wma_decode_frame(s, samples) < 0)
  1130. return -1;
  1131. samples += s->nb_channels * s->frame_len;
  1132. }
  1133. /* read each frame starting from bit_offset */
  1134. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  1135. init_get_bits(&s->gb, buf + (pos >> 3), MAX_CODED_SUPERFRAME_SIZE - (pos >> 3));
  1136. len = pos & 7;
  1137. if (len > 0)
  1138. skip_bits(&s->gb, len);
  1139. s->reset_block_lengths = 1;
  1140. for(i=0;i<nb_frames;i++) {
  1141. if (wma_decode_frame(s, samples) < 0)
  1142. return -1;
  1143. samples += s->nb_channels * s->frame_len;
  1144. }
  1145. /* we copy the end of the frame in the last frame buffer */
  1146. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  1147. s->last_bitoffset = pos & 7;
  1148. pos >>= 3;
  1149. len = buf_size - pos;
  1150. if (len > MAX_CODED_SUPERFRAME_SIZE) {
  1151. return -1;
  1152. }
  1153. s->last_superframe_len = len;
  1154. memcpy(s->last_superframe, buf + pos, len);
  1155. } else {
  1156. /* single frame decode */
  1157. if (wma_decode_frame(s, samples) < 0)
  1158. return -1;
  1159. samples += s->nb_channels * s->frame_len;
  1160. }
  1161. *data_size = (int8_t *)samples - (int8_t *)data;
  1162. return s->block_align;
  1163. }
  1164. static int wma_decode_end(AVCodecContext *avctx)
  1165. {
  1166. WMADecodeContext *s = avctx->priv_data;
  1167. int i;
  1168. for(i = 0; i < s->nb_block_sizes; i++)
  1169. ff_mdct_end(&s->mdct_ctx[i]);
  1170. for(i = 0; i < s->nb_block_sizes; i++)
  1171. av_free(s->windows[i]);
  1172. if (s->use_exp_vlc) {
  1173. free_vlc(&s->exp_vlc);
  1174. }
  1175. if (s->use_noise_coding) {
  1176. free_vlc(&s->hgain_vlc);
  1177. }
  1178. for(i = 0;i < 2; i++) {
  1179. free_vlc(&s->coef_vlc[i]);
  1180. av_free(s->run_table[i]);
  1181. av_free(s->level_table[i]);
  1182. }
  1183. return 0;
  1184. }
  1185. AVCodec wmav1_decoder =
  1186. {
  1187. "wmav1",
  1188. CODEC_TYPE_AUDIO,
  1189. CODEC_ID_WMAV1,
  1190. sizeof(WMADecodeContext),
  1191. wma_decode_init,
  1192. NULL,
  1193. wma_decode_end,
  1194. wma_decode_superframe,
  1195. };
  1196. AVCodec wmav2_decoder =
  1197. {
  1198. "wmav2",
  1199. CODEC_TYPE_AUDIO,
  1200. CODEC_ID_WMAV2,
  1201. sizeof(WMADecodeContext),
  1202. wma_decode_init,
  1203. NULL,
  1204. wma_decode_end,
  1205. wma_decode_superframe,
  1206. };