You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2470 lines
68KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{avconv} and @option{-vf} in @command{avplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfiltergraph.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance. It may have one of the two allowed forms:
  35. @itemize
  36. @item
  37. A ':'-separated list of @var{key=value} pairs.
  38. @item
  39. A ':'-separated list of @var{value}. In this case, the keys are assumed to be
  40. the option names in the order they are declared. E.g. the @code{fade} filter
  41. declares three options in this order -- @option{type}, @option{start_frame} and
  42. @option{nb_frames}. Then the parameter list @var{in:0:30} means that the value
  43. @var{in} is assigned to the option @option{type}, @var{0} to
  44. @option{start_frame} and @var{30} to @option{nb_frames}.
  45. @end itemize
  46. If the option value itself is a list of items (e.g. the @code{format} filter
  47. takes a list of pixel formats), the items in the list are usually separated by
  48. '|'.
  49. The list of arguments can be quoted using the character "'" as initial
  50. and ending mark, and the character '\' for escaping the characters
  51. within the quoted text; otherwise the argument string is considered
  52. terminated when the next special character (belonging to the set
  53. "[]=;,") is encountered.
  54. The name and arguments of the filter are optionally preceded and
  55. followed by a list of link labels.
  56. A link label allows to name a link and associate it to a filter output
  57. or input pad. The preceding labels @var{in_link_1}
  58. ... @var{in_link_N}, are associated to the filter input pads,
  59. the following labels @var{out_link_1} ... @var{out_link_M}, are
  60. associated to the output pads.
  61. When two link labels with the same name are found in the
  62. filtergraph, a link between the corresponding input and output pad is
  63. created.
  64. If an output pad is not labelled, it is linked by default to the first
  65. unlabelled input pad of the next filter in the filterchain.
  66. For example in the filterchain:
  67. @example
  68. nullsrc, split[L1], [L2]overlay, nullsink
  69. @end example
  70. the split filter instance has two output pads, and the overlay filter
  71. instance two input pads. The first output pad of split is labelled
  72. "L1", the first input pad of overlay is labelled "L2", and the second
  73. output pad of split is linked to the second input pad of overlay,
  74. which are both unlabelled.
  75. In a complete filterchain all the unlabelled filter input and output
  76. pads must be connected. A filtergraph is considered valid if all the
  77. filter input and output pads of all the filterchains are connected.
  78. Libavfilter will automatically insert scale filters where format
  79. conversion is required. It is possible to specify swscale flags
  80. for those automatically inserted scalers by prepending
  81. @code{sws_flags=@var{flags};}
  82. to the filtergraph description.
  83. Follows a BNF description for the filtergraph syntax:
  84. @example
  85. @var{NAME} ::= sequence of alphanumeric characters and '_'
  86. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  87. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  88. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  89. @var{FILTER} ::= [@var{LINKLABELS}] @var{NAME} ["=" @var{FILTER_ARGUMENTS}] [@var{LINKLABELS}]
  90. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  91. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  92. @end example
  93. @c man end FILTERGRAPH DESCRIPTION
  94. @chapter Audio Filters
  95. @c man begin AUDIO FILTERS
  96. When you configure your Libav build, you can disable any of the
  97. existing filters using --disable-filters.
  98. The configure output will show the audio filters included in your
  99. build.
  100. Below is a description of the currently available audio filters.
  101. @section aformat
  102. Convert the input audio to one of the specified formats. The framework will
  103. negotiate the most appropriate format to minimize conversions.
  104. The filter accepts the following named parameters:
  105. @table @option
  106. @item sample_fmts
  107. A '|'-separated list of requested sample formats.
  108. @item sample_rates
  109. A '|'-separated list of requested sample rates.
  110. @item channel_layouts
  111. A '|'-separated list of requested channel layouts.
  112. @end table
  113. If a parameter is omitted, all values are allowed.
  114. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  115. @example
  116. aformat=sample_fmts=u8|s16:channel_layouts=stereo
  117. @end example
  118. @section amix
  119. Mixes multiple audio inputs into a single output.
  120. For example
  121. @example
  122. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex amix=inputs=3:duration=first:dropout_transition=3 OUTPUT
  123. @end example
  124. will mix 3 input audio streams to a single output with the same duration as the
  125. first input and a dropout transition time of 3 seconds.
  126. The filter accepts the following named parameters:
  127. @table @option
  128. @item inputs
  129. Number of inputs. If unspecified, it defaults to 2.
  130. @item duration
  131. How to determine the end-of-stream.
  132. @table @option
  133. @item longest
  134. Duration of longest input. (default)
  135. @item shortest
  136. Duration of shortest input.
  137. @item first
  138. Duration of first input.
  139. @end table
  140. @item dropout_transition
  141. Transition time, in seconds, for volume renormalization when an input
  142. stream ends. The default value is 2 seconds.
  143. @end table
  144. @section anull
  145. Pass the audio source unchanged to the output.
  146. @section ashowinfo
  147. Show a line containing various information for each input audio frame.
  148. The input audio is not modified.
  149. The shown line contains a sequence of key/value pairs of the form
  150. @var{key}:@var{value}.
  151. A description of each shown parameter follows:
  152. @table @option
  153. @item n
  154. sequential number of the input frame, starting from 0
  155. @item pts
  156. Presentation timestamp of the input frame, in time base units; the time base
  157. depends on the filter input pad, and is usually 1/@var{sample_rate}.
  158. @item pts_time
  159. presentation timestamp of the input frame in seconds
  160. @item fmt
  161. sample format
  162. @item chlayout
  163. channel layout
  164. @item rate
  165. sample rate for the audio frame
  166. @item nb_samples
  167. number of samples (per channel) in the frame
  168. @item checksum
  169. Adler-32 checksum (printed in hexadecimal) of the audio data. For planar audio
  170. the data is treated as if all the planes were concatenated.
  171. @item plane_checksums
  172. A list of Adler-32 checksums for each data plane.
  173. @end table
  174. @section asplit
  175. Split input audio into several identical outputs.
  176. The filter accepts a single parameter which specifies the number of outputs. If
  177. unspecified, it defaults to 2.
  178. For example
  179. @example
  180. avconv -i INPUT -filter_complex asplit=5 OUTPUT
  181. @end example
  182. will create 5 copies of the input audio.
  183. @section asyncts
  184. Synchronize audio data with timestamps by squeezing/stretching it and/or
  185. dropping samples/adding silence when needed.
  186. The filter accepts the following named parameters:
  187. @table @option
  188. @item compensate
  189. Enable stretching/squeezing the data to make it match the timestamps. Disabled
  190. by default. When disabled, time gaps are covered with silence.
  191. @item min_delta
  192. Minimum difference between timestamps and audio data (in seconds) to trigger
  193. adding/dropping samples. Default value is 0.1. If you get non-perfect sync with
  194. this filter, try setting this parameter to 0.
  195. @item max_comp
  196. Maximum compensation in samples per second. Relevant only with compensate=1.
  197. Default value 500.
  198. @item first_pts
  199. Assume the first pts should be this value. The time base is 1 / sample rate.
  200. This allows for padding/trimming at the start of stream. By default, no
  201. assumption is made about the first frame's expected pts, so no padding or
  202. trimming is done. For example, this could be set to 0 to pad the beginning with
  203. silence if an audio stream starts after the video stream or to trim any samples
  204. with a negative pts due to encoder delay.
  205. @end table
  206. @section channelsplit
  207. Split each channel in input audio stream into a separate output stream.
  208. This filter accepts the following named parameters:
  209. @table @option
  210. @item channel_layout
  211. Channel layout of the input stream. Default is "stereo".
  212. @end table
  213. For example, assuming a stereo input MP3 file
  214. @example
  215. avconv -i in.mp3 -filter_complex channelsplit out.mkv
  216. @end example
  217. will create an output Matroska file with two audio streams, one containing only
  218. the left channel and the other the right channel.
  219. To split a 5.1 WAV file into per-channel files
  220. @example
  221. avconv -i in.wav -filter_complex
  222. 'channelsplit=channel_layout=5.1[FL][FR][FC][LFE][SL][SR]'
  223. -map '[FL]' front_left.wav -map '[FR]' front_right.wav -map '[FC]'
  224. front_center.wav -map '[LFE]' lfe.wav -map '[SL]' side_left.wav -map '[SR]'
  225. side_right.wav
  226. @end example
  227. @section channelmap
  228. Remap input channels to new locations.
  229. This filter accepts the following named parameters:
  230. @table @option
  231. @item channel_layout
  232. Channel layout of the output stream.
  233. @item map
  234. Map channels from input to output. The argument is a comma-separated list of
  235. mappings, each in the @code{@var{in_channel}-@var{out_channel}} or
  236. @var{in_channel} form. @var{in_channel} can be either the name of the input
  237. channel (e.g. FL for front left) or its index in the input channel layout.
  238. @var{out_channel} is the name of the output channel or its index in the output
  239. channel layout. If @var{out_channel} is not given then it is implicitly an
  240. index, starting with zero and increasing by one for each mapping.
  241. @end table
  242. If no mapping is present, the filter will implicitly map input channels to
  243. output channels preserving index.
  244. For example, assuming a 5.1+downmix input MOV file
  245. @example
  246. avconv -i in.mov -filter 'channelmap=map=DL-FL\,DR-FR' out.wav
  247. @end example
  248. will create an output WAV file tagged as stereo from the downmix channels of
  249. the input.
  250. To fix a 5.1 WAV improperly encoded in AAC's native channel order
  251. @example
  252. avconv -i in.wav -filter 'channelmap=1\,2\,0\,5\,3\,4:channel_layout=5.1' out.wav
  253. @end example
  254. @section join
  255. Join multiple input streams into one multi-channel stream.
  256. The filter accepts the following named parameters:
  257. @table @option
  258. @item inputs
  259. Number of input streams. Defaults to 2.
  260. @item channel_layout
  261. Desired output channel layout. Defaults to stereo.
  262. @item map
  263. Map channels from inputs to output. The argument is a comma-separated list of
  264. mappings, each in the @code{@var{input_idx}.@var{in_channel}-@var{out_channel}}
  265. form. @var{input_idx} is the 0-based index of the input stream. @var{in_channel}
  266. can be either the name of the input channel (e.g. FL for front left) or its
  267. index in the specified input stream. @var{out_channel} is the name of the output
  268. channel.
  269. @end table
  270. The filter will attempt to guess the mappings when those are not specified
  271. explicitly. It does so by first trying to find an unused matching input channel
  272. and if that fails it picks the first unused input channel.
  273. E.g. to join 3 inputs (with properly set channel layouts)
  274. @example
  275. avconv -i INPUT1 -i INPUT2 -i INPUT3 -filter_complex join=inputs=3 OUTPUT
  276. @end example
  277. To build a 5.1 output from 6 single-channel streams:
  278. @example
  279. avconv -i fl -i fr -i fc -i sl -i sr -i lfe -filter_complex
  280. 'join=inputs=6:channel_layout=5.1:map=0.0-FL\,1.0-FR\,2.0-FC\,3.0-SL\,4.0-SR\,5.0-LFE'
  281. out
  282. @end example
  283. @section resample
  284. Convert the audio sample format, sample rate and channel layout. This filter is
  285. not meant to be used directly, it is inserted automatically by libavfilter
  286. whenever conversion is needed. Use the @var{aformat} filter to force a specific
  287. conversion.
  288. @section volume
  289. Adjust the input audio volume.
  290. The filter accepts the following named parameters:
  291. @table @option
  292. @item volume
  293. Expresses how the audio volume will be increased or decreased.
  294. Output values are clipped to the maximum value.
  295. The output audio volume is given by the relation:
  296. @example
  297. @var{output_volume} = @var{volume} * @var{input_volume}
  298. @end example
  299. Default value for @var{volume} is 1.0.
  300. @item precision
  301. Mathematical precision.
  302. This determines which input sample formats will be allowed, which affects the
  303. precision of the volume scaling.
  304. @table @option
  305. @item fixed
  306. 8-bit fixed-point; limits input sample format to U8, S16, and S32.
  307. @item float
  308. 32-bit floating-point; limits input sample format to FLT. (default)
  309. @item double
  310. 64-bit floating-point; limits input sample format to DBL.
  311. @end table
  312. @end table
  313. @subsection Examples
  314. @itemize
  315. @item
  316. Halve the input audio volume:
  317. @example
  318. volume=volume=0.5
  319. volume=volume=1/2
  320. volume=volume=-6.0206dB
  321. @end example
  322. @item
  323. Increase input audio power by 6 decibels using fixed-point precision:
  324. @example
  325. volume=volume=6dB:precision=fixed
  326. @end example
  327. @end itemize
  328. @c man end AUDIO FILTERS
  329. @chapter Audio Sources
  330. @c man begin AUDIO SOURCES
  331. Below is a description of the currently available audio sources.
  332. @section anullsrc
  333. Null audio source, never return audio frames. It is mainly useful as a
  334. template and to be employed in analysis / debugging tools.
  335. It accepts as optional parameter a string of the form
  336. @var{sample_rate}:@var{channel_layout}.
  337. @var{sample_rate} specify the sample rate, and defaults to 44100.
  338. @var{channel_layout} specify the channel layout, and can be either an
  339. integer or a string representing a channel layout. The default value
  340. of @var{channel_layout} is 3, which corresponds to CH_LAYOUT_STEREO.
  341. Check the channel_layout_map definition in
  342. @file{libavutil/channel_layout.c} for the mapping between strings and
  343. channel layout values.
  344. Follow some examples:
  345. @example
  346. # set the sample rate to 48000 Hz and the channel layout to CH_LAYOUT_MONO.
  347. anullsrc=48000:4
  348. # same as
  349. anullsrc=48000:mono
  350. @end example
  351. @section abuffer
  352. Buffer audio frames, and make them available to the filter chain.
  353. This source is not intended to be part of user-supplied graph descriptions but
  354. for insertion by calling programs through the interface defined in
  355. @file{libavfilter/buffersrc.h}.
  356. It accepts the following named parameters:
  357. @table @option
  358. @item time_base
  359. Timebase which will be used for timestamps of submitted frames. It must be
  360. either a floating-point number or in @var{numerator}/@var{denominator} form.
  361. @item sample_rate
  362. Audio sample rate.
  363. @item sample_fmt
  364. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  365. @item channel_layout
  366. Channel layout of the audio data, in the form that can be accepted by
  367. @code{av_get_channel_layout()}.
  368. @end table
  369. All the parameters need to be explicitly defined.
  370. @c man end AUDIO SOURCES
  371. @chapter Audio Sinks
  372. @c man begin AUDIO SINKS
  373. Below is a description of the currently available audio sinks.
  374. @section anullsink
  375. Null audio sink, do absolutely nothing with the input audio. It is
  376. mainly useful as a template and to be employed in analysis / debugging
  377. tools.
  378. @section abuffersink
  379. This sink is intended for programmatic use. Frames that arrive on this sink can
  380. be retrieved by the calling program using the interface defined in
  381. @file{libavfilter/buffersink.h}.
  382. This filter accepts no parameters.
  383. @c man end AUDIO SINKS
  384. @chapter Video Filters
  385. @c man begin VIDEO FILTERS
  386. When you configure your Libav build, you can disable any of the
  387. existing filters using --disable-filters.
  388. The configure output will show the video filters included in your
  389. build.
  390. Below is a description of the currently available video filters.
  391. @section blackframe
  392. Detect frames that are (almost) completely black. Can be useful to
  393. detect chapter transitions or commercials. Output lines consist of
  394. the frame number of the detected frame, the percentage of blackness,
  395. the position in the file if known or -1 and the timestamp in seconds.
  396. In order to display the output lines, you need to set the loglevel at
  397. least to the AV_LOG_INFO value.
  398. The filter accepts the following options:
  399. @table @option
  400. @item amount
  401. The percentage of the pixels that have to be below the threshold, defaults to
  402. 98.
  403. @item threshold
  404. Threshold below which a pixel value is considered black, defaults to 32.
  405. @end table
  406. @section boxblur
  407. Apply boxblur algorithm to the input video.
  408. This filter accepts the following options:
  409. @table @option
  410. @item luma_radius
  411. @item luma_power
  412. @item chroma_radius
  413. @item chroma_power
  414. @item alpha_radius
  415. @item alpha_power
  416. @end table
  417. Chroma and alpha parameters are optional, if not specified they default
  418. to the corresponding values set for @var{luma_radius} and
  419. @var{luma_power}.
  420. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  421. the radius in pixels of the box used for blurring the corresponding
  422. input plane. They are expressions, and can contain the following
  423. constants:
  424. @table @option
  425. @item w, h
  426. the input width and height in pixels
  427. @item cw, ch
  428. the input chroma image width and height in pixels
  429. @item hsub, vsub
  430. horizontal and vertical chroma subsample values. For example for the
  431. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  432. @end table
  433. The radius must be a non-negative number, and must not be greater than
  434. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  435. and of @code{min(cw,ch)/2} for the chroma planes.
  436. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  437. how many times the boxblur filter is applied to the corresponding
  438. plane.
  439. Some examples follow:
  440. @itemize
  441. @item
  442. Apply a boxblur filter with luma, chroma, and alpha radius
  443. set to 2:
  444. @example
  445. boxblur=luma_radius=2:luma_power=1
  446. @end example
  447. @item
  448. Set luma radius to 2, alpha and chroma radius to 0
  449. @example
  450. boxblur=2:1:0:0:0:0
  451. @end example
  452. @item
  453. Set luma and chroma radius to a fraction of the video dimension
  454. @example
  455. boxblur=luma_radius=min(h\,w)/10:luma_power=1:chroma_radius=min(cw\,ch)/10:chroma_power=1
  456. @end example
  457. @end itemize
  458. @section copy
  459. Copy the input source unchanged to the output. Mainly useful for
  460. testing purposes.
  461. @section crop
  462. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  463. The parameters are expressions containing the following constants:
  464. @table @option
  465. @item E, PI, PHI
  466. the corresponding mathematical approximated values for e
  467. (euler number), pi (greek PI), PHI (golden ratio)
  468. @item x, y
  469. the computed values for @var{x} and @var{y}. They are evaluated for
  470. each new frame.
  471. @item in_w, in_h
  472. the input width and height
  473. @item iw, ih
  474. same as @var{in_w} and @var{in_h}
  475. @item out_w, out_h
  476. the output (cropped) width and height
  477. @item ow, oh
  478. same as @var{out_w} and @var{out_h}
  479. @item n
  480. the number of input frame, starting from 0
  481. @item t
  482. timestamp expressed in seconds, NAN if the input timestamp is unknown
  483. @end table
  484. The @var{out_w} and @var{out_h} parameters specify the expressions for
  485. the width and height of the output (cropped) video. They are
  486. evaluated just at the configuration of the filter.
  487. The default value of @var{out_w} is "in_w", and the default value of
  488. @var{out_h} is "in_h".
  489. The expression for @var{out_w} may depend on the value of @var{out_h},
  490. and the expression for @var{out_h} may depend on @var{out_w}, but they
  491. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  492. evaluated after @var{out_w} and @var{out_h}.
  493. The @var{x} and @var{y} parameters specify the expressions for the
  494. position of the top-left corner of the output (non-cropped) area. They
  495. are evaluated for each frame. If the evaluated value is not valid, it
  496. is approximated to the nearest valid value.
  497. The default value of @var{x} is "(in_w-out_w)/2", and the default
  498. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  499. the center of the input image.
  500. The expression for @var{x} may depend on @var{y}, and the expression
  501. for @var{y} may depend on @var{x}.
  502. Follow some examples:
  503. @example
  504. # crop the central input area with size 100x100
  505. crop=100:100
  506. # crop the central input area with size 2/3 of the input video
  507. "crop=2/3*in_w:2/3*in_h"
  508. # crop the input video central square
  509. crop=in_h
  510. # delimit the rectangle with the top-left corner placed at position
  511. # 100:100 and the right-bottom corner corresponding to the right-bottom
  512. # corner of the input image.
  513. crop=in_w-100:in_h-100:100:100
  514. # crop 10 pixels from the left and right borders, and 20 pixels from
  515. # the top and bottom borders
  516. "crop=in_w-2*10:in_h-2*20"
  517. # keep only the bottom right quarter of the input image
  518. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  519. # crop height for getting Greek harmony
  520. "crop=in_w:1/PHI*in_w"
  521. # trembling effect
  522. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  523. # erratic camera effect depending on timestamp
  524. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  525. # set x depending on the value of y
  526. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  527. @end example
  528. @section cropdetect
  529. Auto-detect crop size.
  530. Calculate necessary cropping parameters and prints the recommended
  531. parameters through the logging system. The detected dimensions
  532. correspond to the non-black area of the input video.
  533. It accepts the syntax:
  534. @example
  535. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  536. @end example
  537. @table @option
  538. @item limit
  539. Threshold, which can be optionally specified from nothing (0) to
  540. everything (255), defaults to 24.
  541. @item round
  542. Value which the width/height should be divisible by, defaults to
  543. 16. The offset is automatically adjusted to center the video. Use 2 to
  544. get only even dimensions (needed for 4:2:2 video). 16 is best when
  545. encoding to most video codecs.
  546. @item reset
  547. Counter that determines after how many frames cropdetect will reset
  548. the previously detected largest video area and start over to detect
  549. the current optimal crop area. Defaults to 0.
  550. This can be useful when channel logos distort the video area. 0
  551. indicates never reset and return the largest area encountered during
  552. playback.
  553. @end table
  554. @section delogo
  555. Suppress a TV station logo by a simple interpolation of the surrounding
  556. pixels. Just set a rectangle covering the logo and watch it disappear
  557. (and sometimes something even uglier appear - your mileage may vary).
  558. The filter accepts parameters as a string of the form
  559. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  560. @var{key}=@var{value} pairs, separated by ":".
  561. The description of the accepted parameters follows.
  562. @table @option
  563. @item x, y
  564. Specify the top left corner coordinates of the logo. They must be
  565. specified.
  566. @item w, h
  567. Specify the width and height of the logo to clear. They must be
  568. specified.
  569. @item band, t
  570. Specify the thickness of the fuzzy edge of the rectangle (added to
  571. @var{w} and @var{h}). The default value is 4.
  572. @item show
  573. When set to 1, a green rectangle is drawn on the screen to simplify
  574. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  575. @var{band} is set to 4. The default value is 0.
  576. @end table
  577. Some examples follow.
  578. @itemize
  579. @item
  580. Set a rectangle covering the area with top left corner coordinates 0,0
  581. and size 100x77, setting a band of size 10:
  582. @example
  583. delogo=0:0:100:77:10
  584. @end example
  585. @item
  586. As the previous example, but use named options:
  587. @example
  588. delogo=x=0:y=0:w=100:h=77:band=10
  589. @end example
  590. @end itemize
  591. @section drawbox
  592. Draw a colored box on the input image.
  593. It accepts the syntax:
  594. @example
  595. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  596. @end example
  597. @table @option
  598. @item x, y
  599. Specify the top left corner coordinates of the box. Default to 0.
  600. @item width, height
  601. Specify the width and height of the box, if 0 they are interpreted as
  602. the input width and height. Default to 0.
  603. @item color
  604. Specify the color of the box to write, it can be the name of a color
  605. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  606. @end table
  607. Follow some examples:
  608. @example
  609. # draw a black box around the edge of the input image
  610. drawbox
  611. # draw a box with color red and an opacity of 50%
  612. drawbox=10:20:200:60:red@@0.5"
  613. @end example
  614. @section drawtext
  615. Draw text string or text from specified file on top of video using the
  616. libfreetype library.
  617. To enable compilation of this filter you need to configure Libav with
  618. @code{--enable-libfreetype}.
  619. The filter also recognizes strftime() sequences in the provided text
  620. and expands them accordingly. Check the documentation of strftime().
  621. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  622. separated by ":".
  623. The description of the accepted parameters follows.
  624. @table @option
  625. @item fontfile
  626. The font file to be used for drawing text. Path must be included.
  627. This parameter is mandatory.
  628. @item text
  629. The text string to be drawn. The text must be a sequence of UTF-8
  630. encoded characters.
  631. This parameter is mandatory if no file is specified with the parameter
  632. @var{textfile}.
  633. @item textfile
  634. A text file containing text to be drawn. The text must be a sequence
  635. of UTF-8 encoded characters.
  636. This parameter is mandatory if no text string is specified with the
  637. parameter @var{text}.
  638. If both text and textfile are specified, an error is thrown.
  639. @item x, y
  640. The offsets where text will be drawn within the video frame.
  641. Relative to the top/left border of the output image.
  642. They accept expressions similar to the @ref{overlay} filter:
  643. @table @option
  644. @item x, y
  645. the computed values for @var{x} and @var{y}. They are evaluated for
  646. each new frame.
  647. @item main_w, main_h
  648. main input width and height
  649. @item W, H
  650. same as @var{main_w} and @var{main_h}
  651. @item text_w, text_h
  652. rendered text width and height
  653. @item w, h
  654. same as @var{text_w} and @var{text_h}
  655. @item n
  656. the number of frames processed, starting from 0
  657. @item t
  658. timestamp expressed in seconds, NAN if the input timestamp is unknown
  659. @end table
  660. The default value of @var{x} and @var{y} is 0.
  661. @item fontsize
  662. The font size to be used for drawing text.
  663. The default value of @var{fontsize} is 16.
  664. @item fontcolor
  665. The color to be used for drawing fonts.
  666. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  667. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  668. The default value of @var{fontcolor} is "black".
  669. @item boxcolor
  670. The color to be used for drawing box around text.
  671. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  672. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  673. The default value of @var{boxcolor} is "white".
  674. @item box
  675. Used to draw a box around text using background color.
  676. Value should be either 1 (enable) or 0 (disable).
  677. The default value of @var{box} is 0.
  678. @item shadowx, shadowy
  679. The x and y offsets for the text shadow position with respect to the
  680. position of the text. They can be either positive or negative
  681. values. Default value for both is "0".
  682. @item shadowcolor
  683. The color to be used for drawing a shadow behind the drawn text. It
  684. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  685. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  686. The default value of @var{shadowcolor} is "black".
  687. @item ft_load_flags
  688. Flags to be used for loading the fonts.
  689. The flags map the corresponding flags supported by libfreetype, and are
  690. a combination of the following values:
  691. @table @var
  692. @item default
  693. @item no_scale
  694. @item no_hinting
  695. @item render
  696. @item no_bitmap
  697. @item vertical_layout
  698. @item force_autohint
  699. @item crop_bitmap
  700. @item pedantic
  701. @item ignore_global_advance_width
  702. @item no_recurse
  703. @item ignore_transform
  704. @item monochrome
  705. @item linear_design
  706. @item no_autohint
  707. @item end table
  708. @end table
  709. Default value is "render".
  710. For more information consult the documentation for the FT_LOAD_*
  711. libfreetype flags.
  712. @item tabsize
  713. The size in number of spaces to use for rendering the tab.
  714. Default value is 4.
  715. @item fix_bounds
  716. If true, check and fix text coords to avoid clipping.
  717. @end table
  718. For example the command:
  719. @example
  720. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  721. @end example
  722. will draw "Test Text" with font FreeSerif, using the default values
  723. for the optional parameters.
  724. The command:
  725. @example
  726. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  727. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  728. @end example
  729. will draw 'Test Text' with font FreeSerif of size 24 at position x=100
  730. and y=50 (counting from the top-left corner of the screen), text is
  731. yellow with a red box around it. Both the text and the box have an
  732. opacity of 20%.
  733. Note that the double quotes are not necessary if spaces are not used
  734. within the parameter list.
  735. For more information about libfreetype, check:
  736. @url{http://www.freetype.org/}.
  737. @section fade
  738. Apply fade-in/out effect to input video.
  739. It accepts the parameters:
  740. @var{type}:@var{start_frame}:@var{nb_frames}
  741. @var{type} specifies if the effect type, can be either "in" for
  742. fade-in, or "out" for a fade-out effect.
  743. @var{start_frame} specifies the number of the start frame for starting
  744. to apply the fade effect.
  745. @var{nb_frames} specifies the number of frames for which the fade
  746. effect has to last. At the end of the fade-in effect the output video
  747. will have the same intensity as the input video, at the end of the
  748. fade-out transition the output video will be completely black.
  749. A few usage examples follow, usable too as test scenarios.
  750. @example
  751. # fade in first 30 frames of video
  752. fade=in:0:30
  753. # fade out last 45 frames of a 200-frame video
  754. fade=out:155:45
  755. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  756. fade=in:0:25, fade=out:975:25
  757. # make first 5 frames black, then fade in from frame 5-24
  758. fade=in:5:20
  759. @end example
  760. @section fieldorder
  761. Transform the field order of the input video.
  762. It accepts one parameter which specifies the required field order that
  763. the input interlaced video will be transformed to. The parameter can
  764. assume one of the following values:
  765. @table @option
  766. @item 0 or bff
  767. output bottom field first
  768. @item 1 or tff
  769. output top field first
  770. @end table
  771. Default value is "tff".
  772. Transformation is achieved by shifting the picture content up or down
  773. by one line, and filling the remaining line with appropriate picture content.
  774. This method is consistent with most broadcast field order converters.
  775. If the input video is not flagged as being interlaced, or it is already
  776. flagged as being of the required output field order then this filter does
  777. not alter the incoming video.
  778. This filter is very useful when converting to or from PAL DV material,
  779. which is bottom field first.
  780. For example:
  781. @example
  782. ./avconv -i in.vob -vf "fieldorder=bff" out.dv
  783. @end example
  784. @section fifo
  785. Buffer input images and send them when they are requested.
  786. This filter is mainly useful when auto-inserted by the libavfilter
  787. framework.
  788. The filter does not take parameters.
  789. @section format
  790. Convert the input video to one of the specified pixel formats.
  791. Libavfilter will try to pick one that is supported for the input to
  792. the next filter.
  793. This filter accepts the following parameters:
  794. @table @option
  795. @item pix_fmts
  796. A '|'-separated list of pixel format names, for example
  797. "pix_fmts=yuv420p|monow|rgb24".
  798. @end table
  799. Some examples follow:
  800. @example
  801. # convert the input video to the format "yuv420p"
  802. format=pix_fmts=yuv420p
  803. # convert the input video to any of the formats in the list
  804. format=pix_fmts=yuv420p|yuv444p|yuv410p
  805. @end example
  806. @section fps
  807. Convert the video to specified constant framerate by duplicating or dropping
  808. frames as necessary.
  809. This filter accepts the following named parameters:
  810. @table @option
  811. @item fps
  812. Desired output framerate.
  813. @end table
  814. @anchor{frei0r}
  815. @section frei0r
  816. Apply a frei0r effect to the input video.
  817. To enable compilation of this filter you need to install the frei0r
  818. header and configure Libav with --enable-frei0r.
  819. The filter supports the syntax:
  820. @example
  821. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  822. @end example
  823. @var{filter_name} is the name to the frei0r effect to load. If the
  824. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  825. is searched in each one of the directories specified by the colon
  826. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  827. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  828. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  829. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  830. for the frei0r effect.
  831. A frei0r effect parameter can be a boolean (whose values are specified
  832. with "y" and "n"), a double, a color (specified by the syntax
  833. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  834. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  835. description), a position (specified by the syntax @var{X}/@var{Y},
  836. @var{X} and @var{Y} being float numbers) and a string.
  837. The number and kind of parameters depend on the loaded effect. If an
  838. effect parameter is not specified the default value is set.
  839. Some examples follow:
  840. @example
  841. # apply the distort0r effect, set the first two double parameters
  842. frei0r=distort0r:0.5:0.01
  843. # apply the colordistance effect, takes a color as first parameter
  844. frei0r=colordistance:0.2/0.3/0.4
  845. frei0r=colordistance:violet
  846. frei0r=colordistance:0x112233
  847. # apply the perspective effect, specify the top left and top right
  848. # image positions
  849. frei0r=perspective:0.2/0.2:0.8/0.2
  850. @end example
  851. For more information see:
  852. @url{http://piksel.org/frei0r}
  853. @section gradfun
  854. Fix the banding artifacts that are sometimes introduced into nearly flat
  855. regions by truncation to 8bit colordepth.
  856. Interpolate the gradients that should go where the bands are, and
  857. dither them.
  858. This filter is designed for playback only. Do not use it prior to
  859. lossy compression, because compression tends to lose the dither and
  860. bring back the bands.
  861. The filter takes two optional parameters, separated by ':':
  862. @var{strength}:@var{radius}
  863. @var{strength} is the maximum amount by which the filter will change
  864. any one pixel. Also the threshold for detecting nearly flat
  865. regions. Acceptable values range from .51 to 64, default value is
  866. 1.2, out-of-range values will be clipped to the valid range.
  867. @var{radius} is the neighborhood to fit the gradient to. A larger
  868. radius makes for smoother gradients, but also prevents the filter from
  869. modifying the pixels near detailed regions. Acceptable values are
  870. 8-32, default value is 16, out-of-range values will be clipped to the
  871. valid range.
  872. @example
  873. # default parameters
  874. gradfun=1.2:16
  875. # omitting radius
  876. gradfun=1.2
  877. @end example
  878. @section hflip
  879. Flip the input video horizontally.
  880. For example to horizontally flip the input video with @command{avconv}:
  881. @example
  882. avconv -i in.avi -vf "hflip" out.avi
  883. @end example
  884. @section hqdn3d
  885. High precision/quality 3d denoise filter. This filter aims to reduce
  886. image noise producing smooth images and making still images really
  887. still. It should enhance compressibility.
  888. It accepts the following optional parameters:
  889. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  890. @table @option
  891. @item luma_spatial
  892. a non-negative float number which specifies spatial luma strength,
  893. defaults to 4.0
  894. @item chroma_spatial
  895. a non-negative float number which specifies spatial chroma strength,
  896. defaults to 3.0*@var{luma_spatial}/4.0
  897. @item luma_tmp
  898. a float number which specifies luma temporal strength, defaults to
  899. 6.0*@var{luma_spatial}/4.0
  900. @item chroma_tmp
  901. a float number which specifies chroma temporal strength, defaults to
  902. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  903. @end table
  904. @section lut, lutrgb, lutyuv
  905. Compute a look-up table for binding each pixel component input value
  906. to an output value, and apply it to input video.
  907. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  908. to an RGB input video.
  909. These filters accept in input a ":"-separated list of options, which
  910. specify the expressions used for computing the lookup table for the
  911. corresponding pixel component values.
  912. The @var{lut} filter requires either YUV or RGB pixel formats in
  913. input, and accepts the options:
  914. @table @option
  915. @item @var{c0} (first pixel component)
  916. @item @var{c1} (second pixel component)
  917. @item @var{c2} (third pixel component)
  918. @item @var{c3} (fourth pixel component, corresponds to the alpha component)
  919. @end table
  920. The exact component associated to each option depends on the format in
  921. input.
  922. The @var{lutrgb} filter requires RGB pixel formats in input, and
  923. accepts the options:
  924. @table @option
  925. @item @var{r} (red component)
  926. @item @var{g} (green component)
  927. @item @var{b} (blue component)
  928. @item @var{a} (alpha component)
  929. @end table
  930. The @var{lutyuv} filter requires YUV pixel formats in input, and
  931. accepts the options:
  932. @table @option
  933. @item @var{y} (Y/luminance component)
  934. @item @var{u} (U/Cb component)
  935. @item @var{v} (V/Cr component)
  936. @item @var{a} (alpha component)
  937. @end table
  938. The expressions can contain the following constants and functions:
  939. @table @option
  940. @item E, PI, PHI
  941. the corresponding mathematical approximated values for e
  942. (euler number), pi (greek PI), PHI (golden ratio)
  943. @item w, h
  944. the input width and height
  945. @item val
  946. input value for the pixel component
  947. @item clipval
  948. the input value clipped in the @var{minval}-@var{maxval} range
  949. @item maxval
  950. maximum value for the pixel component
  951. @item minval
  952. minimum value for the pixel component
  953. @item negval
  954. the negated value for the pixel component value clipped in the
  955. @var{minval}-@var{maxval} range , it corresponds to the expression
  956. "maxval-clipval+minval"
  957. @item clip(val)
  958. the computed value in @var{val} clipped in the
  959. @var{minval}-@var{maxval} range
  960. @item gammaval(gamma)
  961. the computed gamma correction value of the pixel component value
  962. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  963. expression
  964. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  965. @end table
  966. All expressions default to "val".
  967. Some examples follow:
  968. @example
  969. # negate input video
  970. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  971. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  972. # the above is the same as
  973. lutrgb="r=negval:g=negval:b=negval"
  974. lutyuv="y=negval:u=negval:v=negval"
  975. # negate luminance
  976. lutyuv=negval
  977. # remove chroma components, turns the video into a graytone image
  978. lutyuv="u=128:v=128"
  979. # apply a luma burning effect
  980. lutyuv="y=2*val"
  981. # remove green and blue components
  982. lutrgb="g=0:b=0"
  983. # set a constant alpha channel value on input
  984. format=rgba,lutrgb=a="maxval-minval/2"
  985. # correct luminance gamma by a 0.5 factor
  986. lutyuv=y=gammaval(0.5)
  987. @end example
  988. @section negate
  989. Negate input video.
  990. This filter accepts an integer in input, if non-zero it negates the
  991. alpha component (if available). The default value in input is 0.
  992. @section noformat
  993. Force libavfilter not to use any of the specified pixel formats for the
  994. input to the next filter.
  995. This filter accepts the following parameters:
  996. @table @option
  997. @item pix_fmts
  998. A '|'-separated list of pixel format names, for example
  999. "pix_fmts=yuv420p|monow|rgb24".
  1000. @end table
  1001. Some examples follow:
  1002. @example
  1003. # force libavfilter to use a format different from "yuv420p" for the
  1004. # input to the vflip filter
  1005. noformat=pix_fmts=yuv420p,vflip
  1006. # convert the input video to any of the formats not contained in the list
  1007. noformat=yuv420p|yuv444p|yuv410p
  1008. @end example
  1009. @section null
  1010. Pass the video source unchanged to the output.
  1011. @section ocv
  1012. Apply video transform using libopencv.
  1013. To enable this filter install libopencv library and headers and
  1014. configure Libav with --enable-libopencv.
  1015. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1016. @var{filter_name} is the name of the libopencv filter to apply.
  1017. @var{filter_params} specifies the parameters to pass to the libopencv
  1018. filter. If not specified the default values are assumed.
  1019. Refer to the official libopencv documentation for more precise
  1020. information:
  1021. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1022. Follows the list of supported libopencv filters.
  1023. @anchor{dilate}
  1024. @subsection dilate
  1025. Dilate an image by using a specific structuring element.
  1026. This filter corresponds to the libopencv function @code{cvDilate}.
  1027. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1028. @var{struct_el} represents a structuring element, and has the syntax:
  1029. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1030. @var{cols} and @var{rows} represent the number of columns and rows of
  1031. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1032. point, and @var{shape} the shape for the structuring element, and
  1033. can be one of the values "rect", "cross", "ellipse", "custom".
  1034. If the value for @var{shape} is "custom", it must be followed by a
  1035. string of the form "=@var{filename}". The file with name
  1036. @var{filename} is assumed to represent a binary image, with each
  1037. printable character corresponding to a bright pixel. When a custom
  1038. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1039. or columns and rows of the read file are assumed instead.
  1040. The default value for @var{struct_el} is "3x3+0x0/rect".
  1041. @var{nb_iterations} specifies the number of times the transform is
  1042. applied to the image, and defaults to 1.
  1043. Follow some example:
  1044. @example
  1045. # use the default values
  1046. ocv=dilate
  1047. # dilate using a structuring element with a 5x5 cross, iterate two times
  1048. ocv=dilate=5x5+2x2/cross:2
  1049. # read the shape from the file diamond.shape, iterate two times
  1050. # the file diamond.shape may contain a pattern of characters like this:
  1051. # *
  1052. # ***
  1053. # *****
  1054. # ***
  1055. # *
  1056. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1057. ocv=0x0+2x2/custom=diamond.shape:2
  1058. @end example
  1059. @subsection erode
  1060. Erode an image by using a specific structuring element.
  1061. This filter corresponds to the libopencv function @code{cvErode}.
  1062. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1063. with the same syntax and semantics as the @ref{dilate} filter.
  1064. @subsection smooth
  1065. Smooth the input video.
  1066. The filter takes the following parameters:
  1067. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1068. @var{type} is the type of smooth filter to apply, and can be one of
  1069. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1070. "bilateral". The default value is "gaussian".
  1071. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1072. parameters whose meanings depend on smooth type. @var{param1} and
  1073. @var{param2} accept integer positive values or 0, @var{param3} and
  1074. @var{param4} accept float values.
  1075. The default value for @var{param1} is 3, the default value for the
  1076. other parameters is 0.
  1077. These parameters correspond to the parameters assigned to the
  1078. libopencv function @code{cvSmooth}.
  1079. @anchor{overlay}
  1080. @section overlay
  1081. Overlay one video on top of another.
  1082. It takes two inputs and one output, the first input is the "main"
  1083. video on which the second input is overlayed.
  1084. It accepts the parameters: @var{x}:@var{y}.
  1085. @var{x} is the x coordinate of the overlayed video on the main video,
  1086. @var{y} is the y coordinate. The parameters are expressions containing
  1087. the following parameters:
  1088. @table @option
  1089. @item main_w, main_h
  1090. main input width and height
  1091. @item W, H
  1092. same as @var{main_w} and @var{main_h}
  1093. @item overlay_w, overlay_h
  1094. overlay input width and height
  1095. @item w, h
  1096. same as @var{overlay_w} and @var{overlay_h}
  1097. @end table
  1098. Be aware that frames are taken from each input video in timestamp
  1099. order, hence, if their initial timestamps differ, it is a a good idea
  1100. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1101. have them begin in the same zero timestamp, as it does the example for
  1102. the @var{movie} filter.
  1103. Follow some examples:
  1104. @example
  1105. # draw the overlay at 10 pixels from the bottom right
  1106. # corner of the main video.
  1107. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1108. # insert a transparent PNG logo in the bottom left corner of the input
  1109. avconv -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  1110. # insert 2 different transparent PNG logos (second logo on bottom
  1111. # right corner):
  1112. avconv -i input -i logo1 -i logo2 -filter_complex
  1113. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  1114. # add a transparent color layer on top of the main video,
  1115. # WxH specifies the size of the main input to the overlay filter
  1116. color=red@.3:WxH [over]; [in][over] overlay [out]
  1117. @end example
  1118. You can chain together more overlays but the efficiency of such
  1119. approach is yet to be tested.
  1120. @section pad
  1121. Add paddings to the input image, and places the original input at the
  1122. given coordinates @var{x}, @var{y}.
  1123. It accepts the following parameters:
  1124. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1125. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1126. expressions containing the following constants:
  1127. @table @option
  1128. @item E, PI, PHI
  1129. the corresponding mathematical approximated values for e
  1130. (euler number), pi (greek PI), phi (golden ratio)
  1131. @item in_w, in_h
  1132. the input video width and height
  1133. @item iw, ih
  1134. same as @var{in_w} and @var{in_h}
  1135. @item out_w, out_h
  1136. the output width and height, that is the size of the padded area as
  1137. specified by the @var{width} and @var{height} expressions
  1138. @item ow, oh
  1139. same as @var{out_w} and @var{out_h}
  1140. @item x, y
  1141. x and y offsets as specified by the @var{x} and @var{y}
  1142. expressions, or NAN if not yet specified
  1143. @item a
  1144. input display aspect ratio, same as @var{iw} / @var{ih}
  1145. @item hsub, vsub
  1146. horizontal and vertical chroma subsample values. For example for the
  1147. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1148. @end table
  1149. Follows the description of the accepted parameters.
  1150. @table @option
  1151. @item width, height
  1152. Specify the size of the output image with the paddings added. If the
  1153. value for @var{width} or @var{height} is 0, the corresponding input size
  1154. is used for the output.
  1155. The @var{width} expression can reference the value set by the
  1156. @var{height} expression, and vice versa.
  1157. The default value of @var{width} and @var{height} is 0.
  1158. @item x, y
  1159. Specify the offsets where to place the input image in the padded area
  1160. with respect to the top/left border of the output image.
  1161. The @var{x} expression can reference the value set by the @var{y}
  1162. expression, and vice versa.
  1163. The default value of @var{x} and @var{y} is 0.
  1164. @item color
  1165. Specify the color of the padded area, it can be the name of a color
  1166. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1167. The default value of @var{color} is "black".
  1168. @end table
  1169. Some examples follow:
  1170. @example
  1171. # Add paddings with color "violet" to the input video. Output video
  1172. # size is 640x480, the top-left corner of the input video is placed at
  1173. # column 0, row 40.
  1174. pad=640:480:0:40:violet
  1175. # pad the input to get an output with dimensions increased bt 3/2,
  1176. # and put the input video at the center of the padded area
  1177. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1178. # pad the input to get a squared output with size equal to the maximum
  1179. # value between the input width and height, and put the input video at
  1180. # the center of the padded area
  1181. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1182. # pad the input to get a final w/h ratio of 16:9
  1183. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1184. # double output size and put the input video in the bottom-right
  1185. # corner of the output padded area
  1186. pad="2*iw:2*ih:ow-iw:oh-ih"
  1187. @end example
  1188. @section pixdesctest
  1189. Pixel format descriptor test filter, mainly useful for internal
  1190. testing. The output video should be equal to the input video.
  1191. For example:
  1192. @example
  1193. format=monow, pixdesctest
  1194. @end example
  1195. can be used to test the monowhite pixel format descriptor definition.
  1196. @section scale
  1197. Scale the input video to @var{width}:@var{height} and/or convert the image format.
  1198. The parameters @var{width} and @var{height} are expressions containing
  1199. the following constants:
  1200. @table @option
  1201. @item E, PI, PHI
  1202. the corresponding mathematical approximated values for e
  1203. (euler number), pi (greek PI), phi (golden ratio)
  1204. @item in_w, in_h
  1205. the input width and height
  1206. @item iw, ih
  1207. same as @var{in_w} and @var{in_h}
  1208. @item out_w, out_h
  1209. the output (cropped) width and height
  1210. @item ow, oh
  1211. same as @var{out_w} and @var{out_h}
  1212. @item dar, a
  1213. input display aspect ratio, same as @var{iw} / @var{ih}
  1214. @item sar
  1215. input sample aspect ratio
  1216. @item hsub, vsub
  1217. horizontal and vertical chroma subsample values. For example for the
  1218. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1219. @end table
  1220. If the input image format is different from the format requested by
  1221. the next filter, the scale filter will convert the input to the
  1222. requested format.
  1223. If the value for @var{width} or @var{height} is 0, the respective input
  1224. size is used for the output.
  1225. If the value for @var{width} or @var{height} is -1, the scale filter will
  1226. use, for the respective output size, a value that maintains the aspect
  1227. ratio of the input image.
  1228. The default value of @var{width} and @var{height} is 0.
  1229. Some examples follow:
  1230. @example
  1231. # scale the input video to a size of 200x100.
  1232. scale=200:100
  1233. # scale the input to 2x
  1234. scale=2*iw:2*ih
  1235. # the above is the same as
  1236. scale=2*in_w:2*in_h
  1237. # scale the input to half size
  1238. scale=iw/2:ih/2
  1239. # increase the width, and set the height to the same size
  1240. scale=3/2*iw:ow
  1241. # seek for Greek harmony
  1242. scale=iw:1/PHI*iw
  1243. scale=ih*PHI:ih
  1244. # increase the height, and set the width to 3/2 of the height
  1245. scale=3/2*oh:3/5*ih
  1246. # increase the size, but make the size a multiple of the chroma
  1247. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1248. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1249. scale='min(500\, iw*3/2):-1'
  1250. @end example
  1251. @section select
  1252. Select frames to pass in output.
  1253. It accepts in input an expression, which is evaluated for each input
  1254. frame. If the expression is evaluated to a non-zero value, the frame
  1255. is selected and passed to the output, otherwise it is discarded.
  1256. The expression can contain the following constants:
  1257. @table @option
  1258. @item PI
  1259. Greek PI
  1260. @item PHI
  1261. golden ratio
  1262. @item E
  1263. Euler number
  1264. @item n
  1265. the sequential number of the filtered frame, starting from 0
  1266. @item selected_n
  1267. the sequential number of the selected frame, starting from 0
  1268. @item prev_selected_n
  1269. the sequential number of the last selected frame, NAN if undefined
  1270. @item TB
  1271. timebase of the input timestamps
  1272. @item pts
  1273. the PTS (Presentation TimeStamp) of the filtered video frame,
  1274. expressed in @var{TB} units, NAN if undefined
  1275. @item t
  1276. the PTS (Presentation TimeStamp) of the filtered video frame,
  1277. expressed in seconds, NAN if undefined
  1278. @item prev_pts
  1279. the PTS of the previously filtered video frame, NAN if undefined
  1280. @item prev_selected_pts
  1281. the PTS of the last previously filtered video frame, NAN if undefined
  1282. @item prev_selected_t
  1283. the PTS of the last previously selected video frame, NAN if undefined
  1284. @item start_pts
  1285. the PTS of the first video frame in the video, NAN if undefined
  1286. @item start_t
  1287. the time of the first video frame in the video, NAN if undefined
  1288. @item pict_type
  1289. the type of the filtered frame, can assume one of the following
  1290. values:
  1291. @table @option
  1292. @item I
  1293. @item P
  1294. @item B
  1295. @item S
  1296. @item SI
  1297. @item SP
  1298. @item BI
  1299. @end table
  1300. @item interlace_type
  1301. the frame interlace type, can assume one of the following values:
  1302. @table @option
  1303. @item PROGRESSIVE
  1304. the frame is progressive (not interlaced)
  1305. @item TOPFIRST
  1306. the frame is top-field-first
  1307. @item BOTTOMFIRST
  1308. the frame is bottom-field-first
  1309. @end table
  1310. @item key
  1311. 1 if the filtered frame is a key-frame, 0 otherwise
  1312. @end table
  1313. The default value of the select expression is "1".
  1314. Some examples follow:
  1315. @example
  1316. # select all frames in input
  1317. select
  1318. # the above is the same as:
  1319. select=1
  1320. # skip all frames:
  1321. select=0
  1322. # select only I-frames
  1323. select='eq(pict_type\,I)'
  1324. # select one frame every 100
  1325. select='not(mod(n\,100))'
  1326. # select only frames contained in the 10-20 time interval
  1327. select='gte(t\,10)*lte(t\,20)'
  1328. # select only I frames contained in the 10-20 time interval
  1329. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1330. # select frames with a minimum distance of 10 seconds
  1331. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1332. @end example
  1333. @anchor{setdar}
  1334. @section setdar
  1335. Set the Display Aspect Ratio for the filter output video.
  1336. This is done by changing the specified Sample (aka Pixel) Aspect
  1337. Ratio, according to the following equation:
  1338. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1339. Keep in mind that this filter does not modify the pixel dimensions of
  1340. the video frame. Also the display aspect ratio set by this filter may
  1341. be changed by later filters in the filterchain, e.g. in case of
  1342. scaling or if another "setdar" or a "setsar" filter is applied.
  1343. This filter accepts the following options:
  1344. @table @option
  1345. @item dar
  1346. Output display aspect ratio, as a rational or a decimal number.
  1347. @end table
  1348. For example to change the display aspect ratio to 16:9, specify:
  1349. @example
  1350. setdar=dar=16/9
  1351. # the above is equivalent to
  1352. setdar=dar=1.77777
  1353. @end example
  1354. See also the @ref{setsar} filter documentation.
  1355. @section setpts
  1356. Change the PTS (presentation timestamp) of the input video frames.
  1357. Accept in input an expression evaluated through the eval API, which
  1358. can contain the following constants:
  1359. @table @option
  1360. @item PTS
  1361. the presentation timestamp in input
  1362. @item PI
  1363. Greek PI
  1364. @item PHI
  1365. golden ratio
  1366. @item E
  1367. Euler number
  1368. @item N
  1369. the count of the input frame, starting from 0.
  1370. @item STARTPTS
  1371. the PTS of the first video frame
  1372. @item INTERLACED
  1373. tell if the current frame is interlaced
  1374. @item PREV_INPTS
  1375. previous input PTS
  1376. @item PREV_OUTPTS
  1377. previous output PTS
  1378. @item RTCTIME
  1379. wallclock (RTC) time in microseconds
  1380. @item RTCSTART
  1381. wallclock (RTC) time at the start of the movie in microseconds
  1382. @end table
  1383. Some examples follow:
  1384. @example
  1385. # start counting PTS from zero
  1386. setpts=PTS-STARTPTS
  1387. # fast motion
  1388. setpts=0.5*PTS
  1389. # slow motion
  1390. setpts=2.0*PTS
  1391. # fixed rate 25 fps
  1392. setpts=N/(25*TB)
  1393. # fixed rate 25 fps with some jitter
  1394. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1395. # generate timestamps from a "live source" and rebase onto the current timebase
  1396. setpts='(RTCTIME - RTCSTART) / (TB * 1000000)"
  1397. @end example
  1398. @anchor{setsar}
  1399. @section setsar
  1400. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1401. Note that as a consequence of the application of this filter, the
  1402. output display aspect ratio will change according to the following
  1403. equation:
  1404. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1405. Keep in mind that the sample aspect ratio set by this filter may be
  1406. changed by later filters in the filterchain, e.g. if another "setsar"
  1407. or a "setdar" filter is applied.
  1408. This filter accepts the following options:
  1409. @table @option
  1410. @item sar
  1411. Output sample aspect ratio, as a rational or decimal number.
  1412. @end table
  1413. For example to change the sample aspect ratio to 10:11, specify:
  1414. @example
  1415. setsar=sar=10/11
  1416. @end example
  1417. @section settb
  1418. Set the timebase to use for the output frames timestamps.
  1419. It is mainly useful for testing timebase configuration.
  1420. It accepts in input an arithmetic expression representing a rational.
  1421. The expression can contain the constants "PI", "E", "PHI", "AVTB" (the
  1422. default timebase), and "intb" (the input timebase).
  1423. The default value for the input is "intb".
  1424. Follow some examples.
  1425. @example
  1426. # set the timebase to 1/25
  1427. settb=1/25
  1428. # set the timebase to 1/10
  1429. settb=0.1
  1430. #set the timebase to 1001/1000
  1431. settb=1+0.001
  1432. #set the timebase to 2*intb
  1433. settb=2*intb
  1434. #set the default timebase value
  1435. settb=AVTB
  1436. @end example
  1437. @section showinfo
  1438. Show a line containing various information for each input video frame.
  1439. The input video is not modified.
  1440. The shown line contains a sequence of key/value pairs of the form
  1441. @var{key}:@var{value}.
  1442. A description of each shown parameter follows:
  1443. @table @option
  1444. @item n
  1445. sequential number of the input frame, starting from 0
  1446. @item pts
  1447. Presentation TimeStamp of the input frame, expressed as a number of
  1448. time base units. The time base unit depends on the filter input pad.
  1449. @item pts_time
  1450. Presentation TimeStamp of the input frame, expressed as a number of
  1451. seconds
  1452. @item pos
  1453. position of the frame in the input stream, -1 if this information in
  1454. unavailable and/or meaningless (for example in case of synthetic video)
  1455. @item fmt
  1456. pixel format name
  1457. @item sar
  1458. sample aspect ratio of the input frame, expressed in the form
  1459. @var{num}/@var{den}
  1460. @item s
  1461. size of the input frame, expressed in the form
  1462. @var{width}x@var{height}
  1463. @item i
  1464. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1465. for bottom field first)
  1466. @item iskey
  1467. 1 if the frame is a key frame, 0 otherwise
  1468. @item type
  1469. picture type of the input frame ("I" for an I-frame, "P" for a
  1470. P-frame, "B" for a B-frame, "?" for unknown type).
  1471. Check also the documentation of the @code{AVPictureType} enum and of
  1472. the @code{av_get_picture_type_char} function defined in
  1473. @file{libavutil/avutil.h}.
  1474. @item checksum
  1475. Adler-32 checksum of all the planes of the input frame
  1476. @item plane_checksum
  1477. Adler-32 checksum of each plane of the input frame, expressed in the form
  1478. "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1479. @end table
  1480. @section split
  1481. Split input video into several identical outputs.
  1482. The filter accepts a single parameter which specifies the number of outputs. If
  1483. unspecified, it defaults to 2.
  1484. For example
  1485. @example
  1486. avconv -i INPUT -filter_complex split=5 OUTPUT
  1487. @end example
  1488. will create 5 copies of the input video.
  1489. @section transpose
  1490. Transpose rows with columns in the input video and optionally flip it.
  1491. It accepts a parameter representing an integer, which can assume the
  1492. values:
  1493. @table @samp
  1494. @item 0
  1495. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1496. @example
  1497. L.R L.l
  1498. . . -> . .
  1499. l.r R.r
  1500. @end example
  1501. @item 1
  1502. Rotate by 90 degrees clockwise, that is:
  1503. @example
  1504. L.R l.L
  1505. . . -> . .
  1506. l.r r.R
  1507. @end example
  1508. @item 2
  1509. Rotate by 90 degrees counterclockwise, that is:
  1510. @example
  1511. L.R R.r
  1512. . . -> . .
  1513. l.r L.l
  1514. @end example
  1515. @item 3
  1516. Rotate by 90 degrees clockwise and vertically flip, that is:
  1517. @example
  1518. L.R r.R
  1519. . . -> . .
  1520. l.r l.L
  1521. @end example
  1522. @end table
  1523. @section unsharp
  1524. Sharpen or blur the input video.
  1525. It accepts the following parameters:
  1526. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1527. Negative values for the amount will blur the input video, while positive
  1528. values will sharpen. All parameters are optional and default to the
  1529. equivalent of the string '5:5:1.0:5:5:0.0'.
  1530. @table @option
  1531. @item luma_msize_x
  1532. Set the luma matrix horizontal size. It can be an integer between 3
  1533. and 13, default value is 5.
  1534. @item luma_msize_y
  1535. Set the luma matrix vertical size. It can be an integer between 3
  1536. and 13, default value is 5.
  1537. @item luma_amount
  1538. Set the luma effect strength. It can be a float number between -2.0
  1539. and 5.0, default value is 1.0.
  1540. @item chroma_msize_x
  1541. Set the chroma matrix horizontal size. It can be an integer between 3
  1542. and 13, default value is 5.
  1543. @item chroma_msize_y
  1544. Set the chroma matrix vertical size. It can be an integer between 3
  1545. and 13, default value is 5.
  1546. @item luma_amount
  1547. Set the chroma effect strength. It can be a float number between -2.0
  1548. and 5.0, default value is 0.0.
  1549. @end table
  1550. @example
  1551. # Strong luma sharpen effect parameters
  1552. unsharp=7:7:2.5
  1553. # Strong blur of both luma and chroma parameters
  1554. unsharp=7:7:-2:7:7:-2
  1555. # Use the default values with @command{avconv}
  1556. ./avconv -i in.avi -vf "unsharp" out.mp4
  1557. @end example
  1558. @section vflip
  1559. Flip the input video vertically.
  1560. @example
  1561. ./avconv -i in.avi -vf "vflip" out.avi
  1562. @end example
  1563. @section yadif
  1564. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1565. filter").
  1566. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1567. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1568. following values:
  1569. @table @option
  1570. @item 0
  1571. output 1 frame for each frame
  1572. @item 1
  1573. output 1 frame for each field
  1574. @item 2
  1575. like 0 but skips spatial interlacing check
  1576. @item 3
  1577. like 1 but skips spatial interlacing check
  1578. @end table
  1579. Default value is 0.
  1580. @var{parity} specifies the picture field parity assumed for the input
  1581. interlaced video, accepts one of the following values:
  1582. @table @option
  1583. @item 0
  1584. assume top field first
  1585. @item 1
  1586. assume bottom field first
  1587. @item -1
  1588. enable automatic detection
  1589. @end table
  1590. Default value is -1.
  1591. If interlacing is unknown or decoder does not export this information,
  1592. top field first will be assumed.
  1593. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1594. and only deinterlace frames marked as interlaced
  1595. @table @option
  1596. @item 0
  1597. deinterlace all frames
  1598. @item 1
  1599. only deinterlace frames marked as interlaced
  1600. @end table
  1601. Default value is 0.
  1602. @c man end VIDEO FILTERS
  1603. @chapter Video Sources
  1604. @c man begin VIDEO SOURCES
  1605. Below is a description of the currently available video sources.
  1606. @section buffer
  1607. Buffer video frames, and make them available to the filter chain.
  1608. This source is mainly intended for a programmatic use, in particular
  1609. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1610. This filter accepts the following parameters:
  1611. @table @option
  1612. @item width
  1613. Input video width.
  1614. @item height
  1615. Input video height.
  1616. @item pix_fmt
  1617. Name of the input video pixel format.
  1618. @item time_base
  1619. The time base used for input timestamps.
  1620. @item sar
  1621. Sample (pixel) aspect ratio of the input video.
  1622. @end table
  1623. For example:
  1624. @example
  1625. buffer=width=320:height=240:pix_fmt=yuv410p:time_base=1/24:sar=1
  1626. @end example
  1627. will instruct the source to accept video frames with size 320x240 and
  1628. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1629. square pixels (1:1 sample aspect ratio).
  1630. @section color
  1631. Provide an uniformly colored input.
  1632. It accepts the following parameters:
  1633. @var{color}:@var{frame_size}:@var{frame_rate}
  1634. Follows the description of the accepted parameters.
  1635. @table @option
  1636. @item color
  1637. Specify the color of the source. It can be the name of a color (case
  1638. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1639. alpha specifier. The default value is "black".
  1640. @item frame_size
  1641. Specify the size of the sourced video, it may be a string of the form
  1642. @var{width}x@var{height}, or the name of a size abbreviation. The
  1643. default value is "320x240".
  1644. @item frame_rate
  1645. Specify the frame rate of the sourced video, as the number of frames
  1646. generated per second. It has to be a string in the format
  1647. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1648. number or a valid video frame rate abbreviation. The default value is
  1649. "25".
  1650. @end table
  1651. For example the following graph description will generate a red source
  1652. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1653. frames per second, which will be overlayed over the source connected
  1654. to the pad with identifier "in".
  1655. @example
  1656. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1657. @end example
  1658. @section movie
  1659. Read a video stream from a movie container.
  1660. Note that this source is a hack that bypasses the standard input path. It can be
  1661. useful in applications that do not support arbitrary filter graphs, but its use
  1662. is discouraged in those that do. Specifically in @command{avconv} this filter
  1663. should never be used, the @option{-filter_complex} option fully replaces it.
  1664. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1665. @var{movie_name} is the name of the resource to read (not necessarily
  1666. a file but also a device or a stream accessed through some protocol),
  1667. and @var{options} is an optional sequence of @var{key}=@var{value}
  1668. pairs, separated by ":".
  1669. The description of the accepted options follows.
  1670. @table @option
  1671. @item format_name, f
  1672. Specifies the format assumed for the movie to read, and can be either
  1673. the name of a container or an input device. If not specified the
  1674. format is guessed from @var{movie_name} or by probing.
  1675. @item seek_point, sp
  1676. Specifies the seek point in seconds, the frames will be output
  1677. starting from this seek point, the parameter is evaluated with
  1678. @code{av_strtod} so the numerical value may be suffixed by an IS
  1679. postfix. Default value is "0".
  1680. @item stream_index, si
  1681. Specifies the index of the video stream to read. If the value is -1,
  1682. the best suited video stream will be automatically selected. Default
  1683. value is "-1".
  1684. @end table
  1685. This filter allows to overlay a second video on top of main input of
  1686. a filtergraph as shown in this graph:
  1687. @example
  1688. input -----------> deltapts0 --> overlay --> output
  1689. ^
  1690. |
  1691. movie --> scale--> deltapts1 -------+
  1692. @end example
  1693. Some examples follow:
  1694. @example
  1695. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1696. # on top of the input labelled as "in".
  1697. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1698. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1699. # read from a video4linux2 device, and overlay it on top of the input
  1700. # labelled as "in"
  1701. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1702. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1703. @end example
  1704. @section nullsrc
  1705. Null video source, never return images. It is mainly useful as a
  1706. template and to be employed in analysis / debugging tools.
  1707. It accepts as optional parameter a string of the form
  1708. @var{width}:@var{height}:@var{timebase}.
  1709. @var{width} and @var{height} specify the size of the configured
  1710. source. The default values of @var{width} and @var{height} are
  1711. respectively 352 and 288 (corresponding to the CIF size format).
  1712. @var{timebase} specifies an arithmetic expression representing a
  1713. timebase. The expression can contain the constants "PI", "E", "PHI",
  1714. "AVTB" (the default timebase), and defaults to the value "AVTB".
  1715. @section frei0r_src
  1716. Provide a frei0r source.
  1717. To enable compilation of this filter you need to install the frei0r
  1718. header and configure Libav with --enable-frei0r.
  1719. The source supports the syntax:
  1720. @example
  1721. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1722. @end example
  1723. @var{size} is the size of the video to generate, may be a string of the
  1724. form @var{width}x@var{height} or a frame size abbreviation.
  1725. @var{rate} is the rate of the video to generate, may be a string of
  1726. the form @var{num}/@var{den} or a frame rate abbreviation.
  1727. @var{src_name} is the name to the frei0r source to load. For more
  1728. information regarding frei0r and how to set the parameters read the
  1729. section @ref{frei0r} in the description of the video filters.
  1730. Some examples follow:
  1731. @example
  1732. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1733. # which is overlayed on the overlay filter main input
  1734. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1735. @end example
  1736. @section rgbtestsrc, testsrc
  1737. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1738. detecting RGB vs BGR issues. You should see a red, green and blue
  1739. stripe from top to bottom.
  1740. The @code{testsrc} source generates a test video pattern, showing a
  1741. color pattern, a scrolling gradient and a timestamp. This is mainly
  1742. intended for testing purposes.
  1743. Both sources accept an optional sequence of @var{key}=@var{value} pairs,
  1744. separated by ":". The description of the accepted options follows.
  1745. @table @option
  1746. @item size, s
  1747. Specify the size of the sourced video, it may be a string of the form
  1748. @var{width}x@var{height}, or the name of a size abbreviation. The
  1749. default value is "320x240".
  1750. @item rate, r
  1751. Specify the frame rate of the sourced video, as the number of frames
  1752. generated per second. It has to be a string in the format
  1753. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1754. number or a valid video frame rate abbreviation. The default value is
  1755. "25".
  1756. @item sar
  1757. Set the sample aspect ratio of the sourced video.
  1758. @item duration
  1759. Set the video duration of the sourced video. The accepted syntax is:
  1760. @example
  1761. [-]HH[:MM[:SS[.m...]]]
  1762. [-]S+[.m...]
  1763. @end example
  1764. See also the function @code{av_parse_time()}.
  1765. If not specified, or the expressed duration is negative, the video is
  1766. supposed to be generated forever.
  1767. @end table
  1768. For example the following:
  1769. @example
  1770. testsrc=duration=5.3:size=qcif:rate=10
  1771. @end example
  1772. will generate a video with a duration of 5.3 seconds, with size
  1773. 176x144 and a framerate of 10 frames per second.
  1774. @c man end VIDEO SOURCES
  1775. @chapter Video Sinks
  1776. @c man begin VIDEO SINKS
  1777. Below is a description of the currently available video sinks.
  1778. @section buffersink
  1779. Buffer video frames, and make them available to the end of the filter
  1780. graph.
  1781. This sink is intended for a programmatic use through the interface defined in
  1782. @file{libavfilter/buffersink.h}.
  1783. @section nullsink
  1784. Null video sink, do absolutely nothing with the input video. It is
  1785. mainly useful as a template and to be employed in analysis / debugging
  1786. tools.
  1787. @c man end VIDEO SINKS