You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2006 lines
68KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of Libav.
  9. *
  10. * Libav is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * Libav is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with Libav; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. *
  29. * The decoder is not perfect yet, there are still some distortions
  30. * especially on files encoded with 16 or 8 subbands.
  31. */
  32. #include <math.h>
  33. #include <stddef.h>
  34. #include <stdio.h>
  35. #define BITSTREAM_READER_LE
  36. #include "libavutil/channel_layout.h"
  37. #include "avcodec.h"
  38. #include "get_bits.h"
  39. #include "internal.h"
  40. #include "rdft.h"
  41. #include "mpegaudiodsp.h"
  42. #include "mpegaudio.h"
  43. #include "qdm2data.h"
  44. #include "qdm2_tablegen.h"
  45. #undef NDEBUG
  46. #include <assert.h>
  47. #define QDM2_LIST_ADD(list, size, packet) \
  48. do { \
  49. if (size > 0) { \
  50. list[size - 1].next = &list[size]; \
  51. } \
  52. list[size].packet = packet; \
  53. list[size].next = NULL; \
  54. size++; \
  55. } while(0)
  56. // Result is 8, 16 or 30
  57. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  58. #define FIX_NOISE_IDX(noise_idx) \
  59. if ((noise_idx) >= 3840) \
  60. (noise_idx) -= 3840; \
  61. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  62. #define SAMPLES_NEEDED \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  64. #define SAMPLES_NEEDED_2(why) \
  65. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  66. #define QDM2_MAX_FRAME_SIZE 512
  67. typedef int8_t sb_int8_array[2][30][64];
  68. /**
  69. * Subpacket
  70. */
  71. typedef struct {
  72. int type; ///< subpacket type
  73. unsigned int size; ///< subpacket size
  74. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  75. } QDM2SubPacket;
  76. /**
  77. * A node in the subpacket list
  78. */
  79. typedef struct QDM2SubPNode {
  80. QDM2SubPacket *packet; ///< packet
  81. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  82. } QDM2SubPNode;
  83. typedef struct {
  84. float re;
  85. float im;
  86. } QDM2Complex;
  87. typedef struct {
  88. float level;
  89. QDM2Complex *complex;
  90. const float *table;
  91. int phase;
  92. int phase_shift;
  93. int duration;
  94. short time_index;
  95. short cutoff;
  96. } FFTTone;
  97. typedef struct {
  98. int16_t sub_packet;
  99. uint8_t channel;
  100. int16_t offset;
  101. int16_t exp;
  102. uint8_t phase;
  103. } FFTCoefficient;
  104. typedef struct {
  105. DECLARE_ALIGNED(32, QDM2Complex, complex)[MPA_MAX_CHANNELS][256];
  106. } QDM2FFT;
  107. /**
  108. * QDM2 decoder context
  109. */
  110. typedef struct {
  111. /// Parameters from codec header, do not change during playback
  112. int nb_channels; ///< number of channels
  113. int channels; ///< number of channels
  114. int group_size; ///< size of frame group (16 frames per group)
  115. int fft_size; ///< size of FFT, in complex numbers
  116. int checksum_size; ///< size of data block, used also for checksum
  117. /// Parameters built from header parameters, do not change during playback
  118. int group_order; ///< order of frame group
  119. int fft_order; ///< order of FFT (actually fftorder+1)
  120. int frame_size; ///< size of data frame
  121. int frequency_range;
  122. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  123. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  124. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  125. /// Packets and packet lists
  126. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  127. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  128. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  129. int sub_packets_B; ///< number of packets on 'B' list
  130. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  131. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  132. /// FFT and tones
  133. FFTTone fft_tones[1000];
  134. int fft_tone_start;
  135. int fft_tone_end;
  136. FFTCoefficient fft_coefs[1000];
  137. int fft_coefs_index;
  138. int fft_coefs_min_index[5];
  139. int fft_coefs_max_index[5];
  140. int fft_level_exp[6];
  141. RDFTContext rdft_ctx;
  142. QDM2FFT fft;
  143. /// I/O data
  144. const uint8_t *compressed_data;
  145. int compressed_size;
  146. float output_buffer[QDM2_MAX_FRAME_SIZE * 2];
  147. /// Synthesis filter
  148. MPADSPContext mpadsp;
  149. DECLARE_ALIGNED(32, float, synth_buf)[MPA_MAX_CHANNELS][512*2];
  150. int synth_buf_offset[MPA_MAX_CHANNELS];
  151. DECLARE_ALIGNED(32, float, sb_samples)[MPA_MAX_CHANNELS][128][SBLIMIT];
  152. DECLARE_ALIGNED(32, float, samples)[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  153. /// Mixed temporary data used in decoding
  154. float tone_level[MPA_MAX_CHANNELS][30][64];
  155. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  156. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  157. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  158. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  159. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  160. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  161. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  162. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  163. // Flags
  164. int has_errors; ///< packet has errors
  165. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  166. int do_synth_filter; ///< used to perform or skip synthesis filter
  167. int sub_packet;
  168. int noise_idx; ///< index for dithering noise table
  169. } QDM2Context;
  170. static VLC vlc_tab_level;
  171. static VLC vlc_tab_diff;
  172. static VLC vlc_tab_run;
  173. static VLC fft_level_exp_alt_vlc;
  174. static VLC fft_level_exp_vlc;
  175. static VLC fft_stereo_exp_vlc;
  176. static VLC fft_stereo_phase_vlc;
  177. static VLC vlc_tab_tone_level_idx_hi1;
  178. static VLC vlc_tab_tone_level_idx_mid;
  179. static VLC vlc_tab_tone_level_idx_hi2;
  180. static VLC vlc_tab_type30;
  181. static VLC vlc_tab_type34;
  182. static VLC vlc_tab_fft_tone_offset[5];
  183. static const uint16_t qdm2_vlc_offs[] = {
  184. 0,260,566,598,894,1166,1230,1294,1678,1950,2214,2278,2310,2570,2834,3124,3448,3838,
  185. };
  186. static const int switchtable[23] = {
  187. 0, 5, 1, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 4
  188. };
  189. static av_cold void qdm2_init_vlc(void)
  190. {
  191. static VLC_TYPE qdm2_table[3838][2];
  192. vlc_tab_level.table = &qdm2_table[qdm2_vlc_offs[0]];
  193. vlc_tab_level.table_allocated = qdm2_vlc_offs[1] - qdm2_vlc_offs[0];
  194. init_vlc(&vlc_tab_level, 8, 24,
  195. vlc_tab_level_huffbits, 1, 1,
  196. vlc_tab_level_huffcodes, 2, 2,
  197. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  198. vlc_tab_diff.table = &qdm2_table[qdm2_vlc_offs[1]];
  199. vlc_tab_diff.table_allocated = qdm2_vlc_offs[2] - qdm2_vlc_offs[1];
  200. init_vlc(&vlc_tab_diff, 8, 37,
  201. vlc_tab_diff_huffbits, 1, 1,
  202. vlc_tab_diff_huffcodes, 2, 2,
  203. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  204. vlc_tab_run.table = &qdm2_table[qdm2_vlc_offs[2]];
  205. vlc_tab_run.table_allocated = qdm2_vlc_offs[3] - qdm2_vlc_offs[2];
  206. init_vlc(&vlc_tab_run, 5, 6,
  207. vlc_tab_run_huffbits, 1, 1,
  208. vlc_tab_run_huffcodes, 1, 1,
  209. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  210. fft_level_exp_alt_vlc.table = &qdm2_table[qdm2_vlc_offs[3]];
  211. fft_level_exp_alt_vlc.table_allocated = qdm2_vlc_offs[4] -
  212. qdm2_vlc_offs[3];
  213. init_vlc(&fft_level_exp_alt_vlc, 8, 28,
  214. fft_level_exp_alt_huffbits, 1, 1,
  215. fft_level_exp_alt_huffcodes, 2, 2,
  216. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  217. fft_level_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[4]];
  218. fft_level_exp_vlc.table_allocated = qdm2_vlc_offs[5] - qdm2_vlc_offs[4];
  219. init_vlc(&fft_level_exp_vlc, 8, 20,
  220. fft_level_exp_huffbits, 1, 1,
  221. fft_level_exp_huffcodes, 2, 2,
  222. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  223. fft_stereo_exp_vlc.table = &qdm2_table[qdm2_vlc_offs[5]];
  224. fft_stereo_exp_vlc.table_allocated = qdm2_vlc_offs[6] -
  225. qdm2_vlc_offs[5];
  226. init_vlc(&fft_stereo_exp_vlc, 6, 7,
  227. fft_stereo_exp_huffbits, 1, 1,
  228. fft_stereo_exp_huffcodes, 1, 1,
  229. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  230. fft_stereo_phase_vlc.table = &qdm2_table[qdm2_vlc_offs[6]];
  231. fft_stereo_phase_vlc.table_allocated = qdm2_vlc_offs[7] -
  232. qdm2_vlc_offs[6];
  233. init_vlc(&fft_stereo_phase_vlc, 6, 9,
  234. fft_stereo_phase_huffbits, 1, 1,
  235. fft_stereo_phase_huffcodes, 1, 1,
  236. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  237. vlc_tab_tone_level_idx_hi1.table =
  238. &qdm2_table[qdm2_vlc_offs[7]];
  239. vlc_tab_tone_level_idx_hi1.table_allocated = qdm2_vlc_offs[8] -
  240. qdm2_vlc_offs[7];
  241. init_vlc(&vlc_tab_tone_level_idx_hi1, 8, 20,
  242. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  243. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2,
  244. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  245. vlc_tab_tone_level_idx_mid.table =
  246. &qdm2_table[qdm2_vlc_offs[8]];
  247. vlc_tab_tone_level_idx_mid.table_allocated = qdm2_vlc_offs[9] -
  248. qdm2_vlc_offs[8];
  249. init_vlc(&vlc_tab_tone_level_idx_mid, 8, 24,
  250. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  251. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2,
  252. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  253. vlc_tab_tone_level_idx_hi2.table =
  254. &qdm2_table[qdm2_vlc_offs[9]];
  255. vlc_tab_tone_level_idx_hi2.table_allocated = qdm2_vlc_offs[10] -
  256. qdm2_vlc_offs[9];
  257. init_vlc(&vlc_tab_tone_level_idx_hi2, 8, 24,
  258. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  259. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2,
  260. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  261. vlc_tab_type30.table = &qdm2_table[qdm2_vlc_offs[10]];
  262. vlc_tab_type30.table_allocated = qdm2_vlc_offs[11] - qdm2_vlc_offs[10];
  263. init_vlc(&vlc_tab_type30, 6, 9,
  264. vlc_tab_type30_huffbits, 1, 1,
  265. vlc_tab_type30_huffcodes, 1, 1,
  266. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  267. vlc_tab_type34.table = &qdm2_table[qdm2_vlc_offs[11]];
  268. vlc_tab_type34.table_allocated = qdm2_vlc_offs[12] - qdm2_vlc_offs[11];
  269. init_vlc(&vlc_tab_type34, 5, 10,
  270. vlc_tab_type34_huffbits, 1, 1,
  271. vlc_tab_type34_huffcodes, 1, 1,
  272. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  273. vlc_tab_fft_tone_offset[0].table =
  274. &qdm2_table[qdm2_vlc_offs[12]];
  275. vlc_tab_fft_tone_offset[0].table_allocated = qdm2_vlc_offs[13] -
  276. qdm2_vlc_offs[12];
  277. init_vlc(&vlc_tab_fft_tone_offset[0], 8, 23,
  278. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  279. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2,
  280. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  281. vlc_tab_fft_tone_offset[1].table =
  282. &qdm2_table[qdm2_vlc_offs[13]];
  283. vlc_tab_fft_tone_offset[1].table_allocated = qdm2_vlc_offs[14] -
  284. qdm2_vlc_offs[13];
  285. init_vlc(&vlc_tab_fft_tone_offset[1], 8, 28,
  286. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  287. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2,
  288. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  289. vlc_tab_fft_tone_offset[2].table =
  290. &qdm2_table[qdm2_vlc_offs[14]];
  291. vlc_tab_fft_tone_offset[2].table_allocated = qdm2_vlc_offs[15] -
  292. qdm2_vlc_offs[14];
  293. init_vlc(&vlc_tab_fft_tone_offset[2], 8, 32,
  294. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  295. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2,
  296. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  297. vlc_tab_fft_tone_offset[3].table =
  298. &qdm2_table[qdm2_vlc_offs[15]];
  299. vlc_tab_fft_tone_offset[3].table_allocated = qdm2_vlc_offs[16] -
  300. qdm2_vlc_offs[15];
  301. init_vlc(&vlc_tab_fft_tone_offset[3], 8, 35,
  302. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  303. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2,
  304. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  305. vlc_tab_fft_tone_offset[4].table =
  306. &qdm2_table[qdm2_vlc_offs[16]];
  307. vlc_tab_fft_tone_offset[4].table_allocated = qdm2_vlc_offs[17] -
  308. qdm2_vlc_offs[16];
  309. init_vlc(&vlc_tab_fft_tone_offset[4], 8, 38,
  310. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  311. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2,
  312. INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  313. }
  314. static int qdm2_get_vlc(GetBitContext *gb, VLC *vlc, int flag, int depth)
  315. {
  316. int value;
  317. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  318. /* stage-2, 3 bits exponent escape sequence */
  319. if (value-- == 0)
  320. value = get_bits(gb, get_bits(gb, 3) + 1);
  321. /* stage-3, optional */
  322. if (flag) {
  323. int tmp = vlc_stage3_values[value];
  324. if ((value & ~3) > 0)
  325. tmp += get_bits(gb, (value >> 2));
  326. value = tmp;
  327. }
  328. return value;
  329. }
  330. static int qdm2_get_se_vlc(VLC *vlc, GetBitContext *gb, int depth)
  331. {
  332. int value = qdm2_get_vlc(gb, vlc, 0, depth);
  333. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  334. }
  335. /**
  336. * QDM2 checksum
  337. *
  338. * @param data pointer to data to be checksum'ed
  339. * @param length data length
  340. * @param value checksum value
  341. *
  342. * @return 0 if checksum is OK
  343. */
  344. static uint16_t qdm2_packet_checksum(const uint8_t *data, int length, int value)
  345. {
  346. int i;
  347. for (i = 0; i < length; i++)
  348. value -= data[i];
  349. return (uint16_t)(value & 0xffff);
  350. }
  351. /**
  352. * Fill a QDM2SubPacket structure with packet type, size, and data pointer.
  353. *
  354. * @param gb bitreader context
  355. * @param sub_packet packet under analysis
  356. */
  357. static void qdm2_decode_sub_packet_header(GetBitContext *gb,
  358. QDM2SubPacket *sub_packet)
  359. {
  360. sub_packet->type = get_bits(gb, 8);
  361. if (sub_packet->type == 0) {
  362. sub_packet->size = 0;
  363. sub_packet->data = NULL;
  364. } else {
  365. sub_packet->size = get_bits(gb, 8);
  366. if (sub_packet->type & 0x80) {
  367. sub_packet->size <<= 8;
  368. sub_packet->size |= get_bits(gb, 8);
  369. sub_packet->type &= 0x7f;
  370. }
  371. if (sub_packet->type == 0x7f)
  372. sub_packet->type |= (get_bits(gb, 8) << 8);
  373. // FIXME: this depends on bitreader-internal data
  374. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8];
  375. }
  376. av_log(NULL, AV_LOG_DEBUG, "Subpacket: type=%d size=%d start_offs=%x\n",
  377. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  378. }
  379. /**
  380. * Return node pointer to first packet of requested type in list.
  381. *
  382. * @param list list of subpackets to be scanned
  383. * @param type type of searched subpacket
  384. * @return node pointer for subpacket if found, else NULL
  385. */
  386. static QDM2SubPNode *qdm2_search_subpacket_type_in_list(QDM2SubPNode *list,
  387. int type)
  388. {
  389. while (list != NULL && list->packet != NULL) {
  390. if (list->packet->type == type)
  391. return list;
  392. list = list->next;
  393. }
  394. return NULL;
  395. }
  396. /**
  397. * Replace 8 elements with their average value.
  398. * Called by qdm2_decode_superblock before starting subblock decoding.
  399. *
  400. * @param q context
  401. */
  402. static void average_quantized_coeffs(QDM2Context *q)
  403. {
  404. int i, j, n, ch, sum;
  405. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  406. for (ch = 0; ch < q->nb_channels; ch++)
  407. for (i = 0; i < n; i++) {
  408. sum = 0;
  409. for (j = 0; j < 8; j++)
  410. sum += q->quantized_coeffs[ch][i][j];
  411. sum /= 8;
  412. if (sum > 0)
  413. sum--;
  414. for (j = 0; j < 8; j++)
  415. q->quantized_coeffs[ch][i][j] = sum;
  416. }
  417. }
  418. /**
  419. * Build subband samples with noise weighted by q->tone_level.
  420. * Called by synthfilt_build_sb_samples.
  421. *
  422. * @param q context
  423. * @param sb subband index
  424. */
  425. static void build_sb_samples_from_noise(QDM2Context *q, int sb)
  426. {
  427. int ch, j;
  428. FIX_NOISE_IDX(q->noise_idx);
  429. if (!q->nb_channels)
  430. return;
  431. for (ch = 0; ch < q->nb_channels; ch++) {
  432. for (j = 0; j < 64; j++) {
  433. q->sb_samples[ch][j * 2][sb] =
  434. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  435. q->sb_samples[ch][j * 2 + 1][sb] =
  436. SB_DITHERING_NOISE(sb, q->noise_idx) * q->tone_level[ch][sb][j];
  437. }
  438. }
  439. }
  440. /**
  441. * Called while processing data from subpackets 11 and 12.
  442. * Used after making changes to coding_method array.
  443. *
  444. * @param sb subband index
  445. * @param channels number of channels
  446. * @param coding_method q->coding_method[0][0][0]
  447. */
  448. static void fix_coding_method_array(int sb, int channels,
  449. sb_int8_array coding_method)
  450. {
  451. int j, k;
  452. int ch;
  453. int run, case_val;
  454. for (ch = 0; ch < channels; ch++) {
  455. for (j = 0; j < 64; ) {
  456. if ((coding_method[ch][sb][j] - 8) > 22) {
  457. run = 1;
  458. case_val = 8;
  459. } else {
  460. switch (switchtable[coding_method[ch][sb][j] - 8]) {
  461. case 0: run = 10;
  462. case_val = 10;
  463. break;
  464. case 1: run = 1;
  465. case_val = 16;
  466. break;
  467. case 2: run = 5;
  468. case_val = 24;
  469. break;
  470. case 3: run = 3;
  471. case_val = 30;
  472. break;
  473. case 4: run = 1;
  474. case_val = 30;
  475. break;
  476. case 5: run = 1;
  477. case_val = 8;
  478. break;
  479. default: run = 1;
  480. case_val = 8;
  481. break;
  482. }
  483. }
  484. for (k = 0; k < run; k++) {
  485. if (j + k < 128) {
  486. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j]) {
  487. if (k > 0) {
  488. SAMPLES_NEEDED
  489. //not debugged, almost never used
  490. memset(&coding_method[ch][sb][j + k], case_val,
  491. k *sizeof(int8_t));
  492. memset(&coding_method[ch][sb][j + k], case_val,
  493. 3 * sizeof(int8_t));
  494. }
  495. }
  496. }
  497. }
  498. j += run;
  499. }
  500. }
  501. }
  502. /**
  503. * Related to synthesis filter
  504. * Called by process_subpacket_10
  505. *
  506. * @param q context
  507. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  508. */
  509. static void fill_tone_level_array(QDM2Context *q, int flag)
  510. {
  511. int i, sb, ch, sb_used;
  512. int tmp, tab;
  513. for (ch = 0; ch < q->nb_channels; ch++)
  514. for (sb = 0; sb < 30; sb++)
  515. for (i = 0; i < 8; i++) {
  516. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  517. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  518. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  519. else
  520. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  521. if(tmp < 0)
  522. tmp += 0xff;
  523. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  524. }
  525. sb_used = QDM2_SB_USED(q->sub_sampling);
  526. if ((q->superblocktype_2_3 != 0) && !flag) {
  527. for (sb = 0; sb < sb_used; sb++)
  528. for (ch = 0; ch < q->nb_channels; ch++)
  529. for (i = 0; i < 64; i++) {
  530. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  531. if (q->tone_level_idx[ch][sb][i] < 0)
  532. q->tone_level[ch][sb][i] = 0;
  533. else
  534. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  535. }
  536. } else {
  537. tab = q->superblocktype_2_3 ? 0 : 1;
  538. for (sb = 0; sb < sb_used; sb++) {
  539. if ((sb >= 4) && (sb <= 23)) {
  540. for (ch = 0; ch < q->nb_channels; ch++)
  541. for (i = 0; i < 64; i++) {
  542. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  543. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  544. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  545. q->tone_level_idx_hi2[ch][sb - 4];
  546. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  547. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  548. q->tone_level[ch][sb][i] = 0;
  549. else
  550. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  551. }
  552. } else {
  553. if (sb > 4) {
  554. for (ch = 0; ch < q->nb_channels; ch++)
  555. for (i = 0; i < 64; i++) {
  556. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  557. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  558. q->tone_level_idx_hi2[ch][sb - 4];
  559. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  560. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  561. q->tone_level[ch][sb][i] = 0;
  562. else
  563. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  564. }
  565. } else {
  566. for (ch = 0; ch < q->nb_channels; ch++)
  567. for (i = 0; i < 64; i++) {
  568. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  569. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  570. q->tone_level[ch][sb][i] = 0;
  571. else
  572. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  573. }
  574. }
  575. }
  576. }
  577. }
  578. }
  579. /**
  580. * Related to synthesis filter
  581. * Called by process_subpacket_11
  582. * c is built with data from subpacket 11
  583. * Most of this function is used only if superblock_type_2_3 == 0,
  584. * never seen it in samples.
  585. *
  586. * @param tone_level_idx
  587. * @param tone_level_idx_temp
  588. * @param coding_method q->coding_method[0][0][0]
  589. * @param nb_channels number of channels
  590. * @param c coming from subpacket 11, passed as 8*c
  591. * @param superblocktype_2_3 flag based on superblock packet type
  592. * @param cm_table_select q->cm_table_select
  593. */
  594. static void fill_coding_method_array(sb_int8_array tone_level_idx,
  595. sb_int8_array tone_level_idx_temp,
  596. sb_int8_array coding_method,
  597. int nb_channels,
  598. int c, int superblocktype_2_3,
  599. int cm_table_select)
  600. {
  601. int ch, sb, j;
  602. int tmp, acc, esp_40, comp;
  603. int add1, add2, add3, add4;
  604. int64_t multres;
  605. if (!superblocktype_2_3) {
  606. /* This case is untested, no samples available */
  607. SAMPLES_NEEDED
  608. for (ch = 0; ch < nb_channels; ch++)
  609. for (sb = 0; sb < 30; sb++) {
  610. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  611. add1 = tone_level_idx[ch][sb][j] - 10;
  612. if (add1 < 0)
  613. add1 = 0;
  614. add2 = add3 = add4 = 0;
  615. if (sb > 1) {
  616. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  617. if (add2 < 0)
  618. add2 = 0;
  619. }
  620. if (sb > 0) {
  621. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  622. if (add3 < 0)
  623. add3 = 0;
  624. }
  625. if (sb < 29) {
  626. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  627. if (add4 < 0)
  628. add4 = 0;
  629. }
  630. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  631. if (tmp < 0)
  632. tmp = 0;
  633. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  634. }
  635. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  636. }
  637. acc = 0;
  638. for (ch = 0; ch < nb_channels; ch++)
  639. for (sb = 0; sb < 30; sb++)
  640. for (j = 0; j < 64; j++)
  641. acc += tone_level_idx_temp[ch][sb][j];
  642. multres = 0x66666667 * (acc * 10);
  643. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  644. for (ch = 0; ch < nb_channels; ch++)
  645. for (sb = 0; sb < 30; sb++)
  646. for (j = 0; j < 64; j++) {
  647. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  648. if (comp < 0)
  649. comp += 0xff;
  650. comp /= 256; // signed shift
  651. switch(sb) {
  652. case 0:
  653. if (comp < 30)
  654. comp = 30;
  655. comp += 15;
  656. break;
  657. case 1:
  658. if (comp < 24)
  659. comp = 24;
  660. comp += 10;
  661. break;
  662. case 2:
  663. case 3:
  664. case 4:
  665. if (comp < 16)
  666. comp = 16;
  667. }
  668. if (comp <= 5)
  669. tmp = 0;
  670. else if (comp <= 10)
  671. tmp = 10;
  672. else if (comp <= 16)
  673. tmp = 16;
  674. else if (comp <= 24)
  675. tmp = -1;
  676. else
  677. tmp = 0;
  678. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  679. }
  680. for (sb = 0; sb < 30; sb++)
  681. fix_coding_method_array(sb, nb_channels, coding_method);
  682. for (ch = 0; ch < nb_channels; ch++)
  683. for (sb = 0; sb < 30; sb++)
  684. for (j = 0; j < 64; j++)
  685. if (sb >= 10) {
  686. if (coding_method[ch][sb][j] < 10)
  687. coding_method[ch][sb][j] = 10;
  688. } else {
  689. if (sb >= 2) {
  690. if (coding_method[ch][sb][j] < 16)
  691. coding_method[ch][sb][j] = 16;
  692. } else {
  693. if (coding_method[ch][sb][j] < 30)
  694. coding_method[ch][sb][j] = 30;
  695. }
  696. }
  697. } else { // superblocktype_2_3 != 0
  698. for (ch = 0; ch < nb_channels; ch++)
  699. for (sb = 0; sb < 30; sb++)
  700. for (j = 0; j < 64; j++)
  701. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  702. }
  703. }
  704. /**
  705. *
  706. * Called by process_subpacket_11 to process more data from subpacket 11
  707. * with sb 0-8.
  708. * Called by process_subpacket_12 to process data from subpacket 12 with
  709. * sb 8-sb_used.
  710. *
  711. * @param q context
  712. * @param gb bitreader context
  713. * @param length packet length in bits
  714. * @param sb_min lower subband processed (sb_min included)
  715. * @param sb_max higher subband processed (sb_max excluded)
  716. */
  717. static void synthfilt_build_sb_samples(QDM2Context *q, GetBitContext *gb,
  718. int length, int sb_min, int sb_max)
  719. {
  720. int sb, j, k, n, ch, run, channels;
  721. int joined_stereo, zero_encoding, chs;
  722. int type34_first;
  723. float type34_div = 0;
  724. float type34_predictor;
  725. float samples[10], sign_bits[16];
  726. if (length == 0) {
  727. // If no data use noise
  728. for (sb=sb_min; sb < sb_max; sb++)
  729. build_sb_samples_from_noise (q, sb);
  730. return;
  731. }
  732. for (sb = sb_min; sb < sb_max; sb++) {
  733. channels = q->nb_channels;
  734. if (q->nb_channels <= 1 || sb < 12)
  735. joined_stereo = 0;
  736. else if (sb >= 24)
  737. joined_stereo = 1;
  738. else
  739. joined_stereo = (get_bits_left(gb) >= 1) ? get_bits1 (gb) : 0;
  740. if (joined_stereo) {
  741. if (get_bits_left(gb) >= 16)
  742. for (j = 0; j < 16; j++)
  743. sign_bits[j] = get_bits1 (gb);
  744. for (j = 0; j < 64; j++)
  745. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  746. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  747. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  748. channels = 1;
  749. }
  750. for (ch = 0; ch < channels; ch++) {
  751. FIX_NOISE_IDX(q->noise_idx);
  752. zero_encoding = (get_bits_left(gb) >= 1) ? get_bits1(gb) : 0;
  753. type34_predictor = 0.0;
  754. type34_first = 1;
  755. for (j = 0; j < 128; ) {
  756. switch (q->coding_method[ch][sb][j / 2]) {
  757. case 8:
  758. if (get_bits_left(gb) >= 10) {
  759. if (zero_encoding) {
  760. for (k = 0; k < 5; k++) {
  761. if ((j + 2 * k) >= 128)
  762. break;
  763. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  764. }
  765. } else {
  766. n = get_bits(gb, 8);
  767. for (k = 0; k < 5; k++)
  768. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  769. }
  770. for (k = 0; k < 5; k++)
  771. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  772. } else {
  773. for (k = 0; k < 10; k++)
  774. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  775. }
  776. run = 10;
  777. break;
  778. case 10:
  779. if (get_bits_left(gb) >= 1) {
  780. float f = 0.81;
  781. if (get_bits1(gb))
  782. f = -f;
  783. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  784. samples[0] = f;
  785. } else {
  786. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  787. }
  788. run = 1;
  789. break;
  790. case 16:
  791. if (get_bits_left(gb) >= 10) {
  792. if (zero_encoding) {
  793. for (k = 0; k < 5; k++) {
  794. if ((j + k) >= 128)
  795. break;
  796. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  797. }
  798. } else {
  799. n = get_bits (gb, 8);
  800. for (k = 0; k < 5; k++)
  801. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  802. }
  803. } else {
  804. for (k = 0; k < 5; k++)
  805. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  806. }
  807. run = 5;
  808. break;
  809. case 24:
  810. if (get_bits_left(gb) >= 7) {
  811. n = get_bits(gb, 7);
  812. for (k = 0; k < 3; k++)
  813. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  814. } else {
  815. for (k = 0; k < 3; k++)
  816. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  817. }
  818. run = 3;
  819. break;
  820. case 30:
  821. if (get_bits_left(gb) >= 4) {
  822. unsigned index = qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1);
  823. if (index < FF_ARRAY_ELEMS(type30_dequant)) {
  824. samples[0] = type30_dequant[index];
  825. } else
  826. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  827. } else
  828. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  829. run = 1;
  830. break;
  831. case 34:
  832. if (get_bits_left(gb) >= 7) {
  833. if (type34_first) {
  834. type34_div = (float)(1 << get_bits(gb, 2));
  835. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  836. type34_predictor = samples[0];
  837. type34_first = 0;
  838. } else {
  839. unsigned index = qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1);
  840. if (index < FF_ARRAY_ELEMS(type34_delta)) {
  841. samples[0] = type34_delta[index] / type34_div + type34_predictor;
  842. type34_predictor = samples[0];
  843. } else
  844. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  845. }
  846. } else {
  847. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  848. }
  849. run = 1;
  850. break;
  851. default:
  852. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  853. run = 1;
  854. break;
  855. }
  856. if (joined_stereo) {
  857. float tmp[10][MPA_MAX_CHANNELS];
  858. for (k = 0; k < run; k++) {
  859. tmp[k][0] = samples[k];
  860. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  861. }
  862. for (chs = 0; chs < q->nb_channels; chs++)
  863. for (k = 0; k < run; k++)
  864. if ((j + k) < 128)
  865. q->sb_samples[chs][j + k][sb] = q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs];
  866. } else {
  867. for (k = 0; k < run; k++)
  868. if ((j + k) < 128)
  869. q->sb_samples[ch][j + k][sb] = q->tone_level[ch][sb][(j + k)/2] * samples[k];
  870. }
  871. j += run;
  872. } // j loop
  873. } // channel loop
  874. } // subband loop
  875. }
  876. /**
  877. * Init the first element of a channel in quantized_coeffs with data
  878. * from packet 10 (quantized_coeffs[ch][0]).
  879. * This is similar to process_subpacket_9, but for a single channel
  880. * and for element [0]
  881. * same VLC tables as process_subpacket_9 are used.
  882. *
  883. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  884. * @param gb bitreader context
  885. */
  886. static void init_quantized_coeffs_elem0(int8_t *quantized_coeffs,
  887. GetBitContext *gb)
  888. {
  889. int i, k, run, level, diff;
  890. if (get_bits_left(gb) < 16)
  891. return;
  892. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  893. quantized_coeffs[0] = level;
  894. for (i = 0; i < 7; ) {
  895. if (get_bits_left(gb) < 16)
  896. break;
  897. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  898. if (get_bits_left(gb) < 16)
  899. break;
  900. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  901. for (k = 1; k <= run; k++)
  902. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  903. level += diff;
  904. i += run;
  905. }
  906. }
  907. /**
  908. * Related to synthesis filter, process data from packet 10
  909. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  910. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with
  911. * data from packet 10
  912. *
  913. * @param q context
  914. * @param gb bitreader context
  915. */
  916. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb)
  917. {
  918. int sb, j, k, n, ch;
  919. for (ch = 0; ch < q->nb_channels; ch++) {
  920. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb);
  921. if (get_bits_left(gb) < 16) {
  922. memset(q->quantized_coeffs[ch][0], 0, 8);
  923. break;
  924. }
  925. }
  926. n = q->sub_sampling + 1;
  927. for (sb = 0; sb < n; sb++)
  928. for (ch = 0; ch < q->nb_channels; ch++)
  929. for (j = 0; j < 8; j++) {
  930. if (get_bits_left(gb) < 1)
  931. break;
  932. if (get_bits1(gb)) {
  933. for (k=0; k < 8; k++) {
  934. if (get_bits_left(gb) < 16)
  935. break;
  936. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  937. }
  938. } else {
  939. for (k=0; k < 8; k++)
  940. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  941. }
  942. }
  943. n = QDM2_SB_USED(q->sub_sampling) - 4;
  944. for (sb = 0; sb < n; sb++)
  945. for (ch = 0; ch < q->nb_channels; ch++) {
  946. if (get_bits_left(gb) < 16)
  947. break;
  948. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  949. if (sb > 19)
  950. q->tone_level_idx_hi2[ch][sb] -= 16;
  951. else
  952. for (j = 0; j < 8; j++)
  953. q->tone_level_idx_mid[ch][sb][j] = -16;
  954. }
  955. n = QDM2_SB_USED(q->sub_sampling) - 5;
  956. for (sb = 0; sb < n; sb++)
  957. for (ch = 0; ch < q->nb_channels; ch++)
  958. for (j = 0; j < 8; j++) {
  959. if (get_bits_left(gb) < 16)
  960. break;
  961. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  962. }
  963. }
  964. /**
  965. * Process subpacket 9, init quantized_coeffs with data from it
  966. *
  967. * @param q context
  968. * @param node pointer to node with packet
  969. */
  970. static void process_subpacket_9(QDM2Context *q, QDM2SubPNode *node)
  971. {
  972. GetBitContext gb;
  973. int i, j, k, n, ch, run, level, diff;
  974. init_get_bits(&gb, node->packet->data, node->packet->size * 8);
  975. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  976. for (i = 1; i < n; i++)
  977. for (ch = 0; ch < q->nb_channels; ch++) {
  978. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  979. q->quantized_coeffs[ch][i][0] = level;
  980. for (j = 0; j < (8 - 1); ) {
  981. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  982. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  983. for (k = 1; k <= run; k++)
  984. q->quantized_coeffs[ch][i][j + k] = (level + ((k * diff) / run));
  985. level += diff;
  986. j += run;
  987. }
  988. }
  989. for (ch = 0; ch < q->nb_channels; ch++)
  990. for (i = 0; i < 8; i++)
  991. q->quantized_coeffs[ch][0][i] = 0;
  992. }
  993. /**
  994. * Process subpacket 10 if not null, else
  995. *
  996. * @param q context
  997. * @param node pointer to node with packet
  998. */
  999. static void process_subpacket_10(QDM2Context *q, QDM2SubPNode *node)
  1000. {
  1001. GetBitContext gb;
  1002. if (node) {
  1003. init_get_bits(&gb, node->packet->data, node->packet->size * 8);
  1004. init_tone_level_dequantization(q, &gb);
  1005. fill_tone_level_array(q, 1);
  1006. } else {
  1007. fill_tone_level_array(q, 0);
  1008. }
  1009. }
  1010. /**
  1011. * Process subpacket 11
  1012. *
  1013. * @param q context
  1014. * @param node pointer to node with packet
  1015. */
  1016. static void process_subpacket_11(QDM2Context *q, QDM2SubPNode *node)
  1017. {
  1018. GetBitContext gb;
  1019. int length = 0;
  1020. if (node) {
  1021. length = node->packet->size * 8;
  1022. init_get_bits(&gb, node->packet->data, length);
  1023. }
  1024. if (length >= 32) {
  1025. int c = get_bits(&gb, 13);
  1026. if (c > 3)
  1027. fill_coding_method_array(q->tone_level_idx,
  1028. q->tone_level_idx_temp, q->coding_method,
  1029. q->nb_channels, 8 * c,
  1030. q->superblocktype_2_3, q->cm_table_select);
  1031. }
  1032. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  1033. }
  1034. /**
  1035. * Process subpacket 12
  1036. *
  1037. * @param q context
  1038. * @param node pointer to node with packet
  1039. */
  1040. static void process_subpacket_12(QDM2Context *q, QDM2SubPNode *node)
  1041. {
  1042. GetBitContext gb;
  1043. int length = 0;
  1044. if (node) {
  1045. length = node->packet->size * 8;
  1046. init_get_bits(&gb, node->packet->data, length);
  1047. }
  1048. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  1049. }
  1050. /*
  1051. * Process new subpackets for synthesis filter
  1052. *
  1053. * @param q context
  1054. * @param list list with synthesis filter packets (list D)
  1055. */
  1056. static void process_synthesis_subpackets(QDM2Context *q, QDM2SubPNode *list)
  1057. {
  1058. QDM2SubPNode *nodes[4];
  1059. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1060. if (nodes[0] != NULL)
  1061. process_subpacket_9(q, nodes[0]);
  1062. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1063. if (nodes[1] != NULL)
  1064. process_subpacket_10(q, nodes[1]);
  1065. else
  1066. process_subpacket_10(q, NULL);
  1067. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1068. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1069. process_subpacket_11(q, nodes[2]);
  1070. else
  1071. process_subpacket_11(q, NULL);
  1072. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1073. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1074. process_subpacket_12(q, nodes[3]);
  1075. else
  1076. process_subpacket_12(q, NULL);
  1077. }
  1078. /*
  1079. * Decode superblock, fill packet lists.
  1080. *
  1081. * @param q context
  1082. */
  1083. static void qdm2_decode_super_block(QDM2Context *q)
  1084. {
  1085. GetBitContext gb;
  1086. QDM2SubPacket header, *packet;
  1087. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1088. unsigned int next_index = 0;
  1089. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1090. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1091. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1092. q->sub_packets_B = 0;
  1093. sub_packets_D = 0;
  1094. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1095. init_get_bits(&gb, q->compressed_data, q->compressed_size * 8);
  1096. qdm2_decode_sub_packet_header(&gb, &header);
  1097. if (header.type < 2 || header.type >= 8) {
  1098. q->has_errors = 1;
  1099. av_log(NULL, AV_LOG_ERROR, "bad superblock type\n");
  1100. return;
  1101. }
  1102. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1103. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1104. init_get_bits(&gb, header.data, header.size * 8);
  1105. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1106. int csum = 257 * get_bits(&gb, 8);
  1107. csum += 2 * get_bits(&gb, 8);
  1108. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1109. if (csum != 0) {
  1110. q->has_errors = 1;
  1111. av_log(NULL, AV_LOG_ERROR, "bad packet checksum\n");
  1112. return;
  1113. }
  1114. }
  1115. q->sub_packet_list_B[0].packet = NULL;
  1116. q->sub_packet_list_D[0].packet = NULL;
  1117. for (i = 0; i < 6; i++)
  1118. if (--q->fft_level_exp[i] < 0)
  1119. q->fft_level_exp[i] = 0;
  1120. for (i = 0; packet_bytes > 0; i++) {
  1121. int j;
  1122. if (i >= FF_ARRAY_ELEMS(q->sub_packet_list_A)) {
  1123. SAMPLES_NEEDED_2("too many packet bytes");
  1124. return;
  1125. }
  1126. q->sub_packet_list_A[i].next = NULL;
  1127. if (i > 0) {
  1128. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1129. /* seek to next block */
  1130. init_get_bits(&gb, header.data, header.size * 8);
  1131. skip_bits(&gb, next_index * 8);
  1132. if (next_index >= header.size)
  1133. break;
  1134. }
  1135. /* decode subpacket */
  1136. packet = &q->sub_packets[i];
  1137. qdm2_decode_sub_packet_header(&gb, packet);
  1138. next_index = packet->size + get_bits_count(&gb) / 8;
  1139. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1140. if (packet->type == 0)
  1141. break;
  1142. if (sub_packet_size > packet_bytes) {
  1143. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1144. break;
  1145. packet->size += packet_bytes - sub_packet_size;
  1146. }
  1147. packet_bytes -= sub_packet_size;
  1148. /* add subpacket to 'all subpackets' list */
  1149. q->sub_packet_list_A[i].packet = packet;
  1150. /* add subpacket to related list */
  1151. if (packet->type == 8) {
  1152. SAMPLES_NEEDED_2("packet type 8");
  1153. return;
  1154. } else if (packet->type >= 9 && packet->type <= 12) {
  1155. /* packets for MPEG Audio like Synthesis Filter */
  1156. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1157. } else if (packet->type == 13) {
  1158. for (j = 0; j < 6; j++)
  1159. q->fft_level_exp[j] = get_bits(&gb, 6);
  1160. } else if (packet->type == 14) {
  1161. for (j = 0; j < 6; j++)
  1162. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1163. } else if (packet->type == 15) {
  1164. SAMPLES_NEEDED_2("packet type 15")
  1165. return;
  1166. } else if (packet->type >= 16 && packet->type < 48 &&
  1167. !fft_subpackets[packet->type - 16]) {
  1168. /* packets for FFT */
  1169. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1170. }
  1171. } // Packet bytes loop
  1172. if (q->sub_packet_list_D[0].packet != NULL) {
  1173. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1174. q->do_synth_filter = 1;
  1175. } else if (q->do_synth_filter) {
  1176. process_subpacket_10(q, NULL);
  1177. process_subpacket_11(q, NULL);
  1178. process_subpacket_12(q, NULL);
  1179. }
  1180. }
  1181. static void qdm2_fft_init_coefficient(QDM2Context *q, int sub_packet,
  1182. int offset, int duration, int channel,
  1183. int exp, int phase)
  1184. {
  1185. if (q->fft_coefs_min_index[duration] < 0)
  1186. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1187. q->fft_coefs[q->fft_coefs_index].sub_packet =
  1188. ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1189. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1190. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1191. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1192. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1193. q->fft_coefs_index++;
  1194. }
  1195. static void qdm2_fft_decode_tones(QDM2Context *q, int duration,
  1196. GetBitContext *gb, int b)
  1197. {
  1198. int channel, stereo, phase, exp;
  1199. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1200. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1201. int n, offset;
  1202. local_int_4 = 0;
  1203. local_int_28 = 0;
  1204. local_int_20 = 2;
  1205. local_int_8 = (4 - duration);
  1206. local_int_10 = 1 << (q->group_order - duration - 1);
  1207. offset = 1;
  1208. while (1) {
  1209. if (q->superblocktype_2_3) {
  1210. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1211. offset = 1;
  1212. if (n == 0) {
  1213. local_int_4 += local_int_10;
  1214. local_int_28 += (1 << local_int_8);
  1215. } else {
  1216. local_int_4 += 8 * local_int_10;
  1217. local_int_28 += (8 << local_int_8);
  1218. }
  1219. }
  1220. offset += (n - 2);
  1221. } else {
  1222. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1223. while (offset >= (local_int_10 - 1)) {
  1224. offset += (1 - (local_int_10 - 1));
  1225. local_int_4 += local_int_10;
  1226. local_int_28 += (1 << local_int_8);
  1227. }
  1228. }
  1229. if (local_int_4 >= q->group_size)
  1230. return;
  1231. local_int_14 = (offset >> local_int_8);
  1232. if (local_int_14 >= FF_ARRAY_ELEMS(fft_level_index_table))
  1233. return;
  1234. if (q->nb_channels > 1) {
  1235. channel = get_bits1(gb);
  1236. stereo = get_bits1(gb);
  1237. } else {
  1238. channel = 0;
  1239. stereo = 0;
  1240. }
  1241. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1242. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1243. exp = (exp < 0) ? 0 : exp;
  1244. phase = get_bits(gb, 3);
  1245. stereo_exp = 0;
  1246. stereo_phase = 0;
  1247. if (stereo) {
  1248. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1249. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1250. if (stereo_phase < 0)
  1251. stereo_phase += 8;
  1252. }
  1253. if (q->frequency_range > (local_int_14 + 1)) {
  1254. int sub_packet = (local_int_20 + local_int_28);
  1255. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1256. channel, exp, phase);
  1257. if (stereo)
  1258. qdm2_fft_init_coefficient(q, sub_packet, offset, duration,
  1259. 1 - channel,
  1260. stereo_exp, stereo_phase);
  1261. }
  1262. offset++;
  1263. }
  1264. }
  1265. static void qdm2_decode_fft_packets(QDM2Context *q)
  1266. {
  1267. int i, j, min, max, value, type, unknown_flag;
  1268. GetBitContext gb;
  1269. if (q->sub_packet_list_B[0].packet == NULL)
  1270. return;
  1271. /* reset minimum indexes for FFT coefficients */
  1272. q->fft_coefs_index = 0;
  1273. for (i = 0; i < 5; i++)
  1274. q->fft_coefs_min_index[i] = -1;
  1275. /* process subpackets ordered by type, largest type first */
  1276. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1277. QDM2SubPacket *packet = NULL;
  1278. /* find subpacket with largest type less than max */
  1279. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1280. value = q->sub_packet_list_B[j].packet->type;
  1281. if (value > min && value < max) {
  1282. min = value;
  1283. packet = q->sub_packet_list_B[j].packet;
  1284. }
  1285. }
  1286. max = min;
  1287. /* check for errors (?) */
  1288. if (!packet)
  1289. return;
  1290. if (i == 0 &&
  1291. (packet->type < 16 || packet->type >= 48 ||
  1292. fft_subpackets[packet->type - 16]))
  1293. return;
  1294. /* decode FFT tones */
  1295. init_get_bits(&gb, packet->data, packet->size * 8);
  1296. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1297. unknown_flag = 1;
  1298. else
  1299. unknown_flag = 0;
  1300. type = packet->type;
  1301. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1302. int duration = q->sub_sampling + 5 - (type & 15);
  1303. if (duration >= 0 && duration < 4)
  1304. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1305. } else if (type == 31) {
  1306. for (j = 0; j < 4; j++)
  1307. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1308. } else if (type == 46) {
  1309. for (j = 0; j < 6; j++)
  1310. q->fft_level_exp[j] = get_bits(&gb, 6);
  1311. for (j = 0; j < 4; j++)
  1312. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1313. }
  1314. } // Loop on B packets
  1315. /* calculate maximum indexes for FFT coefficients */
  1316. for (i = 0, j = -1; i < 5; i++)
  1317. if (q->fft_coefs_min_index[i] >= 0) {
  1318. if (j >= 0)
  1319. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1320. j = i;
  1321. }
  1322. if (j >= 0)
  1323. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1324. }
  1325. static void qdm2_fft_generate_tone(QDM2Context *q, FFTTone *tone)
  1326. {
  1327. float level, f[6];
  1328. int i;
  1329. QDM2Complex c;
  1330. const double iscale = 2.0 * M_PI / 512.0;
  1331. tone->phase += tone->phase_shift;
  1332. /* calculate current level (maximum amplitude) of tone */
  1333. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1334. c.im = level * sin(tone->phase * iscale);
  1335. c.re = level * cos(tone->phase * iscale);
  1336. /* generate FFT coefficients for tone */
  1337. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1338. tone->complex[0].im += c.im;
  1339. tone->complex[0].re += c.re;
  1340. tone->complex[1].im -= c.im;
  1341. tone->complex[1].re -= c.re;
  1342. } else {
  1343. f[1] = -tone->table[4];
  1344. f[0] = tone->table[3] - tone->table[0];
  1345. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1346. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1347. f[4] = tone->table[0] - tone->table[1];
  1348. f[5] = tone->table[2];
  1349. for (i = 0; i < 2; i++) {
  1350. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re +=
  1351. c.re * f[i];
  1352. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im +=
  1353. c.im * ((tone->cutoff <= i) ? -f[i] : f[i]);
  1354. }
  1355. for (i = 0; i < 4; i++) {
  1356. tone->complex[i].re += c.re * f[i + 2];
  1357. tone->complex[i].im += c.im * f[i + 2];
  1358. }
  1359. }
  1360. /* copy the tone if it has not yet died out */
  1361. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1362. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1363. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1364. }
  1365. }
  1366. static void qdm2_fft_tone_synthesizer(QDM2Context *q, int sub_packet)
  1367. {
  1368. int i, j, ch;
  1369. const double iscale = 0.25 * M_PI;
  1370. for (ch = 0; ch < q->channels; ch++) {
  1371. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1372. }
  1373. /* apply FFT tones with duration 4 (1 FFT period) */
  1374. if (q->fft_coefs_min_index[4] >= 0)
  1375. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1376. float level;
  1377. QDM2Complex c;
  1378. if (q->fft_coefs[i].sub_packet != sub_packet)
  1379. break;
  1380. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1381. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1382. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1383. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1384. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1385. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1386. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1387. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1388. }
  1389. /* generate existing FFT tones */
  1390. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1391. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1392. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1393. }
  1394. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1395. for (i = 0; i < 4; i++)
  1396. if (q->fft_coefs_min_index[i] >= 0) {
  1397. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1398. int offset, four_i;
  1399. FFTTone tone;
  1400. if (q->fft_coefs[j].sub_packet != sub_packet)
  1401. break;
  1402. four_i = (4 - i);
  1403. offset = q->fft_coefs[j].offset >> four_i;
  1404. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1405. if (offset < q->frequency_range) {
  1406. if (offset < 2)
  1407. tone.cutoff = offset;
  1408. else
  1409. tone.cutoff = (offset >= 60) ? 3 : 2;
  1410. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1411. tone.complex = &q->fft.complex[ch][offset];
  1412. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1413. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1414. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1415. tone.duration = i;
  1416. tone.time_index = 0;
  1417. qdm2_fft_generate_tone(q, &tone);
  1418. }
  1419. }
  1420. q->fft_coefs_min_index[i] = j;
  1421. }
  1422. }
  1423. static void qdm2_calculate_fft(QDM2Context *q, int channel, int sub_packet)
  1424. {
  1425. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1426. float *out = q->output_buffer + channel;
  1427. int i;
  1428. q->fft.complex[channel][0].re *= 2.0f;
  1429. q->fft.complex[channel][0].im = 0.0f;
  1430. q->rdft_ctx.rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1431. /* add samples to output buffer */
  1432. for (i = 0; i < FFALIGN(q->fft_size, 8); i++) {
  1433. out[0] += q->fft.complex[channel][i].re * gain;
  1434. out[q->channels] += q->fft.complex[channel][i].im * gain;
  1435. out += 2 * q->channels;
  1436. }
  1437. }
  1438. /**
  1439. * @param q context
  1440. * @param index subpacket number
  1441. */
  1442. static void qdm2_synthesis_filter(QDM2Context *q, int index)
  1443. {
  1444. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1445. /* copy sb_samples */
  1446. sb_used = QDM2_SB_USED(q->sub_sampling);
  1447. for (ch = 0; ch < q->channels; ch++)
  1448. for (i = 0; i < 8; i++)
  1449. for (k = sb_used; k < SBLIMIT; k++)
  1450. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1451. for (ch = 0; ch < q->nb_channels; ch++) {
  1452. float *samples_ptr = q->samples + ch;
  1453. for (i = 0; i < 8; i++) {
  1454. ff_mpa_synth_filter_float(&q->mpadsp,
  1455. q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1456. ff_mpa_synth_window_float, &dither_state,
  1457. samples_ptr, q->nb_channels,
  1458. q->sb_samples[ch][(8 * index) + i]);
  1459. samples_ptr += 32 * q->nb_channels;
  1460. }
  1461. }
  1462. /* add samples to output buffer */
  1463. sub_sampling = (4 >> q->sub_sampling);
  1464. for (ch = 0; ch < q->channels; ch++)
  1465. for (i = 0; i < q->frame_size; i++)
  1466. q->output_buffer[q->channels * i + ch] += (1 << 23) * q->samples[q->nb_channels * sub_sampling * i + ch];
  1467. }
  1468. /**
  1469. * Init static data (does not depend on specific file)
  1470. *
  1471. * @param q context
  1472. */
  1473. static av_cold void qdm2_init_static_data(AVCodec *codec) {
  1474. qdm2_init_vlc();
  1475. ff_mpa_synth_init_float(ff_mpa_synth_window_float);
  1476. softclip_table_init();
  1477. rnd_table_init();
  1478. init_noise_samples();
  1479. }
  1480. /**
  1481. * Init parameters from codec extradata
  1482. */
  1483. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1484. {
  1485. QDM2Context *s = avctx->priv_data;
  1486. uint8_t *extradata;
  1487. int extradata_size;
  1488. int tmp_val, tmp, size;
  1489. /* extradata parsing
  1490. Structure:
  1491. wave {
  1492. frma (QDM2)
  1493. QDCA
  1494. QDCP
  1495. }
  1496. 32 size (including this field)
  1497. 32 tag (=frma)
  1498. 32 type (=QDM2 or QDMC)
  1499. 32 size (including this field, in bytes)
  1500. 32 tag (=QDCA) // maybe mandatory parameters
  1501. 32 unknown (=1)
  1502. 32 channels (=2)
  1503. 32 samplerate (=44100)
  1504. 32 bitrate (=96000)
  1505. 32 block size (=4096)
  1506. 32 frame size (=256) (for one channel)
  1507. 32 packet size (=1300)
  1508. 32 size (including this field, in bytes)
  1509. 32 tag (=QDCP) // maybe some tuneable parameters
  1510. 32 float1 (=1.0)
  1511. 32 zero ?
  1512. 32 float2 (=1.0)
  1513. 32 float3 (=1.0)
  1514. 32 unknown (27)
  1515. 32 unknown (8)
  1516. 32 zero ?
  1517. */
  1518. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1519. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1520. return -1;
  1521. }
  1522. extradata = avctx->extradata;
  1523. extradata_size = avctx->extradata_size;
  1524. while (extradata_size > 7) {
  1525. if (!memcmp(extradata, "frmaQDM", 7))
  1526. break;
  1527. extradata++;
  1528. extradata_size--;
  1529. }
  1530. if (extradata_size < 12) {
  1531. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1532. extradata_size);
  1533. return -1;
  1534. }
  1535. if (memcmp(extradata, "frmaQDM", 7)) {
  1536. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1537. return -1;
  1538. }
  1539. if (extradata[7] == 'C') {
  1540. // s->is_qdmc = 1;
  1541. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1542. return -1;
  1543. }
  1544. extradata += 8;
  1545. extradata_size -= 8;
  1546. size = AV_RB32(extradata);
  1547. if(size > extradata_size){
  1548. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1549. extradata_size, size);
  1550. return -1;
  1551. }
  1552. extradata += 4;
  1553. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1554. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1555. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1556. return -1;
  1557. }
  1558. extradata += 8;
  1559. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1560. extradata += 4;
  1561. if (s->channels <= 0 || s->channels > MPA_MAX_CHANNELS)
  1562. return AVERROR_INVALIDDATA;
  1563. avctx->channel_layout = avctx->channels == 2 ? AV_CH_LAYOUT_STEREO :
  1564. AV_CH_LAYOUT_MONO;
  1565. avctx->sample_rate = AV_RB32(extradata);
  1566. extradata += 4;
  1567. avctx->bit_rate = AV_RB32(extradata);
  1568. extradata += 4;
  1569. s->group_size = AV_RB32(extradata);
  1570. extradata += 4;
  1571. s->fft_size = AV_RB32(extradata);
  1572. extradata += 4;
  1573. s->checksum_size = AV_RB32(extradata);
  1574. if (s->checksum_size >= 1U << 28) {
  1575. av_log(avctx, AV_LOG_ERROR, "data block size too large (%u)\n", s->checksum_size);
  1576. return AVERROR_INVALIDDATA;
  1577. }
  1578. s->fft_order = av_log2(s->fft_size) + 1;
  1579. // something like max decodable tones
  1580. s->group_order = av_log2(s->group_size) + 1;
  1581. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1582. if (s->frame_size > QDM2_MAX_FRAME_SIZE)
  1583. return AVERROR_INVALIDDATA;
  1584. s->sub_sampling = s->fft_order - 7;
  1585. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1586. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1587. case 0: tmp = 40; break;
  1588. case 1: tmp = 48; break;
  1589. case 2: tmp = 56; break;
  1590. case 3: tmp = 72; break;
  1591. case 4: tmp = 80; break;
  1592. case 5: tmp = 100;break;
  1593. default: tmp=s->sub_sampling; break;
  1594. }
  1595. tmp_val = 0;
  1596. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1597. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1598. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1599. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1600. s->cm_table_select = tmp_val;
  1601. if (s->sub_sampling == 0)
  1602. tmp = 7999;
  1603. else
  1604. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1605. /*
  1606. 0: 7999 -> 0
  1607. 1: 20000 -> 2
  1608. 2: 28000 -> 2
  1609. */
  1610. if (tmp < 8000)
  1611. s->coeff_per_sb_select = 0;
  1612. else if (tmp <= 16000)
  1613. s->coeff_per_sb_select = 1;
  1614. else
  1615. s->coeff_per_sb_select = 2;
  1616. // Fail on unknown fft order
  1617. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1618. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1619. return -1;
  1620. }
  1621. if (s->fft_size != (1 << (s->fft_order - 1))) {
  1622. av_log(avctx, AV_LOG_ERROR, "FFT size %d not power of 2.\n", s->fft_size);
  1623. return AVERROR_INVALIDDATA;
  1624. }
  1625. ff_rdft_init(&s->rdft_ctx, s->fft_order, IDFT_C2R);
  1626. ff_mpadsp_init(&s->mpadsp);
  1627. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1628. return 0;
  1629. }
  1630. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1631. {
  1632. QDM2Context *s = avctx->priv_data;
  1633. ff_rdft_end(&s->rdft_ctx);
  1634. return 0;
  1635. }
  1636. static int qdm2_decode(QDM2Context *q, const uint8_t *in, int16_t *out)
  1637. {
  1638. int ch, i;
  1639. const int frame_size = (q->frame_size * q->channels);
  1640. /* select input buffer */
  1641. q->compressed_data = in;
  1642. q->compressed_size = q->checksum_size;
  1643. /* copy old block, clear new block of output samples */
  1644. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1645. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1646. /* decode block of QDM2 compressed data */
  1647. if (q->sub_packet == 0) {
  1648. q->has_errors = 0; // zero it for a new super block
  1649. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1650. qdm2_decode_super_block(q);
  1651. }
  1652. /* parse subpackets */
  1653. if (!q->has_errors) {
  1654. if (q->sub_packet == 2)
  1655. qdm2_decode_fft_packets(q);
  1656. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1657. }
  1658. /* sound synthesis stage 1 (FFT) */
  1659. for (ch = 0; ch < q->channels; ch++) {
  1660. qdm2_calculate_fft(q, ch, q->sub_packet);
  1661. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1662. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1663. return -1;
  1664. }
  1665. }
  1666. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1667. if (!q->has_errors && q->do_synth_filter)
  1668. qdm2_synthesis_filter(q, q->sub_packet);
  1669. q->sub_packet = (q->sub_packet + 1) % 16;
  1670. /* clip and convert output float[] to 16bit signed samples */
  1671. for (i = 0; i < frame_size; i++) {
  1672. int value = (int)q->output_buffer[i];
  1673. if (value > SOFTCLIP_THRESHOLD)
  1674. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1675. else if (value < -SOFTCLIP_THRESHOLD)
  1676. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1677. out[i] = value;
  1678. }
  1679. return 0;
  1680. }
  1681. static int qdm2_decode_frame(AVCodecContext *avctx, void *data,
  1682. int *got_frame_ptr, AVPacket *avpkt)
  1683. {
  1684. AVFrame *frame = data;
  1685. const uint8_t *buf = avpkt->data;
  1686. int buf_size = avpkt->size;
  1687. QDM2Context *s = avctx->priv_data;
  1688. int16_t *out;
  1689. int i, ret;
  1690. if(!buf)
  1691. return 0;
  1692. if(buf_size < s->checksum_size)
  1693. return -1;
  1694. /* get output buffer */
  1695. frame->nb_samples = 16 * s->frame_size;
  1696. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
  1697. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1698. return ret;
  1699. }
  1700. out = (int16_t *)frame->data[0];
  1701. for (i = 0; i < 16; i++) {
  1702. if (qdm2_decode(s, buf, out) < 0)
  1703. return -1;
  1704. out += s->channels * s->frame_size;
  1705. }
  1706. *got_frame_ptr = 1;
  1707. return s->checksum_size;
  1708. }
  1709. AVCodec ff_qdm2_decoder = {
  1710. .name = "qdm2",
  1711. .type = AVMEDIA_TYPE_AUDIO,
  1712. .id = AV_CODEC_ID_QDM2,
  1713. .priv_data_size = sizeof(QDM2Context),
  1714. .init = qdm2_decode_init,
  1715. .init_static_data = qdm2_init_static_data,
  1716. .close = qdm2_decode_close,
  1717. .decode = qdm2_decode_frame,
  1718. .capabilities = CODEC_CAP_DR1,
  1719. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1720. };