You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6175 lines
240KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 decoder
  26. */
  27. #include "internal.h"
  28. #include "avcodec.h"
  29. #include "error_resilience.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "h264chroma.h"
  33. #include "vc1.h"
  34. #include "vc1data.h"
  35. #include "vc1acdata.h"
  36. #include "msmpeg4data.h"
  37. #include "unary.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. // offset tables for interlaced picture MVDATA decoding
  45. static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
  46. static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
  47. /***********************************************************************/
  48. /**
  49. * @name VC-1 Bitplane decoding
  50. * @see 8.7, p56
  51. * @{
  52. */
  53. /**
  54. * Imode types
  55. * @{
  56. */
  57. enum Imode {
  58. IMODE_RAW,
  59. IMODE_NORM2,
  60. IMODE_DIFF2,
  61. IMODE_NORM6,
  62. IMODE_DIFF6,
  63. IMODE_ROWSKIP,
  64. IMODE_COLSKIP
  65. };
  66. /** @} */ //imode defines
  67. static void init_block_index(VC1Context *v)
  68. {
  69. MpegEncContext *s = &v->s;
  70. ff_init_block_index(s);
  71. if (v->field_mode && !(v->second_field ^ v->tff)) {
  72. s->dest[0] += s->current_picture_ptr->f.linesize[0];
  73. s->dest[1] += s->current_picture_ptr->f.linesize[1];
  74. s->dest[2] += s->current_picture_ptr->f.linesize[2];
  75. }
  76. }
  77. /** @} */ //Bitplane group
  78. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  79. {
  80. MpegEncContext *s = &v->s;
  81. int topleft_mb_pos, top_mb_pos;
  82. int stride_y, fieldtx = 0;
  83. int v_dist;
  84. /* The put pixels loop is always one MB row behind the decoding loop,
  85. * because we can only put pixels when overlap filtering is done, and
  86. * for filtering of the bottom edge of a MB, we need the next MB row
  87. * present as well.
  88. * Within the row, the put pixels loop is also one MB col behind the
  89. * decoding loop. The reason for this is again, because for filtering
  90. * of the right MB edge, we need the next MB present. */
  91. if (!s->first_slice_line) {
  92. if (s->mb_x) {
  93. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  94. if (v->fcm == ILACE_FRAME)
  95. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  96. stride_y = s->linesize << fieldtx;
  97. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  98. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  99. s->dest[0] - 16 * s->linesize - 16,
  100. stride_y);
  101. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  102. s->dest[0] - 16 * s->linesize - 8,
  103. stride_y);
  104. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  105. s->dest[0] - v_dist * s->linesize - 16,
  106. stride_y);
  107. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  108. s->dest[0] - v_dist * s->linesize - 8,
  109. stride_y);
  110. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  111. s->dest[1] - 8 * s->uvlinesize - 8,
  112. s->uvlinesize);
  113. s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  114. s->dest[2] - 8 * s->uvlinesize - 8,
  115. s->uvlinesize);
  116. }
  117. if (s->mb_x == s->mb_width - 1) {
  118. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  119. if (v->fcm == ILACE_FRAME)
  120. fieldtx = v->fieldtx_plane[top_mb_pos];
  121. stride_y = s->linesize << fieldtx;
  122. v_dist = fieldtx ? 15 : 8;
  123. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  124. s->dest[0] - 16 * s->linesize,
  125. stride_y);
  126. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  127. s->dest[0] - 16 * s->linesize + 8,
  128. stride_y);
  129. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  130. s->dest[0] - v_dist * s->linesize,
  131. stride_y);
  132. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  133. s->dest[0] - v_dist * s->linesize + 8,
  134. stride_y);
  135. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  136. s->dest[1] - 8 * s->uvlinesize,
  137. s->uvlinesize);
  138. s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  139. s->dest[2] - 8 * s->uvlinesize,
  140. s->uvlinesize);
  141. }
  142. }
  143. #define inc_blk_idx(idx) do { \
  144. idx++; \
  145. if (idx >= v->n_allocated_blks) \
  146. idx = 0; \
  147. } while (0)
  148. inc_blk_idx(v->topleft_blk_idx);
  149. inc_blk_idx(v->top_blk_idx);
  150. inc_blk_idx(v->left_blk_idx);
  151. inc_blk_idx(v->cur_blk_idx);
  152. }
  153. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  154. {
  155. MpegEncContext *s = &v->s;
  156. int j;
  157. if (!s->first_slice_line) {
  158. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  159. if (s->mb_x)
  160. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  161. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  162. for (j = 0; j < 2; j++) {
  163. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
  164. if (s->mb_x)
  165. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  166. }
  167. }
  168. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
  169. if (s->mb_y == s->end_mb_y - 1) {
  170. if (s->mb_x) {
  171. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  172. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  173. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  174. }
  175. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  176. }
  177. }
  178. static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
  179. {
  180. MpegEncContext *s = &v->s;
  181. int j;
  182. /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
  183. * means it runs two rows/cols behind the decoding loop. */
  184. if (!s->first_slice_line) {
  185. if (s->mb_x) {
  186. if (s->mb_y >= s->start_mb_y + 2) {
  187. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  188. if (s->mb_x >= 2)
  189. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
  190. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
  191. for (j = 0; j < 2; j++) {
  192. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  193. if (s->mb_x >= 2) {
  194. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
  195. }
  196. }
  197. }
  198. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
  199. }
  200. if (s->mb_x == s->mb_width - 1) {
  201. if (s->mb_y >= s->start_mb_y + 2) {
  202. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  203. if (s->mb_x)
  204. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
  205. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
  206. for (j = 0; j < 2; j++) {
  207. v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  208. if (s->mb_x >= 2) {
  209. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
  210. }
  211. }
  212. }
  213. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
  214. }
  215. if (s->mb_y == s->end_mb_y) {
  216. if (s->mb_x) {
  217. if (s->mb_x >= 2)
  218. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
  219. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
  220. if (s->mb_x >= 2) {
  221. for (j = 0; j < 2; j++) {
  222. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
  223. }
  224. }
  225. }
  226. if (s->mb_x == s->mb_width - 1) {
  227. if (s->mb_x)
  228. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
  229. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
  230. if (s->mb_x) {
  231. for (j = 0; j < 2; j++) {
  232. v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
  233. }
  234. }
  235. }
  236. }
  237. }
  238. }
  239. static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
  240. {
  241. MpegEncContext *s = &v->s;
  242. int mb_pos;
  243. if (v->condover == CONDOVER_NONE)
  244. return;
  245. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  246. /* Within a MB, the horizontal overlap always runs before the vertical.
  247. * To accomplish that, we run the H on left and internal borders of the
  248. * currently decoded MB. Then, we wait for the next overlap iteration
  249. * to do H overlap on the right edge of this MB, before moving over and
  250. * running the V overlap. Therefore, the V overlap makes us trail by one
  251. * MB col and the H overlap filter makes us trail by one MB row. This
  252. * is reflected in the time at which we run the put_pixels loop. */
  253. if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
  254. if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  255. v->over_flags_plane[mb_pos - 1])) {
  256. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
  257. v->block[v->cur_blk_idx][0]);
  258. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
  259. v->block[v->cur_blk_idx][2]);
  260. if (!(s->flags & CODEC_FLAG_GRAY)) {
  261. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
  262. v->block[v->cur_blk_idx][4]);
  263. v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
  264. v->block[v->cur_blk_idx][5]);
  265. }
  266. }
  267. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
  268. v->block[v->cur_blk_idx][1]);
  269. v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
  270. v->block[v->cur_blk_idx][3]);
  271. if (s->mb_x == s->mb_width - 1) {
  272. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  273. v->over_flags_plane[mb_pos - s->mb_stride])) {
  274. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
  275. v->block[v->cur_blk_idx][0]);
  276. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
  277. v->block[v->cur_blk_idx][1]);
  278. if (!(s->flags & CODEC_FLAG_GRAY)) {
  279. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
  280. v->block[v->cur_blk_idx][4]);
  281. v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
  282. v->block[v->cur_blk_idx][5]);
  283. }
  284. }
  285. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
  286. v->block[v->cur_blk_idx][2]);
  287. v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
  288. v->block[v->cur_blk_idx][3]);
  289. }
  290. }
  291. if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
  292. if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
  293. v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
  294. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
  295. v->block[v->left_blk_idx][0]);
  296. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
  297. v->block[v->left_blk_idx][1]);
  298. if (!(s->flags & CODEC_FLAG_GRAY)) {
  299. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
  300. v->block[v->left_blk_idx][4]);
  301. v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
  302. v->block[v->left_blk_idx][5]);
  303. }
  304. }
  305. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
  306. v->block[v->left_blk_idx][2]);
  307. v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
  308. v->block[v->left_blk_idx][3]);
  309. }
  310. }
  311. /** Do motion compensation over 1 macroblock
  312. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  313. */
  314. static void vc1_mc_1mv(VC1Context *v, int dir)
  315. {
  316. MpegEncContext *s = &v->s;
  317. H264ChromaContext *h264chroma = &v->h264chroma;
  318. uint8_t *srcY, *srcU, *srcV;
  319. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  320. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  321. int i;
  322. const uint8_t *luty, *lutuv;
  323. int use_ic;
  324. if ((!v->field_mode ||
  325. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  326. !v->s.last_picture.f.data[0])
  327. return;
  328. mx = s->mv[dir][0][0];
  329. my = s->mv[dir][0][1];
  330. // store motion vectors for further use in B frames
  331. if (s->pict_type == AV_PICTURE_TYPE_P) {
  332. for (i = 0; i < 4; i++) {
  333. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = mx;
  334. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = my;
  335. }
  336. }
  337. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  338. uvmy = (my + ((my & 3) == 3)) >> 1;
  339. v->luma_mv[s->mb_x][0] = uvmx;
  340. v->luma_mv[s->mb_x][1] = uvmy;
  341. if (v->field_mode &&
  342. v->cur_field_type != v->ref_field_type[dir]) {
  343. my = my - 2 + 4 * v->cur_field_type;
  344. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  345. }
  346. // fastuvmc shall be ignored for interlaced frame picture
  347. if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
  348. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  349. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  350. }
  351. if (!dir) {
  352. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  353. srcY = s->current_picture.f.data[0];
  354. srcU = s->current_picture.f.data[1];
  355. srcV = s->current_picture.f.data[2];
  356. luty = v->curr_luty [v->ref_field_type[dir]];
  357. lutuv = v->curr_lutuv[v->ref_field_type[dir]];
  358. use_ic = v->curr_use_ic;
  359. } else {
  360. srcY = s->last_picture.f.data[0];
  361. srcU = s->last_picture.f.data[1];
  362. srcV = s->last_picture.f.data[2];
  363. luty = v->last_luty [v->ref_field_type[dir]];
  364. lutuv = v->last_lutuv[v->ref_field_type[dir]];
  365. use_ic = v->last_use_ic;
  366. }
  367. } else {
  368. srcY = s->next_picture.f.data[0];
  369. srcU = s->next_picture.f.data[1];
  370. srcV = s->next_picture.f.data[2];
  371. luty = v->next_luty [v->ref_field_type[dir]];
  372. lutuv = v->next_lutuv[v->ref_field_type[dir]];
  373. use_ic = v->next_use_ic;
  374. }
  375. src_x = s->mb_x * 16 + (mx >> 2);
  376. src_y = s->mb_y * 16 + (my >> 2);
  377. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  378. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  379. if (v->profile != PROFILE_ADVANCED) {
  380. src_x = av_clip( src_x, -16, s->mb_width * 16);
  381. src_y = av_clip( src_y, -16, s->mb_height * 16);
  382. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  383. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  384. } else {
  385. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  386. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  387. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  388. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  389. }
  390. srcY += src_y * s->linesize + src_x;
  391. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  392. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  393. if (v->field_mode && v->ref_field_type[dir]) {
  394. srcY += s->current_picture_ptr->f.linesize[0];
  395. srcU += s->current_picture_ptr->f.linesize[1];
  396. srcV += s->current_picture_ptr->f.linesize[2];
  397. }
  398. /* for grayscale we should not try to read from unknown area */
  399. if (s->flags & CODEC_FLAG_GRAY) {
  400. srcU = s->edge_emu_buffer + 18 * s->linesize;
  401. srcV = s->edge_emu_buffer + 18 * s->linesize;
  402. }
  403. if (v->rangeredfrm || use_ic
  404. || s->h_edge_pos < 22 || v_edge_pos < 22
  405. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
  406. || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
  407. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  408. srcY -= s->mspel * (1 + s->linesize);
  409. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  410. 17 + s->mspel * 2, 17 + s->mspel * 2,
  411. src_x - s->mspel, src_y - s->mspel,
  412. s->h_edge_pos, v_edge_pos);
  413. srcY = s->edge_emu_buffer;
  414. s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  415. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  416. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  417. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  418. srcU = uvbuf;
  419. srcV = uvbuf + 16;
  420. /* if we deal with range reduction we need to scale source blocks */
  421. if (v->rangeredfrm) {
  422. int i, j;
  423. uint8_t *src, *src2;
  424. src = srcY;
  425. for (j = 0; j < 17 + s->mspel * 2; j++) {
  426. for (i = 0; i < 17 + s->mspel * 2; i++)
  427. src[i] = ((src[i] - 128) >> 1) + 128;
  428. src += s->linesize;
  429. }
  430. src = srcU;
  431. src2 = srcV;
  432. for (j = 0; j < 9; j++) {
  433. for (i = 0; i < 9; i++) {
  434. src[i] = ((src[i] - 128) >> 1) + 128;
  435. src2[i] = ((src2[i] - 128) >> 1) + 128;
  436. }
  437. src += s->uvlinesize;
  438. src2 += s->uvlinesize;
  439. }
  440. }
  441. /* if we deal with intensity compensation we need to scale source blocks */
  442. if (use_ic) {
  443. int i, j;
  444. uint8_t *src, *src2;
  445. src = srcY;
  446. for (j = 0; j < 17 + s->mspel * 2; j++) {
  447. for (i = 0; i < 17 + s->mspel * 2; i++)
  448. src[i] = luty[src[i]];
  449. src += s->linesize;
  450. }
  451. src = srcU;
  452. src2 = srcV;
  453. for (j = 0; j < 9; j++) {
  454. for (i = 0; i < 9; i++) {
  455. src[i] = lutuv[src[i]];
  456. src2[i] = lutuv[src2[i]];
  457. }
  458. src += s->uvlinesize;
  459. src2 += s->uvlinesize;
  460. }
  461. }
  462. srcY += s->mspel * (1 + s->linesize);
  463. }
  464. if (s->mspel) {
  465. dxy = ((my & 3) << 2) | (mx & 3);
  466. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  467. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  468. srcY += s->linesize * 8;
  469. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  470. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  471. } else { // hpel mc - always used for luma
  472. dxy = (my & 2) | ((mx & 2) >> 1);
  473. if (!v->rnd)
  474. s->hdsp.put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  475. else
  476. s->hdsp.put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  477. }
  478. if (s->flags & CODEC_FLAG_GRAY) return;
  479. /* Chroma MC always uses qpel bilinear */
  480. uvmx = (uvmx & 3) << 1;
  481. uvmy = (uvmy & 3) << 1;
  482. if (!v->rnd) {
  483. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  484. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  485. } else {
  486. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  487. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  488. }
  489. }
  490. static inline int median4(int a, int b, int c, int d)
  491. {
  492. if (a < b) {
  493. if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  494. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  495. } else {
  496. if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  497. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  498. }
  499. }
  500. /** Do motion compensation for 4-MV macroblock - luminance block
  501. */
  502. static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir, int avg)
  503. {
  504. MpegEncContext *s = &v->s;
  505. uint8_t *srcY;
  506. int dxy, mx, my, src_x, src_y;
  507. int off;
  508. int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
  509. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  510. const uint8_t *luty;
  511. int use_ic;
  512. if ((!v->field_mode ||
  513. (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
  514. !v->s.last_picture.f.data[0])
  515. return;
  516. mx = s->mv[dir][n][0];
  517. my = s->mv[dir][n][1];
  518. if (!dir) {
  519. if (v->field_mode && (v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
  520. srcY = s->current_picture.f.data[0];
  521. luty = v->curr_luty[v->ref_field_type[dir]];
  522. use_ic = v->curr_use_ic;
  523. } else {
  524. srcY = s->last_picture.f.data[0];
  525. luty = v->last_luty[v->ref_field_type[dir]];
  526. use_ic = v->last_use_ic;
  527. }
  528. } else {
  529. srcY = s->next_picture.f.data[0];
  530. luty = v->next_luty[v->ref_field_type[dir]];
  531. use_ic = v->next_use_ic;
  532. }
  533. if (v->field_mode) {
  534. if (v->cur_field_type != v->ref_field_type[dir])
  535. my = my - 2 + 4 * v->cur_field_type;
  536. }
  537. if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
  538. int same_count = 0, opp_count = 0, k;
  539. int chosen_mv[2][4][2], f;
  540. int tx, ty;
  541. for (k = 0; k < 4; k++) {
  542. f = v->mv_f[0][s->block_index[k] + v->blocks_off];
  543. chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
  544. chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
  545. opp_count += f;
  546. same_count += 1 - f;
  547. }
  548. f = opp_count > same_count;
  549. switch (f ? opp_count : same_count) {
  550. case 4:
  551. tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
  552. chosen_mv[f][2][0], chosen_mv[f][3][0]);
  553. ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
  554. chosen_mv[f][2][1], chosen_mv[f][3][1]);
  555. break;
  556. case 3:
  557. tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
  558. ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
  559. break;
  560. case 2:
  561. tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
  562. ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
  563. break;
  564. }
  565. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  566. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  567. for (k = 0; k < 4; k++)
  568. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  569. }
  570. if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
  571. int qx, qy;
  572. int width = s->avctx->coded_width;
  573. int height = s->avctx->coded_height >> 1;
  574. if (s->pict_type == AV_PICTURE_TYPE_P) {
  575. s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][0] = mx;
  576. s->current_picture.motion_val[1][s->block_index[n] + v->blocks_off][1] = my;
  577. }
  578. qx = (s->mb_x * 16) + (mx >> 2);
  579. qy = (s->mb_y * 8) + (my >> 3);
  580. if (qx < -17)
  581. mx -= 4 * (qx + 17);
  582. else if (qx > width)
  583. mx -= 4 * (qx - width);
  584. if (qy < -18)
  585. my -= 8 * (qy + 18);
  586. else if (qy > height + 1)
  587. my -= 8 * (qy - height - 1);
  588. }
  589. if ((v->fcm == ILACE_FRAME) && fieldmv)
  590. off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
  591. else
  592. off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
  593. src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
  594. if (!fieldmv)
  595. src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
  596. else
  597. src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
  598. if (v->profile != PROFILE_ADVANCED) {
  599. src_x = av_clip(src_x, -16, s->mb_width * 16);
  600. src_y = av_clip(src_y, -16, s->mb_height * 16);
  601. } else {
  602. src_x = av_clip(src_x, -17, s->avctx->coded_width);
  603. if (v->fcm == ILACE_FRAME) {
  604. if (src_y & 1)
  605. src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
  606. else
  607. src_y = av_clip(src_y, -18, s->avctx->coded_height);
  608. } else {
  609. src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
  610. }
  611. }
  612. srcY += src_y * s->linesize + src_x;
  613. if (v->field_mode && v->ref_field_type[dir])
  614. srcY += s->current_picture_ptr->f.linesize[0];
  615. if (fieldmv && !(src_y & 1))
  616. v_edge_pos--;
  617. if (fieldmv && (src_y & 1) && src_y < 4)
  618. src_y--;
  619. if (v->rangeredfrm || use_ic
  620. || s->h_edge_pos < 13 || v_edge_pos < 23
  621. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
  622. || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
  623. srcY -= s->mspel * (1 + (s->linesize << fieldmv));
  624. /* check emulate edge stride and offset */
  625. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  626. 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
  627. src_x - s->mspel, src_y - (s->mspel << fieldmv),
  628. s->h_edge_pos, v_edge_pos);
  629. srcY = s->edge_emu_buffer;
  630. /* if we deal with range reduction we need to scale source blocks */
  631. if (v->rangeredfrm) {
  632. int i, j;
  633. uint8_t *src;
  634. src = srcY;
  635. for (j = 0; j < 9 + s->mspel * 2; j++) {
  636. for (i = 0; i < 9 + s->mspel * 2; i++)
  637. src[i] = ((src[i] - 128) >> 1) + 128;
  638. src += s->linesize << fieldmv;
  639. }
  640. }
  641. /* if we deal with intensity compensation we need to scale source blocks */
  642. if (use_ic) {
  643. int i, j;
  644. uint8_t *src;
  645. src = srcY;
  646. for (j = 0; j < 9 + s->mspel * 2; j++) {
  647. for (i = 0; i < 9 + s->mspel * 2; i++)
  648. src[i] = luty[src[i]];
  649. src += s->linesize << fieldmv;
  650. }
  651. }
  652. srcY += s->mspel * (1 + (s->linesize << fieldmv));
  653. }
  654. if (s->mspel) {
  655. dxy = ((my & 3) << 2) | (mx & 3);
  656. if (avg)
  657. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  658. else
  659. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
  660. } else { // hpel mc - always used for luma
  661. dxy = (my & 2) | ((mx & 2) >> 1);
  662. if (!v->rnd)
  663. s->hdsp.put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  664. else
  665. s->hdsp.put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  666. }
  667. }
  668. static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
  669. {
  670. int idx, i;
  671. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  672. idx = ((a[3] != flag) << 3)
  673. | ((a[2] != flag) << 2)
  674. | ((a[1] != flag) << 1)
  675. | (a[0] != flag);
  676. if (!idx) {
  677. *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  678. *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  679. return 4;
  680. } else if (count[idx] == 1) {
  681. switch (idx) {
  682. case 0x1:
  683. *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  684. *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  685. return 3;
  686. case 0x2:
  687. *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  688. *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  689. return 3;
  690. case 0x4:
  691. *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  692. *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  693. return 3;
  694. case 0x8:
  695. *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  696. *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  697. return 3;
  698. }
  699. } else if (count[idx] == 2) {
  700. int t1 = 0, t2 = 0;
  701. for (i = 0; i < 3; i++)
  702. if (!a[i]) {
  703. t1 = i;
  704. break;
  705. }
  706. for (i = t1 + 1; i < 4; i++)
  707. if (!a[i]) {
  708. t2 = i;
  709. break;
  710. }
  711. *tx = (mvx[t1] + mvx[t2]) / 2;
  712. *ty = (mvy[t1] + mvy[t2]) / 2;
  713. return 2;
  714. } else {
  715. return 0;
  716. }
  717. return -1;
  718. }
  719. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  720. */
  721. static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
  722. {
  723. MpegEncContext *s = &v->s;
  724. H264ChromaContext *h264chroma = &v->h264chroma;
  725. uint8_t *srcU, *srcV;
  726. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  727. int k, tx = 0, ty = 0;
  728. int mvx[4], mvy[4], intra[4], mv_f[4];
  729. int valid_count;
  730. int chroma_ref_type = v->cur_field_type;
  731. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  732. const uint8_t *lutuv;
  733. int use_ic;
  734. if (!v->field_mode && !v->s.last_picture.f.data[0])
  735. return;
  736. if (s->flags & CODEC_FLAG_GRAY)
  737. return;
  738. for (k = 0; k < 4; k++) {
  739. mvx[k] = s->mv[dir][k][0];
  740. mvy[k] = s->mv[dir][k][1];
  741. intra[k] = v->mb_type[0][s->block_index[k]];
  742. if (v->field_mode)
  743. mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
  744. }
  745. /* calculate chroma MV vector from four luma MVs */
  746. if (!v->field_mode || (v->field_mode && !v->numref)) {
  747. valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
  748. chroma_ref_type = v->reffield;
  749. if (!valid_count) {
  750. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  751. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  752. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  753. return; //no need to do MC for intra blocks
  754. }
  755. } else {
  756. int dominant = 0;
  757. if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
  758. dominant = 1;
  759. valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
  760. if (dominant)
  761. chroma_ref_type = !v->cur_field_type;
  762. }
  763. if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
  764. return;
  765. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
  766. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
  767. uvmx = (tx + ((tx & 3) == 3)) >> 1;
  768. uvmy = (ty + ((ty & 3) == 3)) >> 1;
  769. v->luma_mv[s->mb_x][0] = uvmx;
  770. v->luma_mv[s->mb_x][1] = uvmy;
  771. if (v->fastuvmc) {
  772. uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
  773. uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
  774. }
  775. // Field conversion bias
  776. if (v->cur_field_type != chroma_ref_type)
  777. uvmy += 2 - 4 * chroma_ref_type;
  778. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  779. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  780. if (v->profile != PROFILE_ADVANCED) {
  781. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  782. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  783. } else {
  784. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  785. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  786. }
  787. if (!dir) {
  788. if (v->field_mode && (v->cur_field_type != chroma_ref_type) && v->second_field) {
  789. srcU = s->current_picture.f.data[1];
  790. srcV = s->current_picture.f.data[2];
  791. lutuv = v->curr_lutuv[chroma_ref_type];
  792. use_ic = v->curr_use_ic;
  793. } else {
  794. srcU = s->last_picture.f.data[1];
  795. srcV = s->last_picture.f.data[2];
  796. lutuv = v->last_lutuv[chroma_ref_type];
  797. use_ic = v->last_use_ic;
  798. }
  799. } else {
  800. srcU = s->next_picture.f.data[1];
  801. srcV = s->next_picture.f.data[2];
  802. lutuv = v->next_lutuv[chroma_ref_type];
  803. use_ic = v->next_use_ic;
  804. }
  805. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  806. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  807. if (v->field_mode) {
  808. if (chroma_ref_type) {
  809. srcU += s->current_picture_ptr->f.linesize[1];
  810. srcV += s->current_picture_ptr->f.linesize[2];
  811. }
  812. }
  813. if (v->rangeredfrm || use_ic
  814. || s->h_edge_pos < 18 || v_edge_pos < 18
  815. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  816. || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
  817. s->vdsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize,
  818. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  819. s->h_edge_pos >> 1, v_edge_pos >> 1);
  820. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  821. 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
  822. s->h_edge_pos >> 1, v_edge_pos >> 1);
  823. srcU = s->edge_emu_buffer;
  824. srcV = s->edge_emu_buffer + 16;
  825. /* if we deal with range reduction we need to scale source blocks */
  826. if (v->rangeredfrm) {
  827. int i, j;
  828. uint8_t *src, *src2;
  829. src = srcU;
  830. src2 = srcV;
  831. for (j = 0; j < 9; j++) {
  832. for (i = 0; i < 9; i++) {
  833. src[i] = ((src[i] - 128) >> 1) + 128;
  834. src2[i] = ((src2[i] - 128) >> 1) + 128;
  835. }
  836. src += s->uvlinesize;
  837. src2 += s->uvlinesize;
  838. }
  839. }
  840. /* if we deal with intensity compensation we need to scale source blocks */
  841. if (use_ic) {
  842. int i, j;
  843. uint8_t *src, *src2;
  844. src = srcU;
  845. src2 = srcV;
  846. for (j = 0; j < 9; j++) {
  847. for (i = 0; i < 9; i++) {
  848. src[i] = lutuv[src[i]];
  849. src2[i] = lutuv[src2[i]];
  850. }
  851. src += s->uvlinesize;
  852. src2 += s->uvlinesize;
  853. }
  854. }
  855. }
  856. /* Chroma MC always uses qpel bilinear */
  857. uvmx = (uvmx & 3) << 1;
  858. uvmy = (uvmy & 3) << 1;
  859. if (!v->rnd) {
  860. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  861. h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  862. } else {
  863. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  864. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  865. }
  866. }
  867. /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
  868. */
  869. static void vc1_mc_4mv_chroma4(VC1Context *v)
  870. {
  871. MpegEncContext *s = &v->s;
  872. H264ChromaContext *h264chroma = &v->h264chroma;
  873. uint8_t *srcU, *srcV;
  874. int uvsrc_x, uvsrc_y;
  875. int uvmx_field[4], uvmy_field[4];
  876. int i, off, tx, ty;
  877. int fieldmv = v->blk_mv_type[s->block_index[0]];
  878. static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
  879. int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
  880. int v_edge_pos = s->v_edge_pos >> 1;
  881. int use_ic = v->last_use_ic;
  882. if (!v->s.last_picture.f.data[0])
  883. return;
  884. if (s->flags & CODEC_FLAG_GRAY)
  885. return;
  886. for (i = 0; i < 4; i++) {
  887. tx = s->mv[0][i][0];
  888. uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
  889. ty = s->mv[0][i][1];
  890. if (fieldmv)
  891. uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
  892. else
  893. uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
  894. }
  895. for (i = 0; i < 4; i++) {
  896. off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
  897. uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
  898. uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
  899. // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
  900. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  901. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  902. srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  903. srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  904. uvmx_field[i] = (uvmx_field[i] & 3) << 1;
  905. uvmy_field[i] = (uvmy_field[i] & 3) << 1;
  906. if (fieldmv && !(uvsrc_y & 1))
  907. v_edge_pos--;
  908. if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
  909. uvsrc_y--;
  910. if (use_ic
  911. || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
  912. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
  913. || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
  914. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcU, s->uvlinesize,
  915. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  916. s->h_edge_pos >> 1, v_edge_pos);
  917. s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
  918. 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
  919. s->h_edge_pos >> 1, v_edge_pos);
  920. srcU = s->edge_emu_buffer;
  921. srcV = s->edge_emu_buffer + 16;
  922. /* if we deal with intensity compensation we need to scale source blocks */
  923. if (use_ic) {
  924. int i, j;
  925. uint8_t *src, *src2;
  926. const uint8_t *lutuv = v->last_lutuv[v->ref_field_type[0]];
  927. src = srcU;
  928. src2 = srcV;
  929. for (j = 0; j < 5; j++) {
  930. for (i = 0; i < 5; i++) {
  931. src[i] = lutuv[src[i]];
  932. src2[i] = lutuv[src2[i]];
  933. }
  934. src += s->uvlinesize << 1;
  935. src2 += s->uvlinesize << 1;
  936. }
  937. }
  938. }
  939. if (!v->rnd) {
  940. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  941. h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  942. } else {
  943. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  944. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
  945. }
  946. }
  947. }
  948. /***********************************************************************/
  949. /**
  950. * @name VC-1 Block-level functions
  951. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  952. * @{
  953. */
  954. /**
  955. * @def GET_MQUANT
  956. * @brief Get macroblock-level quantizer scale
  957. */
  958. #define GET_MQUANT() \
  959. if (v->dquantfrm) { \
  960. int edges = 0; \
  961. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  962. if (v->dqbilevel) { \
  963. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  964. } else { \
  965. mqdiff = get_bits(gb, 3); \
  966. if (mqdiff != 7) \
  967. mquant = v->pq + mqdiff; \
  968. else \
  969. mquant = get_bits(gb, 5); \
  970. } \
  971. } \
  972. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  973. edges = 1 << v->dqsbedge; \
  974. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  975. edges = (3 << v->dqsbedge) % 15; \
  976. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  977. edges = 15; \
  978. if ((edges&1) && !s->mb_x) \
  979. mquant = v->altpq; \
  980. if ((edges&2) && s->first_slice_line) \
  981. mquant = v->altpq; \
  982. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  983. mquant = v->altpq; \
  984. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  985. mquant = v->altpq; \
  986. if (!mquant || mquant > 31) { \
  987. av_log(v->s.avctx, AV_LOG_ERROR, \
  988. "Overriding invalid mquant %d\n", mquant); \
  989. mquant = 1; \
  990. } \
  991. }
  992. /**
  993. * @def GET_MVDATA(_dmv_x, _dmv_y)
  994. * @brief Get MV differentials
  995. * @see MVDATA decoding from 8.3.5.2, p(1)20
  996. * @param _dmv_x Horizontal differential for decoded MV
  997. * @param _dmv_y Vertical differential for decoded MV
  998. */
  999. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1000. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  1001. VC1_MV_DIFF_VLC_BITS, 2); \
  1002. if (index > 36) { \
  1003. mb_has_coeffs = 1; \
  1004. index -= 37; \
  1005. } else \
  1006. mb_has_coeffs = 0; \
  1007. s->mb_intra = 0; \
  1008. if (!index) { \
  1009. _dmv_x = _dmv_y = 0; \
  1010. } else if (index == 35) { \
  1011. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1012. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1013. } else if (index == 36) { \
  1014. _dmv_x = 0; \
  1015. _dmv_y = 0; \
  1016. s->mb_intra = 1; \
  1017. } else { \
  1018. index1 = index % 6; \
  1019. if (!s->quarter_sample && index1 == 5) val = 1; \
  1020. else val = 0; \
  1021. if (size_table[index1] - val > 0) \
  1022. val = get_bits(gb, size_table[index1] - val); \
  1023. else val = 0; \
  1024. sign = 0 - (val&1); \
  1025. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1026. \
  1027. index1 = index / 6; \
  1028. if (!s->quarter_sample && index1 == 5) val = 1; \
  1029. else val = 0; \
  1030. if (size_table[index1] - val > 0) \
  1031. val = get_bits(gb, size_table[index1] - val); \
  1032. else val = 0; \
  1033. sign = 0 - (val & 1); \
  1034. _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
  1035. }
  1036. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  1037. int *dmv_y, int *pred_flag)
  1038. {
  1039. int index, index1;
  1040. int extend_x = 0, extend_y = 0;
  1041. GetBitContext *gb = &v->s.gb;
  1042. int bits, esc;
  1043. int val, sign;
  1044. const int* offs_tab;
  1045. if (v->numref) {
  1046. bits = VC1_2REF_MVDATA_VLC_BITS;
  1047. esc = 125;
  1048. } else {
  1049. bits = VC1_1REF_MVDATA_VLC_BITS;
  1050. esc = 71;
  1051. }
  1052. switch (v->dmvrange) {
  1053. case 1:
  1054. extend_x = 1;
  1055. break;
  1056. case 2:
  1057. extend_y = 1;
  1058. break;
  1059. case 3:
  1060. extend_x = extend_y = 1;
  1061. break;
  1062. }
  1063. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  1064. if (index == esc) {
  1065. *dmv_x = get_bits(gb, v->k_x);
  1066. *dmv_y = get_bits(gb, v->k_y);
  1067. if (v->numref) {
  1068. if (pred_flag) {
  1069. *pred_flag = *dmv_y & 1;
  1070. *dmv_y = (*dmv_y + *pred_flag) >> 1;
  1071. } else {
  1072. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  1073. }
  1074. }
  1075. }
  1076. else {
  1077. if (extend_x)
  1078. offs_tab = offset_table2;
  1079. else
  1080. offs_tab = offset_table1;
  1081. index1 = (index + 1) % 9;
  1082. if (index1 != 0) {
  1083. val = get_bits(gb, index1 + extend_x);
  1084. sign = 0 -(val & 1);
  1085. *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
  1086. } else
  1087. *dmv_x = 0;
  1088. if (extend_y)
  1089. offs_tab = offset_table2;
  1090. else
  1091. offs_tab = offset_table1;
  1092. index1 = (index + 1) / 9;
  1093. if (index1 > v->numref) {
  1094. val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
  1095. sign = 0 - (val & 1);
  1096. *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
  1097. } else
  1098. *dmv_y = 0;
  1099. if (v->numref && pred_flag)
  1100. *pred_flag = index1 & 1;
  1101. }
  1102. }
  1103. static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
  1104. {
  1105. int scaledvalue, refdist;
  1106. int scalesame1, scalesame2;
  1107. int scalezone1_x, zone1offset_x;
  1108. int table_index = dir ^ v->second_field;
  1109. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1110. refdist = v->refdist;
  1111. else
  1112. refdist = dir ? v->brfd : v->frfd;
  1113. if (refdist > 3)
  1114. refdist = 3;
  1115. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1116. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1117. scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
  1118. zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
  1119. if (FFABS(n) > 255)
  1120. scaledvalue = n;
  1121. else {
  1122. if (FFABS(n) < scalezone1_x)
  1123. scaledvalue = (n * scalesame1) >> 8;
  1124. else {
  1125. if (n < 0)
  1126. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
  1127. else
  1128. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
  1129. }
  1130. }
  1131. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1132. }
  1133. static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
  1134. {
  1135. int scaledvalue, refdist;
  1136. int scalesame1, scalesame2;
  1137. int scalezone1_y, zone1offset_y;
  1138. int table_index = dir ^ v->second_field;
  1139. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1140. refdist = v->refdist;
  1141. else
  1142. refdist = dir ? v->brfd : v->frfd;
  1143. if (refdist > 3)
  1144. refdist = 3;
  1145. scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
  1146. scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
  1147. scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
  1148. zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
  1149. if (FFABS(n) > 63)
  1150. scaledvalue = n;
  1151. else {
  1152. if (FFABS(n) < scalezone1_y)
  1153. scaledvalue = (n * scalesame1) >> 8;
  1154. else {
  1155. if (n < 0)
  1156. scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
  1157. else
  1158. scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
  1159. }
  1160. }
  1161. if (v->cur_field_type && !v->ref_field_type[dir])
  1162. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1163. else
  1164. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1165. }
  1166. static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
  1167. {
  1168. int scalezone1_x, zone1offset_x;
  1169. int scaleopp1, scaleopp2, brfd;
  1170. int scaledvalue;
  1171. brfd = FFMIN(v->brfd, 3);
  1172. scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
  1173. zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
  1174. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1175. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1176. if (FFABS(n) > 255)
  1177. scaledvalue = n;
  1178. else {
  1179. if (FFABS(n) < scalezone1_x)
  1180. scaledvalue = (n * scaleopp1) >> 8;
  1181. else {
  1182. if (n < 0)
  1183. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
  1184. else
  1185. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
  1186. }
  1187. }
  1188. return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
  1189. }
  1190. static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
  1191. {
  1192. int scalezone1_y, zone1offset_y;
  1193. int scaleopp1, scaleopp2, brfd;
  1194. int scaledvalue;
  1195. brfd = FFMIN(v->brfd, 3);
  1196. scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
  1197. zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
  1198. scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
  1199. scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
  1200. if (FFABS(n) > 63)
  1201. scaledvalue = n;
  1202. else {
  1203. if (FFABS(n) < scalezone1_y)
  1204. scaledvalue = (n * scaleopp1) >> 8;
  1205. else {
  1206. if (n < 0)
  1207. scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
  1208. else
  1209. scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
  1210. }
  1211. }
  1212. if (v->cur_field_type && !v->ref_field_type[dir]) {
  1213. return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
  1214. } else {
  1215. return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
  1216. }
  1217. }
  1218. static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
  1219. int dim, int dir)
  1220. {
  1221. int brfd, scalesame;
  1222. int hpel = 1 - v->s.quarter_sample;
  1223. n >>= hpel;
  1224. if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
  1225. if (dim)
  1226. n = scaleforsame_y(v, i, n, dir) << hpel;
  1227. else
  1228. n = scaleforsame_x(v, n, dir) << hpel;
  1229. return n;
  1230. }
  1231. brfd = FFMIN(v->brfd, 3);
  1232. scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
  1233. n = (n * scalesame >> 8) << hpel;
  1234. return n;
  1235. }
  1236. static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
  1237. int dim, int dir)
  1238. {
  1239. int refdist, scaleopp;
  1240. int hpel = 1 - v->s.quarter_sample;
  1241. n >>= hpel;
  1242. if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
  1243. if (dim)
  1244. n = scaleforopp_y(v, n, dir) << hpel;
  1245. else
  1246. n = scaleforopp_x(v, n) << hpel;
  1247. return n;
  1248. }
  1249. if (v->s.pict_type != AV_PICTURE_TYPE_B)
  1250. refdist = FFMIN(v->refdist, 3);
  1251. else
  1252. refdist = dir ? v->brfd : v->frfd;
  1253. scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
  1254. n = (n * scaleopp >> 8) << hpel;
  1255. return n;
  1256. }
  1257. /** Predict and set motion vector
  1258. */
  1259. static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
  1260. int mv1, int r_x, int r_y, uint8_t* is_intra,
  1261. int pred_flag, int dir)
  1262. {
  1263. MpegEncContext *s = &v->s;
  1264. int xy, wrap, off = 0;
  1265. int16_t *A, *B, *C;
  1266. int px, py;
  1267. int sum;
  1268. int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
  1269. int opposite, a_f, b_f, c_f;
  1270. int16_t field_predA[2];
  1271. int16_t field_predB[2];
  1272. int16_t field_predC[2];
  1273. int a_valid, b_valid, c_valid;
  1274. int hybridmv_thresh, y_bias = 0;
  1275. if (v->mv_mode == MV_PMODE_MIXED_MV ||
  1276. ((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
  1277. mixedmv_pic = 1;
  1278. else
  1279. mixedmv_pic = 0;
  1280. /* scale MV difference to be quad-pel */
  1281. dmv_x <<= 1 - s->quarter_sample;
  1282. dmv_y <<= 1 - s->quarter_sample;
  1283. wrap = s->b8_stride;
  1284. xy = s->block_index[n];
  1285. if (s->mb_intra) {
  1286. s->mv[0][n][0] = s->current_picture.motion_val[0][xy + v->blocks_off][0] = 0;
  1287. s->mv[0][n][1] = s->current_picture.motion_val[0][xy + v->blocks_off][1] = 0;
  1288. s->current_picture.motion_val[1][xy + v->blocks_off][0] = 0;
  1289. s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
  1290. if (mv1) { /* duplicate motion data for 1-MV block */
  1291. s->current_picture.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
  1292. s->current_picture.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
  1293. s->current_picture.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
  1294. s->current_picture.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
  1295. s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
  1296. s->current_picture.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
  1297. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1298. s->current_picture.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
  1299. s->current_picture.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
  1300. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1301. s->current_picture.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
  1302. s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
  1303. s->current_picture.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
  1304. }
  1305. return;
  1306. }
  1307. C = s->current_picture.motion_val[dir][xy - 1 + v->blocks_off];
  1308. A = s->current_picture.motion_val[dir][xy - wrap + v->blocks_off];
  1309. if (mv1) {
  1310. if (v->field_mode && mixedmv_pic)
  1311. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1312. else
  1313. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1314. } else {
  1315. //in 4-MV mode different blocks have different B predictor position
  1316. switch (n) {
  1317. case 0:
  1318. off = (s->mb_x > 0) ? -1 : 1;
  1319. break;
  1320. case 1:
  1321. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1322. break;
  1323. case 2:
  1324. off = 1;
  1325. break;
  1326. case 3:
  1327. off = -1;
  1328. }
  1329. }
  1330. B = s->current_picture.motion_val[dir][xy - wrap + off + v->blocks_off];
  1331. a_valid = !s->first_slice_line || (n == 2 || n == 3);
  1332. b_valid = a_valid && (s->mb_width > 1);
  1333. c_valid = s->mb_x || (n == 1 || n == 3);
  1334. if (v->field_mode) {
  1335. a_valid = a_valid && !is_intra[xy - wrap];
  1336. b_valid = b_valid && !is_intra[xy - wrap + off];
  1337. c_valid = c_valid && !is_intra[xy - 1];
  1338. }
  1339. if (a_valid) {
  1340. a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
  1341. num_oppfield += a_f;
  1342. num_samefield += 1 - a_f;
  1343. field_predA[0] = A[0];
  1344. field_predA[1] = A[1];
  1345. } else {
  1346. field_predA[0] = field_predA[1] = 0;
  1347. a_f = 0;
  1348. }
  1349. if (b_valid) {
  1350. b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
  1351. num_oppfield += b_f;
  1352. num_samefield += 1 - b_f;
  1353. field_predB[0] = B[0];
  1354. field_predB[1] = B[1];
  1355. } else {
  1356. field_predB[0] = field_predB[1] = 0;
  1357. b_f = 0;
  1358. }
  1359. if (c_valid) {
  1360. c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
  1361. num_oppfield += c_f;
  1362. num_samefield += 1 - c_f;
  1363. field_predC[0] = C[0];
  1364. field_predC[1] = C[1];
  1365. } else {
  1366. field_predC[0] = field_predC[1] = 0;
  1367. c_f = 0;
  1368. }
  1369. if (v->field_mode) {
  1370. if (!v->numref)
  1371. // REFFIELD determines if the last field or the second-last field is
  1372. // to be used as reference
  1373. opposite = 1 - v->reffield;
  1374. else {
  1375. if (num_samefield <= num_oppfield)
  1376. opposite = 1 - pred_flag;
  1377. else
  1378. opposite = pred_flag;
  1379. }
  1380. } else
  1381. opposite = 0;
  1382. if (opposite) {
  1383. if (a_valid && !a_f) {
  1384. field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
  1385. field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
  1386. }
  1387. if (b_valid && !b_f) {
  1388. field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
  1389. field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
  1390. }
  1391. if (c_valid && !c_f) {
  1392. field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
  1393. field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
  1394. }
  1395. v->mv_f[dir][xy + v->blocks_off] = 1;
  1396. v->ref_field_type[dir] = !v->cur_field_type;
  1397. } else {
  1398. if (a_valid && a_f) {
  1399. field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
  1400. field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
  1401. }
  1402. if (b_valid && b_f) {
  1403. field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
  1404. field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
  1405. }
  1406. if (c_valid && c_f) {
  1407. field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
  1408. field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
  1409. }
  1410. v->mv_f[dir][xy + v->blocks_off] = 0;
  1411. v->ref_field_type[dir] = v->cur_field_type;
  1412. }
  1413. if (a_valid) {
  1414. px = field_predA[0];
  1415. py = field_predA[1];
  1416. } else if (c_valid) {
  1417. px = field_predC[0];
  1418. py = field_predC[1];
  1419. } else if (b_valid) {
  1420. px = field_predB[0];
  1421. py = field_predB[1];
  1422. } else {
  1423. px = 0;
  1424. py = 0;
  1425. }
  1426. if (num_samefield + num_oppfield > 1) {
  1427. px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
  1428. py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
  1429. }
  1430. /* Pullback MV as specified in 8.3.5.3.4 */
  1431. if (!v->field_mode) {
  1432. int qx, qy, X, Y;
  1433. qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
  1434. qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
  1435. X = (s->mb_width << 6) - 4;
  1436. Y = (s->mb_height << 6) - 4;
  1437. if (mv1) {
  1438. if (qx + px < -60) px = -60 - qx;
  1439. if (qy + py < -60) py = -60 - qy;
  1440. } else {
  1441. if (qx + px < -28) px = -28 - qx;
  1442. if (qy + py < -28) py = -28 - qy;
  1443. }
  1444. if (qx + px > X) px = X - qx;
  1445. if (qy + py > Y) py = Y - qy;
  1446. }
  1447. if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
  1448. /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
  1449. hybridmv_thresh = 32;
  1450. if (a_valid && c_valid) {
  1451. if (is_intra[xy - wrap])
  1452. sum = FFABS(px) + FFABS(py);
  1453. else
  1454. sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
  1455. if (sum > hybridmv_thresh) {
  1456. if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
  1457. px = field_predA[0];
  1458. py = field_predA[1];
  1459. } else {
  1460. px = field_predC[0];
  1461. py = field_predC[1];
  1462. }
  1463. } else {
  1464. if (is_intra[xy - 1])
  1465. sum = FFABS(px) + FFABS(py);
  1466. else
  1467. sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
  1468. if (sum > hybridmv_thresh) {
  1469. if (get_bits1(&s->gb)) {
  1470. px = field_predA[0];
  1471. py = field_predA[1];
  1472. } else {
  1473. px = field_predC[0];
  1474. py = field_predC[1];
  1475. }
  1476. }
  1477. }
  1478. }
  1479. }
  1480. if (v->field_mode && v->numref)
  1481. r_y >>= 1;
  1482. if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
  1483. y_bias = 1;
  1484. /* store MV using signed modulus of MV range defined in 4.11 */
  1485. s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1486. s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
  1487. if (mv1) { /* duplicate motion data for 1-MV block */
  1488. s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1489. s->current_picture.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1490. s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1491. s->current_picture.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1492. s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.motion_val[dir][xy + v->blocks_off][0];
  1493. s->current_picture.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.motion_val[dir][xy + v->blocks_off][1];
  1494. v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1495. v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
  1496. }
  1497. }
  1498. /** Predict and set motion vector for interlaced frame picture MBs
  1499. */
  1500. static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
  1501. int mvn, int r_x, int r_y, uint8_t* is_intra, int dir)
  1502. {
  1503. MpegEncContext *s = &v->s;
  1504. int xy, wrap, off = 0;
  1505. int A[2], B[2], C[2];
  1506. int px, py;
  1507. int a_valid = 0, b_valid = 0, c_valid = 0;
  1508. int field_a, field_b, field_c; // 0: same, 1: opposit
  1509. int total_valid, num_samefield, num_oppfield;
  1510. int pos_c, pos_b, n_adj;
  1511. wrap = s->b8_stride;
  1512. xy = s->block_index[n];
  1513. if (s->mb_intra) {
  1514. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1515. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1516. s->current_picture.motion_val[1][xy][0] = 0;
  1517. s->current_picture.motion_val[1][xy][1] = 0;
  1518. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1519. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1520. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1521. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1522. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1523. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1524. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1525. v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
  1526. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1527. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1528. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1529. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1530. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1531. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1532. }
  1533. return;
  1534. }
  1535. off = ((n == 0) || (n == 1)) ? 1 : -1;
  1536. /* predict A */
  1537. if (s->mb_x || (n == 1) || (n == 3)) {
  1538. if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
  1539. || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
  1540. A[0] = s->current_picture.motion_val[dir][xy - 1][0];
  1541. A[1] = s->current_picture.motion_val[dir][xy - 1][1];
  1542. a_valid = 1;
  1543. } else { // current block has frame mv and cand. has field MV (so average)
  1544. A[0] = (s->current_picture.motion_val[dir][xy - 1][0]
  1545. + s->current_picture.motion_val[dir][xy - 1 + off * wrap][0] + 1) >> 1;
  1546. A[1] = (s->current_picture.motion_val[dir][xy - 1][1]
  1547. + s->current_picture.motion_val[dir][xy - 1 + off * wrap][1] + 1) >> 1;
  1548. a_valid = 1;
  1549. }
  1550. if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
  1551. a_valid = 0;
  1552. A[0] = A[1] = 0;
  1553. }
  1554. } else
  1555. A[0] = A[1] = 0;
  1556. /* Predict B and C */
  1557. B[0] = B[1] = C[0] = C[1] = 0;
  1558. if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
  1559. if (!s->first_slice_line) {
  1560. if (!v->is_intra[s->mb_x - s->mb_stride]) {
  1561. b_valid = 1;
  1562. n_adj = n | 2;
  1563. pos_b = s->block_index[n_adj] - 2 * wrap;
  1564. if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
  1565. n_adj = (n & 2) | (n & 1);
  1566. }
  1567. B[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][0];
  1568. B[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap][1];
  1569. if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
  1570. B[0] = (B[0] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
  1571. B[1] = (B[1] + s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
  1572. }
  1573. }
  1574. if (s->mb_width > 1) {
  1575. if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
  1576. c_valid = 1;
  1577. n_adj = 2;
  1578. pos_c = s->block_index[2] - 2 * wrap + 2;
  1579. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1580. n_adj = n & 2;
  1581. }
  1582. C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][0];
  1583. C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap + 2][1];
  1584. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1585. C[0] = (1 + C[0] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
  1586. C[1] = (1 + C[1] + (s->current_picture.motion_val[dir][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
  1587. }
  1588. if (s->mb_x == s->mb_width - 1) {
  1589. if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
  1590. c_valid = 1;
  1591. n_adj = 3;
  1592. pos_c = s->block_index[3] - 2 * wrap - 2;
  1593. if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
  1594. n_adj = n | 1;
  1595. }
  1596. C[0] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][0];
  1597. C[1] = s->current_picture.motion_val[dir][s->block_index[n_adj] - 2 * wrap - 2][1];
  1598. if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
  1599. C[0] = (1 + C[0] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
  1600. C[1] = (1 + C[1] + s->current_picture.motion_val[dir][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
  1601. }
  1602. } else
  1603. c_valid = 0;
  1604. }
  1605. }
  1606. }
  1607. }
  1608. } else {
  1609. pos_b = s->block_index[1];
  1610. b_valid = 1;
  1611. B[0] = s->current_picture.motion_val[dir][pos_b][0];
  1612. B[1] = s->current_picture.motion_val[dir][pos_b][1];
  1613. pos_c = s->block_index[0];
  1614. c_valid = 1;
  1615. C[0] = s->current_picture.motion_val[dir][pos_c][0];
  1616. C[1] = s->current_picture.motion_val[dir][pos_c][1];
  1617. }
  1618. total_valid = a_valid + b_valid + c_valid;
  1619. // check if predictor A is out of bounds
  1620. if (!s->mb_x && !(n == 1 || n == 3)) {
  1621. A[0] = A[1] = 0;
  1622. }
  1623. // check if predictor B is out of bounds
  1624. if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
  1625. B[0] = B[1] = C[0] = C[1] = 0;
  1626. }
  1627. if (!v->blk_mv_type[xy]) {
  1628. if (s->mb_width == 1) {
  1629. px = B[0];
  1630. py = B[1];
  1631. } else {
  1632. if (total_valid >= 2) {
  1633. px = mid_pred(A[0], B[0], C[0]);
  1634. py = mid_pred(A[1], B[1], C[1]);
  1635. } else if (total_valid) {
  1636. if (a_valid) { px = A[0]; py = A[1]; }
  1637. if (b_valid) { px = B[0]; py = B[1]; }
  1638. if (c_valid) { px = C[0]; py = C[1]; }
  1639. } else
  1640. px = py = 0;
  1641. }
  1642. } else {
  1643. if (a_valid)
  1644. field_a = (A[1] & 4) ? 1 : 0;
  1645. else
  1646. field_a = 0;
  1647. if (b_valid)
  1648. field_b = (B[1] & 4) ? 1 : 0;
  1649. else
  1650. field_b = 0;
  1651. if (c_valid)
  1652. field_c = (C[1] & 4) ? 1 : 0;
  1653. else
  1654. field_c = 0;
  1655. num_oppfield = field_a + field_b + field_c;
  1656. num_samefield = total_valid - num_oppfield;
  1657. if (total_valid == 3) {
  1658. if ((num_samefield == 3) || (num_oppfield == 3)) {
  1659. px = mid_pred(A[0], B[0], C[0]);
  1660. py = mid_pred(A[1], B[1], C[1]);
  1661. } else if (num_samefield >= num_oppfield) {
  1662. /* take one MV from same field set depending on priority
  1663. the check for B may not be necessary */
  1664. px = !field_a ? A[0] : B[0];
  1665. py = !field_a ? A[1] : B[1];
  1666. } else {
  1667. px = field_a ? A[0] : B[0];
  1668. py = field_a ? A[1] : B[1];
  1669. }
  1670. } else if (total_valid == 2) {
  1671. if (num_samefield >= num_oppfield) {
  1672. if (!field_a && a_valid) {
  1673. px = A[0];
  1674. py = A[1];
  1675. } else if (!field_b && b_valid) {
  1676. px = B[0];
  1677. py = B[1];
  1678. } else if (c_valid) {
  1679. px = C[0];
  1680. py = C[1];
  1681. } else px = py = 0;
  1682. } else {
  1683. if (field_a && a_valid) {
  1684. px = A[0];
  1685. py = A[1];
  1686. } else if (field_b && b_valid) {
  1687. px = B[0];
  1688. py = B[1];
  1689. } else if (c_valid) {
  1690. px = C[0];
  1691. py = C[1];
  1692. }
  1693. }
  1694. } else if (total_valid == 1) {
  1695. px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
  1696. py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
  1697. } else
  1698. px = py = 0;
  1699. }
  1700. /* store MV using signed modulus of MV range defined in 4.11 */
  1701. s->mv[dir][n][0] = s->current_picture.motion_val[dir][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1702. s->mv[dir][n][1] = s->current_picture.motion_val[dir][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1703. if (mvn == 1) { /* duplicate motion data for 1-MV block */
  1704. s->current_picture.motion_val[dir][xy + 1 ][0] = s->current_picture.motion_val[dir][xy][0];
  1705. s->current_picture.motion_val[dir][xy + 1 ][1] = s->current_picture.motion_val[dir][xy][1];
  1706. s->current_picture.motion_val[dir][xy + wrap ][0] = s->current_picture.motion_val[dir][xy][0];
  1707. s->current_picture.motion_val[dir][xy + wrap ][1] = s->current_picture.motion_val[dir][xy][1];
  1708. s->current_picture.motion_val[dir][xy + wrap + 1][0] = s->current_picture.motion_val[dir][xy][0];
  1709. s->current_picture.motion_val[dir][xy + wrap + 1][1] = s->current_picture.motion_val[dir][xy][1];
  1710. } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
  1711. s->current_picture.motion_val[dir][xy + 1][0] = s->current_picture.motion_val[dir][xy][0];
  1712. s->current_picture.motion_val[dir][xy + 1][1] = s->current_picture.motion_val[dir][xy][1];
  1713. s->mv[dir][n + 1][0] = s->mv[dir][n][0];
  1714. s->mv[dir][n + 1][1] = s->mv[dir][n][1];
  1715. }
  1716. }
  1717. /** Motion compensation for direct or interpolated blocks in B-frames
  1718. */
  1719. static void vc1_interp_mc(VC1Context *v)
  1720. {
  1721. MpegEncContext *s = &v->s;
  1722. H264ChromaContext *h264chroma = &v->h264chroma;
  1723. uint8_t *srcY, *srcU, *srcV;
  1724. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1725. int off, off_uv;
  1726. int v_edge_pos = s->v_edge_pos >> v->field_mode;
  1727. int use_ic = v->next_use_ic;
  1728. if (!v->field_mode && !v->s.next_picture.f.data[0])
  1729. return;
  1730. mx = s->mv[1][0][0];
  1731. my = s->mv[1][0][1];
  1732. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1733. uvmy = (my + ((my & 3) == 3)) >> 1;
  1734. if (v->field_mode) {
  1735. if (v->cur_field_type != v->ref_field_type[1])
  1736. my = my - 2 + 4 * v->cur_field_type;
  1737. uvmy = uvmy - 2 + 4 * v->cur_field_type;
  1738. }
  1739. if (v->fastuvmc) {
  1740. uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
  1741. uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
  1742. }
  1743. srcY = s->next_picture.f.data[0];
  1744. srcU = s->next_picture.f.data[1];
  1745. srcV = s->next_picture.f.data[2];
  1746. src_x = s->mb_x * 16 + (mx >> 2);
  1747. src_y = s->mb_y * 16 + (my >> 2);
  1748. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1749. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1750. if (v->profile != PROFILE_ADVANCED) {
  1751. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1752. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1753. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1754. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1755. } else {
  1756. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1757. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1758. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1759. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1760. }
  1761. srcY += src_y * s->linesize + src_x;
  1762. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1763. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1764. if (v->field_mode && v->ref_field_type[1]) {
  1765. srcY += s->current_picture_ptr->f.linesize[0];
  1766. srcU += s->current_picture_ptr->f.linesize[1];
  1767. srcV += s->current_picture_ptr->f.linesize[2];
  1768. }
  1769. /* for grayscale we should not try to read from unknown area */
  1770. if (s->flags & CODEC_FLAG_GRAY) {
  1771. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1772. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1773. }
  1774. if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22 || use_ic
  1775. || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
  1776. || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
  1777. uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
  1778. srcY -= s->mspel * (1 + s->linesize);
  1779. s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
  1780. 17 + s->mspel * 2, 17 + s->mspel * 2,
  1781. src_x - s->mspel, src_y - s->mspel,
  1782. s->h_edge_pos, v_edge_pos);
  1783. srcY = s->edge_emu_buffer;
  1784. s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
  1785. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1786. s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
  1787. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
  1788. srcU = uvbuf;
  1789. srcV = uvbuf + 16;
  1790. /* if we deal with range reduction we need to scale source blocks */
  1791. if (v->rangeredfrm) {
  1792. int i, j;
  1793. uint8_t *src, *src2;
  1794. src = srcY;
  1795. for (j = 0; j < 17 + s->mspel * 2; j++) {
  1796. for (i = 0; i < 17 + s->mspel * 2; i++)
  1797. src[i] = ((src[i] - 128) >> 1) + 128;
  1798. src += s->linesize;
  1799. }
  1800. src = srcU;
  1801. src2 = srcV;
  1802. for (j = 0; j < 9; j++) {
  1803. for (i = 0; i < 9; i++) {
  1804. src[i] = ((src[i] - 128) >> 1) + 128;
  1805. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1806. }
  1807. src += s->uvlinesize;
  1808. src2 += s->uvlinesize;
  1809. }
  1810. }
  1811. if (use_ic) {
  1812. const uint8_t *luty = v->next_luty [v->ref_field_type[1]];
  1813. const uint8_t *lutuv= v->next_lutuv[v->ref_field_type[1]];
  1814. int i, j;
  1815. uint8_t *src, *src2;
  1816. src = srcY;
  1817. for (j = 0; j < 17 + s->mspel * 2; j++) {
  1818. for (i = 0; i < 17 + s->mspel * 2; i++)
  1819. src[i] = luty[src[i]];
  1820. src += s->linesize;
  1821. }
  1822. src = srcU;
  1823. src2 = srcV;
  1824. for (j = 0; j < 9; j++) {
  1825. for (i = 0; i < 9; i++) {
  1826. src[i] = lutuv[src[i]];
  1827. src2[i] = lutuv[src2[i]];
  1828. }
  1829. src += s->uvlinesize;
  1830. src2 += s->uvlinesize;
  1831. }
  1832. }
  1833. srcY += s->mspel * (1 + s->linesize);
  1834. }
  1835. off = 0;
  1836. off_uv = 0;
  1837. if (s->mspel) {
  1838. dxy = ((my & 3) << 2) | (mx & 3);
  1839. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
  1840. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
  1841. srcY += s->linesize * 8;
  1842. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1843. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1844. } else { // hpel mc
  1845. dxy = (my & 2) | ((mx & 2) >> 1);
  1846. if (!v->rnd)
  1847. s->hdsp.avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1848. else
  1849. s->hdsp.avg_no_rnd_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, 16);
  1850. }
  1851. if (s->flags & CODEC_FLAG_GRAY) return;
  1852. /* Chroma MC always uses qpel blilinear */
  1853. uvmx = (uvmx & 3) << 1;
  1854. uvmy = (uvmy & 3) << 1;
  1855. if (!v->rnd) {
  1856. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1857. h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1858. } else {
  1859. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
  1860. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
  1861. }
  1862. }
  1863. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1864. {
  1865. int n = bfrac;
  1866. #if B_FRACTION_DEN==256
  1867. if (inv)
  1868. n -= 256;
  1869. if (!qs)
  1870. return 2 * ((value * n + 255) >> 9);
  1871. return (value * n + 128) >> 8;
  1872. #else
  1873. if (inv)
  1874. n -= B_FRACTION_DEN;
  1875. if (!qs)
  1876. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1877. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1878. #endif
  1879. }
  1880. /** Reconstruct motion vector for B-frame and do motion compensation
  1881. */
  1882. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1883. int direct, int mode)
  1884. {
  1885. int use_ic = v->next_use_ic || v->curr_use_ic || v->last_use_ic;
  1886. if (use_ic) {
  1887. v->mv_mode2 = v->mv_mode;
  1888. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1889. }
  1890. if (direct) {
  1891. vc1_mc_1mv(v, 0);
  1892. vc1_interp_mc(v);
  1893. if (use_ic)
  1894. v->mv_mode = v->mv_mode2;
  1895. return;
  1896. }
  1897. if (mode == BMV_TYPE_INTERPOLATED) {
  1898. vc1_mc_1mv(v, 0);
  1899. vc1_interp_mc(v);
  1900. if (use_ic)
  1901. v->mv_mode = v->mv_mode2;
  1902. return;
  1903. }
  1904. if (use_ic && (mode == BMV_TYPE_BACKWARD))
  1905. v->mv_mode = v->mv_mode2;
  1906. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1907. if (use_ic)
  1908. v->mv_mode = v->mv_mode2;
  1909. }
  1910. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
  1911. int direct, int mvtype)
  1912. {
  1913. MpegEncContext *s = &v->s;
  1914. int xy, wrap, off = 0;
  1915. int16_t *A, *B, *C;
  1916. int px, py;
  1917. int sum;
  1918. int r_x, r_y;
  1919. const uint8_t *is_intra = v->mb_type[0];
  1920. r_x = v->range_x;
  1921. r_y = v->range_y;
  1922. /* scale MV difference to be quad-pel */
  1923. dmv_x[0] <<= 1 - s->quarter_sample;
  1924. dmv_y[0] <<= 1 - s->quarter_sample;
  1925. dmv_x[1] <<= 1 - s->quarter_sample;
  1926. dmv_y[1] <<= 1 - s->quarter_sample;
  1927. wrap = s->b8_stride;
  1928. xy = s->block_index[0];
  1929. if (s->mb_intra) {
  1930. s->current_picture.motion_val[0][xy + v->blocks_off][0] =
  1931. s->current_picture.motion_val[0][xy + v->blocks_off][1] =
  1932. s->current_picture.motion_val[1][xy + v->blocks_off][0] =
  1933. s->current_picture.motion_val[1][xy + v->blocks_off][1] = 0;
  1934. return;
  1935. }
  1936. if (!v->field_mode) {
  1937. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1938. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1939. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1940. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1941. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1942. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1943. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1944. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1945. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1946. }
  1947. if (direct) {
  1948. s->current_picture.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
  1949. s->current_picture.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
  1950. s->current_picture.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
  1951. s->current_picture.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
  1952. return;
  1953. }
  1954. if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1955. C = s->current_picture.motion_val[0][xy - 2];
  1956. A = s->current_picture.motion_val[0][xy - wrap * 2];
  1957. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1958. B = s->current_picture.motion_val[0][xy - wrap * 2 + off];
  1959. if (!s->mb_x) C[0] = C[1] = 0;
  1960. if (!s->first_slice_line) { // predictor A is not out of bounds
  1961. if (s->mb_width == 1) {
  1962. px = A[0];
  1963. py = A[1];
  1964. } else {
  1965. px = mid_pred(A[0], B[0], C[0]);
  1966. py = mid_pred(A[1], B[1], C[1]);
  1967. }
  1968. } else if (s->mb_x) { // predictor C is not out of bounds
  1969. px = C[0];
  1970. py = C[1];
  1971. } else {
  1972. px = py = 0;
  1973. }
  1974. /* Pullback MV as specified in 8.3.5.3.4 */
  1975. {
  1976. int qx, qy, X, Y;
  1977. if (v->profile < PROFILE_ADVANCED) {
  1978. qx = (s->mb_x << 5);
  1979. qy = (s->mb_y << 5);
  1980. X = (s->mb_width << 5) - 4;
  1981. Y = (s->mb_height << 5) - 4;
  1982. if (qx + px < -28) px = -28 - qx;
  1983. if (qy + py < -28) py = -28 - qy;
  1984. if (qx + px > X) px = X - qx;
  1985. if (qy + py > Y) py = Y - qy;
  1986. } else {
  1987. qx = (s->mb_x << 6);
  1988. qy = (s->mb_y << 6);
  1989. X = (s->mb_width << 6) - 4;
  1990. Y = (s->mb_height << 6) - 4;
  1991. if (qx + px < -60) px = -60 - qx;
  1992. if (qy + py < -60) py = -60 - qy;
  1993. if (qx + px > X) px = X - qx;
  1994. if (qy + py > Y) py = Y - qy;
  1995. }
  1996. }
  1997. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1998. if (0 && !s->first_slice_line && s->mb_x) {
  1999. if (is_intra[xy - wrap])
  2000. sum = FFABS(px) + FFABS(py);
  2001. else
  2002. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2003. if (sum > 32) {
  2004. if (get_bits1(&s->gb)) {
  2005. px = A[0];
  2006. py = A[1];
  2007. } else {
  2008. px = C[0];
  2009. py = C[1];
  2010. }
  2011. } else {
  2012. if (is_intra[xy - 2])
  2013. sum = FFABS(px) + FFABS(py);
  2014. else
  2015. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2016. if (sum > 32) {
  2017. if (get_bits1(&s->gb)) {
  2018. px = A[0];
  2019. py = A[1];
  2020. } else {
  2021. px = C[0];
  2022. py = C[1];
  2023. }
  2024. }
  2025. }
  2026. }
  2027. /* store MV using signed modulus of MV range defined in 4.11 */
  2028. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2029. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2030. }
  2031. if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2032. C = s->current_picture.motion_val[1][xy - 2];
  2033. A = s->current_picture.motion_val[1][xy - wrap * 2];
  2034. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2035. B = s->current_picture.motion_val[1][xy - wrap * 2 + off];
  2036. if (!s->mb_x)
  2037. C[0] = C[1] = 0;
  2038. if (!s->first_slice_line) { // predictor A is not out of bounds
  2039. if (s->mb_width == 1) {
  2040. px = A[0];
  2041. py = A[1];
  2042. } else {
  2043. px = mid_pred(A[0], B[0], C[0]);
  2044. py = mid_pred(A[1], B[1], C[1]);
  2045. }
  2046. } else if (s->mb_x) { // predictor C is not out of bounds
  2047. px = C[0];
  2048. py = C[1];
  2049. } else {
  2050. px = py = 0;
  2051. }
  2052. /* Pullback MV as specified in 8.3.5.3.4 */
  2053. {
  2054. int qx, qy, X, Y;
  2055. if (v->profile < PROFILE_ADVANCED) {
  2056. qx = (s->mb_x << 5);
  2057. qy = (s->mb_y << 5);
  2058. X = (s->mb_width << 5) - 4;
  2059. Y = (s->mb_height << 5) - 4;
  2060. if (qx + px < -28) px = -28 - qx;
  2061. if (qy + py < -28) py = -28 - qy;
  2062. if (qx + px > X) px = X - qx;
  2063. if (qy + py > Y) py = Y - qy;
  2064. } else {
  2065. qx = (s->mb_x << 6);
  2066. qy = (s->mb_y << 6);
  2067. X = (s->mb_width << 6) - 4;
  2068. Y = (s->mb_height << 6) - 4;
  2069. if (qx + px < -60) px = -60 - qx;
  2070. if (qy + py < -60) py = -60 - qy;
  2071. if (qx + px > X) px = X - qx;
  2072. if (qy + py > Y) py = Y - qy;
  2073. }
  2074. }
  2075. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2076. if (0 && !s->first_slice_line && s->mb_x) {
  2077. if (is_intra[xy - wrap])
  2078. sum = FFABS(px) + FFABS(py);
  2079. else
  2080. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2081. if (sum > 32) {
  2082. if (get_bits1(&s->gb)) {
  2083. px = A[0];
  2084. py = A[1];
  2085. } else {
  2086. px = C[0];
  2087. py = C[1];
  2088. }
  2089. } else {
  2090. if (is_intra[xy - 2])
  2091. sum = FFABS(px) + FFABS(py);
  2092. else
  2093. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2094. if (sum > 32) {
  2095. if (get_bits1(&s->gb)) {
  2096. px = A[0];
  2097. py = A[1];
  2098. } else {
  2099. px = C[0];
  2100. py = C[1];
  2101. }
  2102. }
  2103. }
  2104. }
  2105. /* store MV using signed modulus of MV range defined in 4.11 */
  2106. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2107. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2108. }
  2109. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2110. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2111. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2112. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2113. }
  2114. static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
  2115. {
  2116. int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
  2117. MpegEncContext *s = &v->s;
  2118. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2119. if (v->bmvtype == BMV_TYPE_DIRECT) {
  2120. int total_opp, k, f;
  2121. if (s->next_picture.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
  2122. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2123. v->bfraction, 0, s->quarter_sample);
  2124. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2125. v->bfraction, 0, s->quarter_sample);
  2126. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][0],
  2127. v->bfraction, 1, s->quarter_sample);
  2128. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0] + v->blocks_off][1],
  2129. v->bfraction, 1, s->quarter_sample);
  2130. total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
  2131. + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
  2132. + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
  2133. + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
  2134. f = (total_opp > 2) ? 1 : 0;
  2135. } else {
  2136. s->mv[0][0][0] = s->mv[0][0][1] = 0;
  2137. s->mv[1][0][0] = s->mv[1][0][1] = 0;
  2138. f = 0;
  2139. }
  2140. v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
  2141. for (k = 0; k < 4; k++) {
  2142. s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
  2143. s->current_picture.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
  2144. s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
  2145. s->current_picture.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
  2146. v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
  2147. v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
  2148. }
  2149. return;
  2150. }
  2151. if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
  2152. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2153. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2154. return;
  2155. }
  2156. if (dir) { // backward
  2157. vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
  2158. if (n == 3 || mv1) {
  2159. vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  2160. }
  2161. } else { // forward
  2162. vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
  2163. if (n == 3 || mv1) {
  2164. vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
  2165. }
  2166. }
  2167. }
  2168. /** Get predicted DC value for I-frames only
  2169. * prediction dir: left=0, top=1
  2170. * @param s MpegEncContext
  2171. * @param overlap flag indicating that overlap filtering is used
  2172. * @param pq integer part of picture quantizer
  2173. * @param[in] n block index in the current MB
  2174. * @param dc_val_ptr Pointer to DC predictor
  2175. * @param dir_ptr Prediction direction for use in AC prediction
  2176. */
  2177. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2178. int16_t **dc_val_ptr, int *dir_ptr)
  2179. {
  2180. int a, b, c, wrap, pred, scale;
  2181. int16_t *dc_val;
  2182. static const uint16_t dcpred[32] = {
  2183. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2184. 114, 102, 93, 85, 79, 73, 68, 64,
  2185. 60, 57, 54, 51, 49, 47, 45, 43,
  2186. 41, 39, 38, 37, 35, 34, 33
  2187. };
  2188. /* find prediction - wmv3_dc_scale always used here in fact */
  2189. if (n < 4) scale = s->y_dc_scale;
  2190. else scale = s->c_dc_scale;
  2191. wrap = s->block_wrap[n];
  2192. dc_val = s->dc_val[0] + s->block_index[n];
  2193. /* B A
  2194. * C X
  2195. */
  2196. c = dc_val[ - 1];
  2197. b = dc_val[ - 1 - wrap];
  2198. a = dc_val[ - wrap];
  2199. if (pq < 9 || !overlap) {
  2200. /* Set outer values */
  2201. if (s->first_slice_line && (n != 2 && n != 3))
  2202. b = a = dcpred[scale];
  2203. if (s->mb_x == 0 && (n != 1 && n != 3))
  2204. b = c = dcpred[scale];
  2205. } else {
  2206. /* Set outer values */
  2207. if (s->first_slice_line && (n != 2 && n != 3))
  2208. b = a = 0;
  2209. if (s->mb_x == 0 && (n != 1 && n != 3))
  2210. b = c = 0;
  2211. }
  2212. if (abs(a - b) <= abs(b - c)) {
  2213. pred = c;
  2214. *dir_ptr = 1; // left
  2215. } else {
  2216. pred = a;
  2217. *dir_ptr = 0; // top
  2218. }
  2219. /* update predictor */
  2220. *dc_val_ptr = &dc_val[0];
  2221. return pred;
  2222. }
  2223. /** Get predicted DC value
  2224. * prediction dir: left=0, top=1
  2225. * @param s MpegEncContext
  2226. * @param overlap flag indicating that overlap filtering is used
  2227. * @param pq integer part of picture quantizer
  2228. * @param[in] n block index in the current MB
  2229. * @param a_avail flag indicating top block availability
  2230. * @param c_avail flag indicating left block availability
  2231. * @param dc_val_ptr Pointer to DC predictor
  2232. * @param dir_ptr Prediction direction for use in AC prediction
  2233. */
  2234. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2235. int a_avail, int c_avail,
  2236. int16_t **dc_val_ptr, int *dir_ptr)
  2237. {
  2238. int a, b, c, wrap, pred;
  2239. int16_t *dc_val;
  2240. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2241. int q1, q2 = 0;
  2242. int dqscale_index;
  2243. wrap = s->block_wrap[n];
  2244. dc_val = s->dc_val[0] + s->block_index[n];
  2245. /* B A
  2246. * C X
  2247. */
  2248. c = dc_val[ - 1];
  2249. b = dc_val[ - 1 - wrap];
  2250. a = dc_val[ - wrap];
  2251. /* scale predictors if needed */
  2252. q1 = s->current_picture.qscale_table[mb_pos];
  2253. dqscale_index = s->y_dc_scale_table[q1] - 1;
  2254. if (dqscale_index < 0)
  2255. return 0;
  2256. if (c_avail && (n != 1 && n != 3)) {
  2257. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2258. if (q2 && q2 != q1)
  2259. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2260. }
  2261. if (a_avail && (n != 2 && n != 3)) {
  2262. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2263. if (q2 && q2 != q1)
  2264. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2265. }
  2266. if (a_avail && c_avail && (n != 3)) {
  2267. int off = mb_pos;
  2268. if (n != 1)
  2269. off--;
  2270. if (n != 2)
  2271. off -= s->mb_stride;
  2272. q2 = s->current_picture.qscale_table[off];
  2273. if (q2 && q2 != q1)
  2274. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  2275. }
  2276. if (a_avail && c_avail) {
  2277. if (abs(a - b) <= abs(b - c)) {
  2278. pred = c;
  2279. *dir_ptr = 1; // left
  2280. } else {
  2281. pred = a;
  2282. *dir_ptr = 0; // top
  2283. }
  2284. } else if (a_avail) {
  2285. pred = a;
  2286. *dir_ptr = 0; // top
  2287. } else if (c_avail) {
  2288. pred = c;
  2289. *dir_ptr = 1; // left
  2290. } else {
  2291. pred = 0;
  2292. *dir_ptr = 1; // left
  2293. }
  2294. /* update predictor */
  2295. *dc_val_ptr = &dc_val[0];
  2296. return pred;
  2297. }
  2298. /** @} */ // Block group
  2299. /**
  2300. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  2301. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2302. * @{
  2303. */
  2304. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  2305. uint8_t **coded_block_ptr)
  2306. {
  2307. int xy, wrap, pred, a, b, c;
  2308. xy = s->block_index[n];
  2309. wrap = s->b8_stride;
  2310. /* B C
  2311. * A X
  2312. */
  2313. a = s->coded_block[xy - 1 ];
  2314. b = s->coded_block[xy - 1 - wrap];
  2315. c = s->coded_block[xy - wrap];
  2316. if (b == c) {
  2317. pred = a;
  2318. } else {
  2319. pred = c;
  2320. }
  2321. /* store value */
  2322. *coded_block_ptr = &s->coded_block[xy];
  2323. return pred;
  2324. }
  2325. /**
  2326. * Decode one AC coefficient
  2327. * @param v The VC1 context
  2328. * @param last Last coefficient
  2329. * @param skip How much zero coefficients to skip
  2330. * @param value Decoded AC coefficient value
  2331. * @param codingset set of VLC to decode data
  2332. * @see 8.1.3.4
  2333. */
  2334. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  2335. int *value, int codingset)
  2336. {
  2337. GetBitContext *gb = &v->s.gb;
  2338. int index, escape, run = 0, level = 0, lst = 0;
  2339. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2340. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  2341. run = vc1_index_decode_table[codingset][index][0];
  2342. level = vc1_index_decode_table[codingset][index][1];
  2343. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  2344. if (get_bits1(gb))
  2345. level = -level;
  2346. } else {
  2347. escape = decode210(gb);
  2348. if (escape != 2) {
  2349. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2350. run = vc1_index_decode_table[codingset][index][0];
  2351. level = vc1_index_decode_table[codingset][index][1];
  2352. lst = index >= vc1_last_decode_table[codingset];
  2353. if (escape == 0) {
  2354. if (lst)
  2355. level += vc1_last_delta_level_table[codingset][run];
  2356. else
  2357. level += vc1_delta_level_table[codingset][run];
  2358. } else {
  2359. if (lst)
  2360. run += vc1_last_delta_run_table[codingset][level] + 1;
  2361. else
  2362. run += vc1_delta_run_table[codingset][level] + 1;
  2363. }
  2364. if (get_bits1(gb))
  2365. level = -level;
  2366. } else {
  2367. int sign;
  2368. lst = get_bits1(gb);
  2369. if (v->s.esc3_level_length == 0) {
  2370. if (v->pq < 8 || v->dquantfrm) { // table 59
  2371. v->s.esc3_level_length = get_bits(gb, 3);
  2372. if (!v->s.esc3_level_length)
  2373. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2374. } else { // table 60
  2375. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2376. }
  2377. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2378. }
  2379. run = get_bits(gb, v->s.esc3_run_length);
  2380. sign = get_bits1(gb);
  2381. level = get_bits(gb, v->s.esc3_level_length);
  2382. if (sign)
  2383. level = -level;
  2384. }
  2385. }
  2386. *last = lst;
  2387. *skip = run;
  2388. *value = level;
  2389. }
  2390. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2391. * @param v VC1Context
  2392. * @param block block to decode
  2393. * @param[in] n subblock index
  2394. * @param coded are AC coeffs present or not
  2395. * @param codingset set of VLC to decode data
  2396. */
  2397. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  2398. int coded, int codingset)
  2399. {
  2400. GetBitContext *gb = &v->s.gb;
  2401. MpegEncContext *s = &v->s;
  2402. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2403. int i;
  2404. int16_t *dc_val;
  2405. int16_t *ac_val, *ac_val2;
  2406. int dcdiff;
  2407. /* Get DC differential */
  2408. if (n < 4) {
  2409. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2410. } else {
  2411. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2412. }
  2413. if (dcdiff < 0) {
  2414. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2415. return -1;
  2416. }
  2417. if (dcdiff) {
  2418. if (dcdiff == 119 /* ESC index value */) {
  2419. /* TODO: Optimize */
  2420. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2421. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2422. else dcdiff = get_bits(gb, 8);
  2423. } else {
  2424. if (v->pq == 1)
  2425. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2426. else if (v->pq == 2)
  2427. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2428. }
  2429. if (get_bits1(gb))
  2430. dcdiff = -dcdiff;
  2431. }
  2432. /* Prediction */
  2433. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2434. *dc_val = dcdiff;
  2435. /* Store the quantized DC coeff, used for prediction */
  2436. if (n < 4) {
  2437. block[0] = dcdiff * s->y_dc_scale;
  2438. } else {
  2439. block[0] = dcdiff * s->c_dc_scale;
  2440. }
  2441. /* Skip ? */
  2442. if (!coded) {
  2443. goto not_coded;
  2444. }
  2445. // AC Decoding
  2446. i = 1;
  2447. {
  2448. int last = 0, skip, value;
  2449. const uint8_t *zz_table;
  2450. int scale;
  2451. int k;
  2452. scale = v->pq * 2 + v->halfpq;
  2453. if (v->s.ac_pred) {
  2454. if (!dc_pred_dir)
  2455. zz_table = v->zz_8x8[2];
  2456. else
  2457. zz_table = v->zz_8x8[3];
  2458. } else
  2459. zz_table = v->zz_8x8[1];
  2460. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2461. ac_val2 = ac_val;
  2462. if (dc_pred_dir) // left
  2463. ac_val -= 16;
  2464. else // top
  2465. ac_val -= 16 * s->block_wrap[n];
  2466. while (!last) {
  2467. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2468. i += skip;
  2469. if (i > 63)
  2470. break;
  2471. block[zz_table[i++]] = value;
  2472. }
  2473. /* apply AC prediction if needed */
  2474. if (s->ac_pred) {
  2475. if (dc_pred_dir) { // left
  2476. for (k = 1; k < 8; k++)
  2477. block[k << v->left_blk_sh] += ac_val[k];
  2478. } else { // top
  2479. for (k = 1; k < 8; k++)
  2480. block[k << v->top_blk_sh] += ac_val[k + 8];
  2481. }
  2482. }
  2483. /* save AC coeffs for further prediction */
  2484. for (k = 1; k < 8; k++) {
  2485. ac_val2[k] = block[k << v->left_blk_sh];
  2486. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2487. }
  2488. /* scale AC coeffs */
  2489. for (k = 1; k < 64; k++)
  2490. if (block[k]) {
  2491. block[k] *= scale;
  2492. if (!v->pquantizer)
  2493. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2494. }
  2495. if (s->ac_pred) i = 63;
  2496. }
  2497. not_coded:
  2498. if (!coded) {
  2499. int k, scale;
  2500. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2501. ac_val2 = ac_val;
  2502. i = 0;
  2503. scale = v->pq * 2 + v->halfpq;
  2504. memset(ac_val2, 0, 16 * 2);
  2505. if (dc_pred_dir) { // left
  2506. ac_val -= 16;
  2507. if (s->ac_pred)
  2508. memcpy(ac_val2, ac_val, 8 * 2);
  2509. } else { // top
  2510. ac_val -= 16 * s->block_wrap[n];
  2511. if (s->ac_pred)
  2512. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2513. }
  2514. /* apply AC prediction if needed */
  2515. if (s->ac_pred) {
  2516. if (dc_pred_dir) { //left
  2517. for (k = 1; k < 8; k++) {
  2518. block[k << v->left_blk_sh] = ac_val[k] * scale;
  2519. if (!v->pquantizer && block[k << v->left_blk_sh])
  2520. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
  2521. }
  2522. } else { // top
  2523. for (k = 1; k < 8; k++) {
  2524. block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
  2525. if (!v->pquantizer && block[k << v->top_blk_sh])
  2526. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
  2527. }
  2528. }
  2529. i = 63;
  2530. }
  2531. }
  2532. s->block_last_index[n] = i;
  2533. return 0;
  2534. }
  2535. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2536. * @param v VC1Context
  2537. * @param block block to decode
  2538. * @param[in] n subblock number
  2539. * @param coded are AC coeffs present or not
  2540. * @param codingset set of VLC to decode data
  2541. * @param mquant quantizer value for this macroblock
  2542. */
  2543. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  2544. int coded, int codingset, int mquant)
  2545. {
  2546. GetBitContext *gb = &v->s.gb;
  2547. MpegEncContext *s = &v->s;
  2548. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2549. int i;
  2550. int16_t *dc_val;
  2551. int16_t *ac_val, *ac_val2;
  2552. int dcdiff;
  2553. int a_avail = v->a_avail, c_avail = v->c_avail;
  2554. int use_pred = s->ac_pred;
  2555. int scale;
  2556. int q1, q2 = 0;
  2557. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2558. /* Get DC differential */
  2559. if (n < 4) {
  2560. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2561. } else {
  2562. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2563. }
  2564. if (dcdiff < 0) {
  2565. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2566. return -1;
  2567. }
  2568. if (dcdiff) {
  2569. if (dcdiff == 119 /* ESC index value */) {
  2570. /* TODO: Optimize */
  2571. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2572. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2573. else dcdiff = get_bits(gb, 8);
  2574. } else {
  2575. if (mquant == 1)
  2576. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2577. else if (mquant == 2)
  2578. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2579. }
  2580. if (get_bits1(gb))
  2581. dcdiff = -dcdiff;
  2582. }
  2583. /* Prediction */
  2584. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2585. *dc_val = dcdiff;
  2586. /* Store the quantized DC coeff, used for prediction */
  2587. if (n < 4) {
  2588. block[0] = dcdiff * s->y_dc_scale;
  2589. } else {
  2590. block[0] = dcdiff * s->c_dc_scale;
  2591. }
  2592. //AC Decoding
  2593. i = 1;
  2594. /* check if AC is needed at all */
  2595. if (!a_avail && !c_avail)
  2596. use_pred = 0;
  2597. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2598. ac_val2 = ac_val;
  2599. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2600. if (dc_pred_dir) // left
  2601. ac_val -= 16;
  2602. else // top
  2603. ac_val -= 16 * s->block_wrap[n];
  2604. q1 = s->current_picture.qscale_table[mb_pos];
  2605. if ( dc_pred_dir && c_avail && mb_pos)
  2606. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2607. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2608. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2609. if ( dc_pred_dir && n == 1)
  2610. q2 = q1;
  2611. if (!dc_pred_dir && n == 2)
  2612. q2 = q1;
  2613. if (n == 3)
  2614. q2 = q1;
  2615. if (coded) {
  2616. int last = 0, skip, value;
  2617. const uint8_t *zz_table;
  2618. int k;
  2619. if (v->s.ac_pred) {
  2620. if (!use_pred && v->fcm == ILACE_FRAME) {
  2621. zz_table = v->zzi_8x8;
  2622. } else {
  2623. if (!dc_pred_dir) // top
  2624. zz_table = v->zz_8x8[2];
  2625. else // left
  2626. zz_table = v->zz_8x8[3];
  2627. }
  2628. } else {
  2629. if (v->fcm != ILACE_FRAME)
  2630. zz_table = v->zz_8x8[1];
  2631. else
  2632. zz_table = v->zzi_8x8;
  2633. }
  2634. while (!last) {
  2635. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2636. i += skip;
  2637. if (i > 63)
  2638. break;
  2639. block[zz_table[i++]] = value;
  2640. }
  2641. /* apply AC prediction if needed */
  2642. if (use_pred) {
  2643. /* scale predictors if needed*/
  2644. if (q2 && q1 != q2) {
  2645. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2646. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2647. if (q1 < 1)
  2648. return AVERROR_INVALIDDATA;
  2649. if (dc_pred_dir) { // left
  2650. for (k = 1; k < 8; k++)
  2651. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2652. } else { // top
  2653. for (k = 1; k < 8; k++)
  2654. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2655. }
  2656. } else {
  2657. if (dc_pred_dir) { //left
  2658. for (k = 1; k < 8; k++)
  2659. block[k << v->left_blk_sh] += ac_val[k];
  2660. } else { //top
  2661. for (k = 1; k < 8; k++)
  2662. block[k << v->top_blk_sh] += ac_val[k + 8];
  2663. }
  2664. }
  2665. }
  2666. /* save AC coeffs for further prediction */
  2667. for (k = 1; k < 8; k++) {
  2668. ac_val2[k ] = block[k << v->left_blk_sh];
  2669. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2670. }
  2671. /* scale AC coeffs */
  2672. for (k = 1; k < 64; k++)
  2673. if (block[k]) {
  2674. block[k] *= scale;
  2675. if (!v->pquantizer)
  2676. block[k] += (block[k] < 0) ? -mquant : mquant;
  2677. }
  2678. if (use_pred) i = 63;
  2679. } else { // no AC coeffs
  2680. int k;
  2681. memset(ac_val2, 0, 16 * 2);
  2682. if (dc_pred_dir) { // left
  2683. if (use_pred) {
  2684. memcpy(ac_val2, ac_val, 8 * 2);
  2685. if (q2 && q1 != q2) {
  2686. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2687. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2688. if (q1 < 1)
  2689. return AVERROR_INVALIDDATA;
  2690. for (k = 1; k < 8; k++)
  2691. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2692. }
  2693. }
  2694. } else { // top
  2695. if (use_pred) {
  2696. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2697. if (q2 && q1 != q2) {
  2698. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2699. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2700. if (q1 < 1)
  2701. return AVERROR_INVALIDDATA;
  2702. for (k = 1; k < 8; k++)
  2703. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2704. }
  2705. }
  2706. }
  2707. /* apply AC prediction if needed */
  2708. if (use_pred) {
  2709. if (dc_pred_dir) { // left
  2710. for (k = 1; k < 8; k++) {
  2711. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2712. if (!v->pquantizer && block[k << v->left_blk_sh])
  2713. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2714. }
  2715. } else { // top
  2716. for (k = 1; k < 8; k++) {
  2717. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2718. if (!v->pquantizer && block[k << v->top_blk_sh])
  2719. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2720. }
  2721. }
  2722. i = 63;
  2723. }
  2724. }
  2725. s->block_last_index[n] = i;
  2726. return 0;
  2727. }
  2728. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2729. * @param v VC1Context
  2730. * @param block block to decode
  2731. * @param[in] n subblock index
  2732. * @param coded are AC coeffs present or not
  2733. * @param mquant block quantizer
  2734. * @param codingset set of VLC to decode data
  2735. */
  2736. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  2737. int coded, int mquant, int codingset)
  2738. {
  2739. GetBitContext *gb = &v->s.gb;
  2740. MpegEncContext *s = &v->s;
  2741. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2742. int i;
  2743. int16_t *dc_val;
  2744. int16_t *ac_val, *ac_val2;
  2745. int dcdiff;
  2746. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2747. int a_avail = v->a_avail, c_avail = v->c_avail;
  2748. int use_pred = s->ac_pred;
  2749. int scale;
  2750. int q1, q2 = 0;
  2751. s->dsp.clear_block(block);
  2752. /* XXX: Guard against dumb values of mquant */
  2753. mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
  2754. /* Set DC scale - y and c use the same */
  2755. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2756. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2757. /* Get DC differential */
  2758. if (n < 4) {
  2759. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2760. } else {
  2761. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2762. }
  2763. if (dcdiff < 0) {
  2764. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2765. return -1;
  2766. }
  2767. if (dcdiff) {
  2768. if (dcdiff == 119 /* ESC index value */) {
  2769. /* TODO: Optimize */
  2770. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2771. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2772. else dcdiff = get_bits(gb, 8);
  2773. } else {
  2774. if (mquant == 1)
  2775. dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
  2776. else if (mquant == 2)
  2777. dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
  2778. }
  2779. if (get_bits1(gb))
  2780. dcdiff = -dcdiff;
  2781. }
  2782. /* Prediction */
  2783. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2784. *dc_val = dcdiff;
  2785. /* Store the quantized DC coeff, used for prediction */
  2786. if (n < 4) {
  2787. block[0] = dcdiff * s->y_dc_scale;
  2788. } else {
  2789. block[0] = dcdiff * s->c_dc_scale;
  2790. }
  2791. //AC Decoding
  2792. i = 1;
  2793. /* check if AC is needed at all and adjust direction if needed */
  2794. if (!a_avail) dc_pred_dir = 1;
  2795. if (!c_avail) dc_pred_dir = 0;
  2796. if (!a_avail && !c_avail) use_pred = 0;
  2797. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2798. ac_val2 = ac_val;
  2799. scale = mquant * 2 + v->halfpq;
  2800. if (dc_pred_dir) //left
  2801. ac_val -= 16;
  2802. else //top
  2803. ac_val -= 16 * s->block_wrap[n];
  2804. q1 = s->current_picture.qscale_table[mb_pos];
  2805. if (dc_pred_dir && c_avail && mb_pos)
  2806. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2807. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  2808. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2809. if ( dc_pred_dir && n == 1)
  2810. q2 = q1;
  2811. if (!dc_pred_dir && n == 2)
  2812. q2 = q1;
  2813. if (n == 3) q2 = q1;
  2814. if (coded) {
  2815. int last = 0, skip, value;
  2816. int k;
  2817. while (!last) {
  2818. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2819. i += skip;
  2820. if (i > 63)
  2821. break;
  2822. if (v->fcm == PROGRESSIVE)
  2823. block[v->zz_8x8[0][i++]] = value;
  2824. else {
  2825. if (use_pred && (v->fcm == ILACE_FRAME)) {
  2826. if (!dc_pred_dir) // top
  2827. block[v->zz_8x8[2][i++]] = value;
  2828. else // left
  2829. block[v->zz_8x8[3][i++]] = value;
  2830. } else {
  2831. block[v->zzi_8x8[i++]] = value;
  2832. }
  2833. }
  2834. }
  2835. /* apply AC prediction if needed */
  2836. if (use_pred) {
  2837. /* scale predictors if needed*/
  2838. if (q2 && q1 != q2) {
  2839. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2840. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2841. if (q1 < 1)
  2842. return AVERROR_INVALIDDATA;
  2843. if (dc_pred_dir) { // left
  2844. for (k = 1; k < 8; k++)
  2845. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2846. } else { //top
  2847. for (k = 1; k < 8; k++)
  2848. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2849. }
  2850. } else {
  2851. if (dc_pred_dir) { // left
  2852. for (k = 1; k < 8; k++)
  2853. block[k << v->left_blk_sh] += ac_val[k];
  2854. } else { // top
  2855. for (k = 1; k < 8; k++)
  2856. block[k << v->top_blk_sh] += ac_val[k + 8];
  2857. }
  2858. }
  2859. }
  2860. /* save AC coeffs for further prediction */
  2861. for (k = 1; k < 8; k++) {
  2862. ac_val2[k ] = block[k << v->left_blk_sh];
  2863. ac_val2[k + 8] = block[k << v->top_blk_sh];
  2864. }
  2865. /* scale AC coeffs */
  2866. for (k = 1; k < 64; k++)
  2867. if (block[k]) {
  2868. block[k] *= scale;
  2869. if (!v->pquantizer)
  2870. block[k] += (block[k] < 0) ? -mquant : mquant;
  2871. }
  2872. if (use_pred) i = 63;
  2873. } else { // no AC coeffs
  2874. int k;
  2875. memset(ac_val2, 0, 16 * 2);
  2876. if (dc_pred_dir) { // left
  2877. if (use_pred) {
  2878. memcpy(ac_val2, ac_val, 8 * 2);
  2879. if (q2 && q1 != q2) {
  2880. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2881. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2882. if (q1 < 1)
  2883. return AVERROR_INVALIDDATA;
  2884. for (k = 1; k < 8; k++)
  2885. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2886. }
  2887. }
  2888. } else { // top
  2889. if (use_pred) {
  2890. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2891. if (q2 && q1 != q2) {
  2892. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2893. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2894. if (q1 < 1)
  2895. return AVERROR_INVALIDDATA;
  2896. for (k = 1; k < 8; k++)
  2897. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2898. }
  2899. }
  2900. }
  2901. /* apply AC prediction if needed */
  2902. if (use_pred) {
  2903. if (dc_pred_dir) { // left
  2904. for (k = 1; k < 8; k++) {
  2905. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  2906. if (!v->pquantizer && block[k << v->left_blk_sh])
  2907. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  2908. }
  2909. } else { // top
  2910. for (k = 1; k < 8; k++) {
  2911. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  2912. if (!v->pquantizer && block[k << v->top_blk_sh])
  2913. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  2914. }
  2915. }
  2916. i = 63;
  2917. }
  2918. }
  2919. s->block_last_index[n] = i;
  2920. return 0;
  2921. }
  2922. /** Decode P block
  2923. */
  2924. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  2925. int mquant, int ttmb, int first_block,
  2926. uint8_t *dst, int linesize, int skip_block,
  2927. int *ttmb_out)
  2928. {
  2929. MpegEncContext *s = &v->s;
  2930. GetBitContext *gb = &s->gb;
  2931. int i, j;
  2932. int subblkpat = 0;
  2933. int scale, off, idx, last, skip, value;
  2934. int ttblk = ttmb & 7;
  2935. int pat = 0;
  2936. s->dsp.clear_block(block);
  2937. if (ttmb == -1) {
  2938. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2939. }
  2940. if (ttblk == TT_4X4) {
  2941. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2942. }
  2943. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  2944. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  2945. || (!v->res_rtm_flag && !first_block))) {
  2946. subblkpat = decode012(gb);
  2947. if (subblkpat)
  2948. subblkpat ^= 3; // swap decoded pattern bits
  2949. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  2950. ttblk = TT_8X4;
  2951. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  2952. ttblk = TT_4X8;
  2953. }
  2954. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2955. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2956. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2957. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2958. ttblk = TT_8X4;
  2959. }
  2960. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2961. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2962. ttblk = TT_4X8;
  2963. }
  2964. switch (ttblk) {
  2965. case TT_8X8:
  2966. pat = 0xF;
  2967. i = 0;
  2968. last = 0;
  2969. while (!last) {
  2970. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2971. i += skip;
  2972. if (i > 63)
  2973. break;
  2974. if (!v->fcm)
  2975. idx = v->zz_8x8[0][i++];
  2976. else
  2977. idx = v->zzi_8x8[i++];
  2978. block[idx] = value * scale;
  2979. if (!v->pquantizer)
  2980. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2981. }
  2982. if (!skip_block) {
  2983. if (i == 1)
  2984. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  2985. else {
  2986. v->vc1dsp.vc1_inv_trans_8x8(block);
  2987. s->dsp.add_pixels_clamped(block, dst, linesize);
  2988. }
  2989. }
  2990. break;
  2991. case TT_4X4:
  2992. pat = ~subblkpat & 0xF;
  2993. for (j = 0; j < 4; j++) {
  2994. last = subblkpat & (1 << (3 - j));
  2995. i = 0;
  2996. off = (j & 1) * 4 + (j & 2) * 16;
  2997. while (!last) {
  2998. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2999. i += skip;
  3000. if (i > 15)
  3001. break;
  3002. if (!v->fcm)
  3003. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  3004. else
  3005. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  3006. block[idx + off] = value * scale;
  3007. if (!v->pquantizer)
  3008. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3009. }
  3010. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  3011. if (i == 1)
  3012. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  3013. else
  3014. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  3015. }
  3016. }
  3017. break;
  3018. case TT_8X4:
  3019. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  3020. for (j = 0; j < 2; j++) {
  3021. last = subblkpat & (1 << (1 - j));
  3022. i = 0;
  3023. off = j * 32;
  3024. while (!last) {
  3025. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3026. i += skip;
  3027. if (i > 31)
  3028. break;
  3029. if (!v->fcm)
  3030. idx = v->zz_8x4[i++] + off;
  3031. else
  3032. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  3033. block[idx] = value * scale;
  3034. if (!v->pquantizer)
  3035. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3036. }
  3037. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3038. if (i == 1)
  3039. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  3040. else
  3041. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  3042. }
  3043. }
  3044. break;
  3045. case TT_4X8:
  3046. pat = ~(subblkpat * 5) & 0xF;
  3047. for (j = 0; j < 2; j++) {
  3048. last = subblkpat & (1 << (1 - j));
  3049. i = 0;
  3050. off = j * 4;
  3051. while (!last) {
  3052. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3053. i += skip;
  3054. if (i > 31)
  3055. break;
  3056. if (!v->fcm)
  3057. idx = v->zz_4x8[i++] + off;
  3058. else
  3059. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  3060. block[idx] = value * scale;
  3061. if (!v->pquantizer)
  3062. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3063. }
  3064. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  3065. if (i == 1)
  3066. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  3067. else
  3068. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  3069. }
  3070. }
  3071. break;
  3072. }
  3073. if (ttmb_out)
  3074. *ttmb_out |= ttblk << (n * 4);
  3075. return pat;
  3076. }
  3077. /** @} */ // Macroblock group
  3078. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  3079. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3080. static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
  3081. {
  3082. MpegEncContext *s = &v->s;
  3083. int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
  3084. block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
  3085. mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
  3086. block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
  3087. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3088. uint8_t *dst;
  3089. if (block_num > 3) {
  3090. dst = s->dest[block_num - 3];
  3091. } else {
  3092. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
  3093. }
  3094. if (s->mb_y != s->end_mb_y || block_num < 2) {
  3095. int16_t (*mv)[2];
  3096. int mv_stride;
  3097. if (block_num > 3) {
  3098. bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
  3099. bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
  3100. mv = &v->luma_mv[s->mb_x - s->mb_stride];
  3101. mv_stride = s->mb_stride;
  3102. } else {
  3103. bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
  3104. : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
  3105. bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
  3106. : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
  3107. mv_stride = s->b8_stride;
  3108. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
  3109. }
  3110. if (bottom_is_intra & 1 || block_is_intra & 1 ||
  3111. mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
  3112. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3113. } else {
  3114. idx = ((bottom_cbp >> 2) | block_cbp) & 3;
  3115. if (idx == 3) {
  3116. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3117. } else if (idx) {
  3118. if (idx == 1)
  3119. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3120. else
  3121. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3122. }
  3123. }
  3124. }
  3125. dst -= 4 * linesize;
  3126. ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
  3127. if (ttblk == TT_4X4 || ttblk == TT_8X4) {
  3128. idx = (block_cbp | (block_cbp >> 2)) & 3;
  3129. if (idx == 3) {
  3130. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  3131. } else if (idx) {
  3132. if (idx == 1)
  3133. v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
  3134. else
  3135. v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
  3136. }
  3137. }
  3138. }
  3139. static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
  3140. {
  3141. MpegEncContext *s = &v->s;
  3142. int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
  3143. block_cbp = mb_cbp >> (block_num * 4), right_cbp,
  3144. mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
  3145. block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
  3146. int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
  3147. uint8_t *dst;
  3148. if (block_num > 3) {
  3149. dst = s->dest[block_num - 3] - 8 * linesize;
  3150. } else {
  3151. dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
  3152. }
  3153. if (s->mb_x != s->mb_width || !(block_num & 5)) {
  3154. int16_t (*mv)[2];
  3155. if (block_num > 3) {
  3156. right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
  3157. right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
  3158. mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
  3159. } else {
  3160. right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3161. : (mb_cbp >> ((block_num + 1) * 4));
  3162. right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
  3163. : (mb_is_intra >> ((block_num + 1) * 4));
  3164. mv = &s->current_picture.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
  3165. }
  3166. if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
  3167. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3168. } else {
  3169. idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
  3170. if (idx == 5) {
  3171. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3172. } else if (idx) {
  3173. if (idx == 1)
  3174. v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
  3175. else
  3176. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3177. }
  3178. }
  3179. }
  3180. dst -= 4;
  3181. ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
  3182. if (ttblk == TT_4X4 || ttblk == TT_4X8) {
  3183. idx = (block_cbp | (block_cbp >> 1)) & 5;
  3184. if (idx == 5) {
  3185. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  3186. } else if (idx) {
  3187. if (idx == 1)
  3188. v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
  3189. else
  3190. v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
  3191. }
  3192. }
  3193. }
  3194. static void vc1_apply_p_loop_filter(VC1Context *v)
  3195. {
  3196. MpegEncContext *s = &v->s;
  3197. int i;
  3198. for (i = 0; i < 6; i++) {
  3199. vc1_apply_p_v_loop_filter(v, i);
  3200. }
  3201. /* V always precedes H, therefore we run H one MB before V;
  3202. * at the end of a row, we catch up to complete the row */
  3203. if (s->mb_x) {
  3204. for (i = 0; i < 6; i++) {
  3205. vc1_apply_p_h_loop_filter(v, i);
  3206. }
  3207. if (s->mb_x == s->mb_width - 1) {
  3208. s->mb_x++;
  3209. ff_update_block_index(s);
  3210. for (i = 0; i < 6; i++) {
  3211. vc1_apply_p_h_loop_filter(v, i);
  3212. }
  3213. }
  3214. }
  3215. }
  3216. /** Decode one P-frame MB
  3217. */
  3218. static int vc1_decode_p_mb(VC1Context *v)
  3219. {
  3220. MpegEncContext *s = &v->s;
  3221. GetBitContext *gb = &s->gb;
  3222. int i, j;
  3223. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3224. int cbp; /* cbp decoding stuff */
  3225. int mqdiff, mquant; /* MB quantization */
  3226. int ttmb = v->ttfrm; /* MB Transform type */
  3227. int mb_has_coeffs = 1; /* last_flag */
  3228. int dmv_x, dmv_y; /* Differential MV components */
  3229. int index, index1; /* LUT indexes */
  3230. int val, sign; /* temp values */
  3231. int first_block = 1;
  3232. int dst_idx, off;
  3233. int skipped, fourmv;
  3234. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  3235. mquant = v->pq; /* lossy initialization */
  3236. if (v->mv_type_is_raw)
  3237. fourmv = get_bits1(gb);
  3238. else
  3239. fourmv = v->mv_type_mb_plane[mb_pos];
  3240. if (v->skip_is_raw)
  3241. skipped = get_bits1(gb);
  3242. else
  3243. skipped = v->s.mbskip_table[mb_pos];
  3244. if (!fourmv) { /* 1MV mode */
  3245. if (!skipped) {
  3246. GET_MVDATA(dmv_x, dmv_y);
  3247. if (s->mb_intra) {
  3248. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3249. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3250. }
  3251. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3252. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3253. /* FIXME Set DC val for inter block ? */
  3254. if (s->mb_intra && !mb_has_coeffs) {
  3255. GET_MQUANT();
  3256. s->ac_pred = get_bits1(gb);
  3257. cbp = 0;
  3258. } else if (mb_has_coeffs) {
  3259. if (s->mb_intra)
  3260. s->ac_pred = get_bits1(gb);
  3261. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3262. GET_MQUANT();
  3263. } else {
  3264. mquant = v->pq;
  3265. cbp = 0;
  3266. }
  3267. s->current_picture.qscale_table[mb_pos] = mquant;
  3268. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3269. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  3270. VC1_TTMB_VLC_BITS, 2);
  3271. if (!s->mb_intra) vc1_mc_1mv(v, 0);
  3272. dst_idx = 0;
  3273. for (i = 0; i < 6; i++) {
  3274. s->dc_val[0][s->block_index[i]] = 0;
  3275. dst_idx += i >> 2;
  3276. val = ((cbp >> (5 - i)) & 1);
  3277. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3278. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3279. if (s->mb_intra) {
  3280. /* check if prediction blocks A and C are available */
  3281. v->a_avail = v->c_avail = 0;
  3282. if (i == 2 || i == 3 || !s->first_slice_line)
  3283. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3284. if (i == 1 || i == 3 || s->mb_x)
  3285. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3286. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3287. (i & 4) ? v->codingset2 : v->codingset);
  3288. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3289. continue;
  3290. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3291. if (v->rangeredfrm)
  3292. for (j = 0; j < 64; j++)
  3293. s->block[i][j] <<= 1;
  3294. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3295. if (v->pq >= 9 && v->overlap) {
  3296. if (v->c_avail)
  3297. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3298. if (v->a_avail)
  3299. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3300. }
  3301. block_cbp |= 0xF << (i << 2);
  3302. block_intra |= 1 << i;
  3303. } else if (val) {
  3304. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
  3305. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  3306. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3307. block_cbp |= pat << (i << 2);
  3308. if (!v->ttmbf && ttmb < 8)
  3309. ttmb = -1;
  3310. first_block = 0;
  3311. }
  3312. }
  3313. } else { // skipped
  3314. s->mb_intra = 0;
  3315. for (i = 0; i < 6; i++) {
  3316. v->mb_type[0][s->block_index[i]] = 0;
  3317. s->dc_val[0][s->block_index[i]] = 0;
  3318. }
  3319. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3320. s->current_picture.qscale_table[mb_pos] = 0;
  3321. vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3322. vc1_mc_1mv(v, 0);
  3323. }
  3324. } else { // 4MV mode
  3325. if (!skipped /* unskipped MB */) {
  3326. int intra_count = 0, coded_inter = 0;
  3327. int is_intra[6], is_coded[6];
  3328. /* Get CBPCY */
  3329. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3330. for (i = 0; i < 6; i++) {
  3331. val = ((cbp >> (5 - i)) & 1);
  3332. s->dc_val[0][s->block_index[i]] = 0;
  3333. s->mb_intra = 0;
  3334. if (i < 4) {
  3335. dmv_x = dmv_y = 0;
  3336. s->mb_intra = 0;
  3337. mb_has_coeffs = 0;
  3338. if (val) {
  3339. GET_MVDATA(dmv_x, dmv_y);
  3340. }
  3341. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3342. if (!s->mb_intra)
  3343. vc1_mc_4mv_luma(v, i, 0, 0);
  3344. intra_count += s->mb_intra;
  3345. is_intra[i] = s->mb_intra;
  3346. is_coded[i] = mb_has_coeffs;
  3347. }
  3348. if (i & 4) {
  3349. is_intra[i] = (intra_count >= 3);
  3350. is_coded[i] = val;
  3351. }
  3352. if (i == 4)
  3353. vc1_mc_4mv_chroma(v, 0);
  3354. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3355. if (!coded_inter)
  3356. coded_inter = !is_intra[i] & is_coded[i];
  3357. }
  3358. // if there are no coded blocks then don't do anything more
  3359. dst_idx = 0;
  3360. if (!intra_count && !coded_inter)
  3361. goto end;
  3362. GET_MQUANT();
  3363. s->current_picture.qscale_table[mb_pos] = mquant;
  3364. /* test if block is intra and has pred */
  3365. {
  3366. int intrapred = 0;
  3367. for (i = 0; i < 6; i++)
  3368. if (is_intra[i]) {
  3369. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3370. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3371. intrapred = 1;
  3372. break;
  3373. }
  3374. }
  3375. if (intrapred)
  3376. s->ac_pred = get_bits1(gb);
  3377. else
  3378. s->ac_pred = 0;
  3379. }
  3380. if (!v->ttmbf && coded_inter)
  3381. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3382. for (i = 0; i < 6; i++) {
  3383. dst_idx += i >> 2;
  3384. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3385. s->mb_intra = is_intra[i];
  3386. if (is_intra[i]) {
  3387. /* check if prediction blocks A and C are available */
  3388. v->a_avail = v->c_avail = 0;
  3389. if (i == 2 || i == 3 || !s->first_slice_line)
  3390. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3391. if (i == 1 || i == 3 || s->mb_x)
  3392. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3393. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
  3394. (i & 4) ? v->codingset2 : v->codingset);
  3395. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3396. continue;
  3397. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3398. if (v->rangeredfrm)
  3399. for (j = 0; j < 64; j++)
  3400. s->block[i][j] <<= 1;
  3401. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
  3402. (i & 4) ? s->uvlinesize : s->linesize);
  3403. if (v->pq >= 9 && v->overlap) {
  3404. if (v->c_avail)
  3405. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3406. if (v->a_avail)
  3407. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3408. }
  3409. block_cbp |= 0xF << (i << 2);
  3410. block_intra |= 1 << i;
  3411. } else if (is_coded[i]) {
  3412. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3413. first_block, s->dest[dst_idx] + off,
  3414. (i & 4) ? s->uvlinesize : s->linesize,
  3415. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3416. &block_tt);
  3417. block_cbp |= pat << (i << 2);
  3418. if (!v->ttmbf && ttmb < 8)
  3419. ttmb = -1;
  3420. first_block = 0;
  3421. }
  3422. }
  3423. } else { // skipped MB
  3424. s->mb_intra = 0;
  3425. s->current_picture.qscale_table[mb_pos] = 0;
  3426. for (i = 0; i < 6; i++) {
  3427. v->mb_type[0][s->block_index[i]] = 0;
  3428. s->dc_val[0][s->block_index[i]] = 0;
  3429. }
  3430. for (i = 0; i < 4; i++) {
  3431. vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  3432. vc1_mc_4mv_luma(v, i, 0, 0);
  3433. }
  3434. vc1_mc_4mv_chroma(v, 0);
  3435. s->current_picture.qscale_table[mb_pos] = 0;
  3436. }
  3437. }
  3438. end:
  3439. v->cbp[s->mb_x] = block_cbp;
  3440. v->ttblk[s->mb_x] = block_tt;
  3441. v->is_intra[s->mb_x] = block_intra;
  3442. return 0;
  3443. }
  3444. /* Decode one macroblock in an interlaced frame p picture */
  3445. static int vc1_decode_p_mb_intfr(VC1Context *v)
  3446. {
  3447. MpegEncContext *s = &v->s;
  3448. GetBitContext *gb = &s->gb;
  3449. int i;
  3450. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3451. int cbp = 0; /* cbp decoding stuff */
  3452. int mqdiff, mquant; /* MB quantization */
  3453. int ttmb = v->ttfrm; /* MB Transform type */
  3454. int mb_has_coeffs = 1; /* last_flag */
  3455. int dmv_x, dmv_y; /* Differential MV components */
  3456. int val; /* temp value */
  3457. int first_block = 1;
  3458. int dst_idx, off;
  3459. int skipped, fourmv = 0, twomv = 0;
  3460. int block_cbp = 0, pat, block_tt = 0;
  3461. int idx_mbmode = 0, mvbp;
  3462. int stride_y, fieldtx;
  3463. mquant = v->pq; /* Loosy initialization */
  3464. if (v->skip_is_raw)
  3465. skipped = get_bits1(gb);
  3466. else
  3467. skipped = v->s.mbskip_table[mb_pos];
  3468. if (!skipped) {
  3469. if (v->fourmvswitch)
  3470. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  3471. else
  3472. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  3473. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  3474. /* store the motion vector type in a flag (useful later) */
  3475. case MV_PMODE_INTFR_4MV:
  3476. fourmv = 1;
  3477. v->blk_mv_type[s->block_index[0]] = 0;
  3478. v->blk_mv_type[s->block_index[1]] = 0;
  3479. v->blk_mv_type[s->block_index[2]] = 0;
  3480. v->blk_mv_type[s->block_index[3]] = 0;
  3481. break;
  3482. case MV_PMODE_INTFR_4MV_FIELD:
  3483. fourmv = 1;
  3484. v->blk_mv_type[s->block_index[0]] = 1;
  3485. v->blk_mv_type[s->block_index[1]] = 1;
  3486. v->blk_mv_type[s->block_index[2]] = 1;
  3487. v->blk_mv_type[s->block_index[3]] = 1;
  3488. break;
  3489. case MV_PMODE_INTFR_2MV_FIELD:
  3490. twomv = 1;
  3491. v->blk_mv_type[s->block_index[0]] = 1;
  3492. v->blk_mv_type[s->block_index[1]] = 1;
  3493. v->blk_mv_type[s->block_index[2]] = 1;
  3494. v->blk_mv_type[s->block_index[3]] = 1;
  3495. break;
  3496. case MV_PMODE_INTFR_1MV:
  3497. v->blk_mv_type[s->block_index[0]] = 0;
  3498. v->blk_mv_type[s->block_index[1]] = 0;
  3499. v->blk_mv_type[s->block_index[2]] = 0;
  3500. v->blk_mv_type[s->block_index[3]] = 0;
  3501. break;
  3502. }
  3503. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  3504. for (i = 0; i < 4; i++) {
  3505. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  3506. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  3507. }
  3508. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3509. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3510. for (i = 0; i < 6; i++)
  3511. v->mb_type[0][s->block_index[i]] = 1;
  3512. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  3513. mb_has_coeffs = get_bits1(gb);
  3514. if (mb_has_coeffs)
  3515. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3516. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3517. GET_MQUANT();
  3518. s->current_picture.qscale_table[mb_pos] = mquant;
  3519. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3520. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3521. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3522. dst_idx = 0;
  3523. for (i = 0; i < 6; i++) {
  3524. s->dc_val[0][s->block_index[i]] = 0;
  3525. dst_idx += i >> 2;
  3526. val = ((cbp >> (5 - i)) & 1);
  3527. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3528. v->a_avail = v->c_avail = 0;
  3529. if (i == 2 || i == 3 || !s->first_slice_line)
  3530. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3531. if (i == 1 || i == 3 || s->mb_x)
  3532. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3533. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3534. (i & 4) ? v->codingset2 : v->codingset);
  3535. if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3536. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3537. if (i < 4) {
  3538. stride_y = s->linesize << fieldtx;
  3539. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  3540. } else {
  3541. stride_y = s->uvlinesize;
  3542. off = 0;
  3543. }
  3544. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
  3545. //TODO: loop filter
  3546. }
  3547. } else { // inter MB
  3548. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  3549. if (mb_has_coeffs)
  3550. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3551. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  3552. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  3553. } else {
  3554. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  3555. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  3556. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3557. }
  3558. }
  3559. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3560. for (i = 0; i < 6; i++)
  3561. v->mb_type[0][s->block_index[i]] = 0;
  3562. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  3563. /* for all motion vector read MVDATA and motion compensate each block */
  3564. dst_idx = 0;
  3565. if (fourmv) {
  3566. mvbp = v->fourmvbp;
  3567. for (i = 0; i < 6; i++) {
  3568. if (i < 4) {
  3569. dmv_x = dmv_y = 0;
  3570. val = ((mvbp >> (3 - i)) & 1);
  3571. if (val) {
  3572. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3573. }
  3574. vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  3575. vc1_mc_4mv_luma(v, i, 0, 0);
  3576. } else if (i == 4) {
  3577. vc1_mc_4mv_chroma4(v);
  3578. }
  3579. }
  3580. } else if (twomv) {
  3581. mvbp = v->twomvbp;
  3582. dmv_x = dmv_y = 0;
  3583. if (mvbp & 2) {
  3584. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3585. }
  3586. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  3587. vc1_mc_4mv_luma(v, 0, 0, 0);
  3588. vc1_mc_4mv_luma(v, 1, 0, 0);
  3589. dmv_x = dmv_y = 0;
  3590. if (mvbp & 1) {
  3591. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3592. }
  3593. vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  3594. vc1_mc_4mv_luma(v, 2, 0, 0);
  3595. vc1_mc_4mv_luma(v, 3, 0, 0);
  3596. vc1_mc_4mv_chroma4(v);
  3597. } else {
  3598. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  3599. dmv_x = dmv_y = 0;
  3600. if (mvbp) {
  3601. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  3602. }
  3603. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  3604. vc1_mc_1mv(v, 0);
  3605. }
  3606. if (cbp)
  3607. GET_MQUANT(); // p. 227
  3608. s->current_picture.qscale_table[mb_pos] = mquant;
  3609. if (!v->ttmbf && cbp)
  3610. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3611. for (i = 0; i < 6; i++) {
  3612. s->dc_val[0][s->block_index[i]] = 0;
  3613. dst_idx += i >> 2;
  3614. val = ((cbp >> (5 - i)) & 1);
  3615. if (!fieldtx)
  3616. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3617. else
  3618. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  3619. if (val) {
  3620. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3621. first_block, s->dest[dst_idx] + off,
  3622. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  3623. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  3624. block_cbp |= pat << (i << 2);
  3625. if (!v->ttmbf && ttmb < 8)
  3626. ttmb = -1;
  3627. first_block = 0;
  3628. }
  3629. }
  3630. }
  3631. } else { // skipped
  3632. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3633. for (i = 0; i < 6; i++) {
  3634. v->mb_type[0][s->block_index[i]] = 0;
  3635. s->dc_val[0][s->block_index[i]] = 0;
  3636. }
  3637. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3638. s->current_picture.qscale_table[mb_pos] = 0;
  3639. v->blk_mv_type[s->block_index[0]] = 0;
  3640. v->blk_mv_type[s->block_index[1]] = 0;
  3641. v->blk_mv_type[s->block_index[2]] = 0;
  3642. v->blk_mv_type[s->block_index[3]] = 0;
  3643. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  3644. vc1_mc_1mv(v, 0);
  3645. }
  3646. if (s->mb_x == s->mb_width - 1)
  3647. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  3648. return 0;
  3649. }
  3650. static int vc1_decode_p_mb_intfi(VC1Context *v)
  3651. {
  3652. MpegEncContext *s = &v->s;
  3653. GetBitContext *gb = &s->gb;
  3654. int i;
  3655. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3656. int cbp = 0; /* cbp decoding stuff */
  3657. int mqdiff, mquant; /* MB quantization */
  3658. int ttmb = v->ttfrm; /* MB Transform type */
  3659. int mb_has_coeffs = 1; /* last_flag */
  3660. int dmv_x, dmv_y; /* Differential MV components */
  3661. int val; /* temp values */
  3662. int first_block = 1;
  3663. int dst_idx, off;
  3664. int pred_flag;
  3665. int block_cbp = 0, pat, block_tt = 0;
  3666. int idx_mbmode = 0;
  3667. mquant = v->pq; /* Loosy initialization */
  3668. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3669. if (idx_mbmode <= 1) { // intra MB
  3670. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3671. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  3672. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  3673. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3674. GET_MQUANT();
  3675. s->current_picture.qscale_table[mb_pos] = mquant;
  3676. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3677. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3678. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3679. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3680. mb_has_coeffs = idx_mbmode & 1;
  3681. if (mb_has_coeffs)
  3682. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3683. dst_idx = 0;
  3684. for (i = 0; i < 6; i++) {
  3685. s->dc_val[0][s->block_index[i]] = 0;
  3686. v->mb_type[0][s->block_index[i]] = 1;
  3687. dst_idx += i >> 2;
  3688. val = ((cbp >> (5 - i)) & 1);
  3689. v->a_avail = v->c_avail = 0;
  3690. if (i == 2 || i == 3 || !s->first_slice_line)
  3691. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3692. if (i == 1 || i == 3 || s->mb_x)
  3693. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3694. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3695. (i & 4) ? v->codingset2 : v->codingset);
  3696. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3697. continue;
  3698. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3699. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3700. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3701. // TODO: loop filter
  3702. }
  3703. } else {
  3704. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3705. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3706. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3707. if (idx_mbmode <= 5) { // 1-MV
  3708. dmv_x = dmv_y = pred_flag = 0;
  3709. if (idx_mbmode & 1) {
  3710. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3711. }
  3712. vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3713. vc1_mc_1mv(v, 0);
  3714. mb_has_coeffs = !(idx_mbmode & 2);
  3715. } else { // 4-MV
  3716. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  3717. for (i = 0; i < 6; i++) {
  3718. if (i < 4) {
  3719. dmv_x = dmv_y = pred_flag = 0;
  3720. val = ((v->fourmvbp >> (3 - i)) & 1);
  3721. if (val) {
  3722. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  3723. }
  3724. vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  3725. vc1_mc_4mv_luma(v, i, 0, 0);
  3726. } else if (i == 4)
  3727. vc1_mc_4mv_chroma(v, 0);
  3728. }
  3729. mb_has_coeffs = idx_mbmode & 1;
  3730. }
  3731. if (mb_has_coeffs)
  3732. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3733. if (cbp) {
  3734. GET_MQUANT();
  3735. }
  3736. s->current_picture.qscale_table[mb_pos] = mquant;
  3737. if (!v->ttmbf && cbp) {
  3738. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3739. }
  3740. dst_idx = 0;
  3741. for (i = 0; i < 6; i++) {
  3742. s->dc_val[0][s->block_index[i]] = 0;
  3743. dst_idx += i >> 2;
  3744. val = ((cbp >> (5 - i)) & 1);
  3745. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  3746. if (val) {
  3747. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3748. first_block, s->dest[dst_idx] + off,
  3749. (i & 4) ? s->uvlinesize : s->linesize,
  3750. (i & 4) && (s->flags & CODEC_FLAG_GRAY),
  3751. &block_tt);
  3752. block_cbp |= pat << (i << 2);
  3753. if (!v->ttmbf && ttmb < 8) ttmb = -1;
  3754. first_block = 0;
  3755. }
  3756. }
  3757. }
  3758. if (s->mb_x == s->mb_width - 1)
  3759. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  3760. return 0;
  3761. }
  3762. /** Decode one B-frame MB (in Main profile)
  3763. */
  3764. static void vc1_decode_b_mb(VC1Context *v)
  3765. {
  3766. MpegEncContext *s = &v->s;
  3767. GetBitContext *gb = &s->gb;
  3768. int i, j;
  3769. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3770. int cbp = 0; /* cbp decoding stuff */
  3771. int mqdiff, mquant; /* MB quantization */
  3772. int ttmb = v->ttfrm; /* MB Transform type */
  3773. int mb_has_coeffs = 0; /* last_flag */
  3774. int index, index1; /* LUT indexes */
  3775. int val, sign; /* temp values */
  3776. int first_block = 1;
  3777. int dst_idx, off;
  3778. int skipped, direct;
  3779. int dmv_x[2], dmv_y[2];
  3780. int bmvtype = BMV_TYPE_BACKWARD;
  3781. mquant = v->pq; /* lossy initialization */
  3782. s->mb_intra = 0;
  3783. if (v->dmb_is_raw)
  3784. direct = get_bits1(gb);
  3785. else
  3786. direct = v->direct_mb_plane[mb_pos];
  3787. if (v->skip_is_raw)
  3788. skipped = get_bits1(gb);
  3789. else
  3790. skipped = v->s.mbskip_table[mb_pos];
  3791. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3792. for (i = 0; i < 6; i++) {
  3793. v->mb_type[0][s->block_index[i]] = 0;
  3794. s->dc_val[0][s->block_index[i]] = 0;
  3795. }
  3796. s->current_picture.qscale_table[mb_pos] = 0;
  3797. if (!direct) {
  3798. if (!skipped) {
  3799. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3800. dmv_x[1] = dmv_x[0];
  3801. dmv_y[1] = dmv_y[0];
  3802. }
  3803. if (skipped || !s->mb_intra) {
  3804. bmvtype = decode012(gb);
  3805. switch (bmvtype) {
  3806. case 0:
  3807. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3808. break;
  3809. case 1:
  3810. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3811. break;
  3812. case 2:
  3813. bmvtype = BMV_TYPE_INTERPOLATED;
  3814. dmv_x[0] = dmv_y[0] = 0;
  3815. }
  3816. }
  3817. }
  3818. for (i = 0; i < 6; i++)
  3819. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3820. if (skipped) {
  3821. if (direct)
  3822. bmvtype = BMV_TYPE_INTERPOLATED;
  3823. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3824. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3825. return;
  3826. }
  3827. if (direct) {
  3828. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3829. GET_MQUANT();
  3830. s->mb_intra = 0;
  3831. s->current_picture.qscale_table[mb_pos] = mquant;
  3832. if (!v->ttmbf)
  3833. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3834. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3835. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3836. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3837. } else {
  3838. if (!mb_has_coeffs && !s->mb_intra) {
  3839. /* no coded blocks - effectively skipped */
  3840. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3841. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3842. return;
  3843. }
  3844. if (s->mb_intra && !mb_has_coeffs) {
  3845. GET_MQUANT();
  3846. s->current_picture.qscale_table[mb_pos] = mquant;
  3847. s->ac_pred = get_bits1(gb);
  3848. cbp = 0;
  3849. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3850. } else {
  3851. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  3852. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3853. if (!mb_has_coeffs) {
  3854. /* interpolated skipped block */
  3855. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3856. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3857. return;
  3858. }
  3859. }
  3860. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3861. if (!s->mb_intra) {
  3862. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3863. }
  3864. if (s->mb_intra)
  3865. s->ac_pred = get_bits1(gb);
  3866. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3867. GET_MQUANT();
  3868. s->current_picture.qscale_table[mb_pos] = mquant;
  3869. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3870. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3871. }
  3872. }
  3873. dst_idx = 0;
  3874. for (i = 0; i < 6; i++) {
  3875. s->dc_val[0][s->block_index[i]] = 0;
  3876. dst_idx += i >> 2;
  3877. val = ((cbp >> (5 - i)) & 1);
  3878. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3879. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3880. if (s->mb_intra) {
  3881. /* check if prediction blocks A and C are available */
  3882. v->a_avail = v->c_avail = 0;
  3883. if (i == 2 || i == 3 || !s->first_slice_line)
  3884. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3885. if (i == 1 || i == 3 || s->mb_x)
  3886. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3887. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3888. (i & 4) ? v->codingset2 : v->codingset);
  3889. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3890. continue;
  3891. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3892. if (v->rangeredfrm)
  3893. for (j = 0; j < 64; j++)
  3894. s->block[i][j] <<= 1;
  3895. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  3896. } else if (val) {
  3897. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  3898. first_block, s->dest[dst_idx] + off,
  3899. (i & 4) ? s->uvlinesize : s->linesize,
  3900. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  3901. if (!v->ttmbf && ttmb < 8)
  3902. ttmb = -1;
  3903. first_block = 0;
  3904. }
  3905. }
  3906. }
  3907. /** Decode one B-frame MB (in interlaced field B picture)
  3908. */
  3909. static void vc1_decode_b_mb_intfi(VC1Context *v)
  3910. {
  3911. MpegEncContext *s = &v->s;
  3912. GetBitContext *gb = &s->gb;
  3913. int i, j;
  3914. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3915. int cbp = 0; /* cbp decoding stuff */
  3916. int mqdiff, mquant; /* MB quantization */
  3917. int ttmb = v->ttfrm; /* MB Transform type */
  3918. int mb_has_coeffs = 0; /* last_flag */
  3919. int val; /* temp value */
  3920. int first_block = 1;
  3921. int dst_idx, off;
  3922. int fwd;
  3923. int dmv_x[2], dmv_y[2], pred_flag[2];
  3924. int bmvtype = BMV_TYPE_BACKWARD;
  3925. int idx_mbmode, interpmvp;
  3926. mquant = v->pq; /* Loosy initialization */
  3927. s->mb_intra = 0;
  3928. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  3929. if (idx_mbmode <= 1) { // intra MB
  3930. s->mb_intra = v->is_intra[s->mb_x] = 1;
  3931. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3932. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3933. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  3934. GET_MQUANT();
  3935. s->current_picture.qscale_table[mb_pos] = mquant;
  3936. /* Set DC scale - y and c use the same (not sure if necessary here) */
  3937. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3938. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3939. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  3940. mb_has_coeffs = idx_mbmode & 1;
  3941. if (mb_has_coeffs)
  3942. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  3943. dst_idx = 0;
  3944. for (i = 0; i < 6; i++) {
  3945. s->dc_val[0][s->block_index[i]] = 0;
  3946. dst_idx += i >> 2;
  3947. val = ((cbp >> (5 - i)) & 1);
  3948. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3949. v->a_avail = v->c_avail = 0;
  3950. if (i == 2 || i == 3 || !s->first_slice_line)
  3951. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3952. if (i == 1 || i == 3 || s->mb_x)
  3953. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3954. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  3955. (i & 4) ? v->codingset2 : v->codingset);
  3956. if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
  3957. continue;
  3958. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  3959. if (v->rangeredfrm)
  3960. for (j = 0; j < 64; j++)
  3961. s->block[i][j] <<= 1;
  3962. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3963. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize);
  3964. // TODO: yet to perform loop filter
  3965. }
  3966. } else {
  3967. s->mb_intra = v->is_intra[s->mb_x] = 0;
  3968. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  3969. for (i = 0; i < 6; i++) v->mb_type[0][s->block_index[i]] = 0;
  3970. if (v->fmb_is_raw)
  3971. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  3972. else
  3973. fwd = v->forward_mb_plane[mb_pos];
  3974. if (idx_mbmode <= 5) { // 1-MV
  3975. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3976. pred_flag[0] = pred_flag[1] = 0;
  3977. if (fwd)
  3978. bmvtype = BMV_TYPE_FORWARD;
  3979. else {
  3980. bmvtype = decode012(gb);
  3981. switch (bmvtype) {
  3982. case 0:
  3983. bmvtype = BMV_TYPE_BACKWARD;
  3984. break;
  3985. case 1:
  3986. bmvtype = BMV_TYPE_DIRECT;
  3987. break;
  3988. case 2:
  3989. bmvtype = BMV_TYPE_INTERPOLATED;
  3990. interpmvp = get_bits1(gb);
  3991. }
  3992. }
  3993. v->bmvtype = bmvtype;
  3994. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  3995. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  3996. }
  3997. if (bmvtype == BMV_TYPE_INTERPOLATED && interpmvp) {
  3998. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  3999. }
  4000. if (bmvtype == BMV_TYPE_DIRECT) {
  4001. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  4002. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  4003. }
  4004. vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  4005. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  4006. mb_has_coeffs = !(idx_mbmode & 2);
  4007. } else { // 4-MV
  4008. if (fwd)
  4009. bmvtype = BMV_TYPE_FORWARD;
  4010. v->bmvtype = bmvtype;
  4011. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  4012. for (i = 0; i < 6; i++) {
  4013. if (i < 4) {
  4014. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  4015. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  4016. val = ((v->fourmvbp >> (3 - i)) & 1);
  4017. if (val) {
  4018. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  4019. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  4020. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  4021. }
  4022. vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  4023. vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  4024. } else if (i == 4)
  4025. vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  4026. }
  4027. mb_has_coeffs = idx_mbmode & 1;
  4028. }
  4029. if (mb_has_coeffs)
  4030. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  4031. if (cbp) {
  4032. GET_MQUANT();
  4033. }
  4034. s->current_picture.qscale_table[mb_pos] = mquant;
  4035. if (!v->ttmbf && cbp) {
  4036. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  4037. }
  4038. dst_idx = 0;
  4039. for (i = 0; i < 6; i++) {
  4040. s->dc_val[0][s->block_index[i]] = 0;
  4041. dst_idx += i >> 2;
  4042. val = ((cbp >> (5 - i)) & 1);
  4043. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  4044. if (val) {
  4045. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  4046. first_block, s->dest[dst_idx] + off,
  4047. (i & 4) ? s->uvlinesize : s->linesize,
  4048. (i & 4) && (s->flags & CODEC_FLAG_GRAY), NULL);
  4049. if (!v->ttmbf && ttmb < 8)
  4050. ttmb = -1;
  4051. first_block = 0;
  4052. }
  4053. }
  4054. }
  4055. }
  4056. /** Decode one B-frame MB (in interlaced frame B picture)
  4057. */
  4058. static int vc1_decode_b_mb_intfr(VC1Context *v)
  4059. {
  4060. MpegEncContext *s = &v->s;
  4061. GetBitContext *gb = &s->gb;
  4062. int i, j;
  4063. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  4064. int cbp = 0; /* cbp decoding stuff */
  4065. int mqdiff, mquant; /* MB quantization */
  4066. int ttmb = v->ttfrm; /* MB Transform type */
  4067. int mvsw = 0; /* motion vector switch */
  4068. int mb_has_coeffs = 1; /* last_flag */
  4069. int dmv_x, dmv_y; /* Differential MV components */
  4070. int val; /* temp value */
  4071. int first_block = 1;
  4072. int dst_idx, off;
  4073. int skipped, direct, twomv = 0;
  4074. int block_cbp = 0, pat, block_tt = 0;
  4075. int idx_mbmode = 0, mvbp;
  4076. int stride_y, fieldtx;
  4077. int bmvtype = BMV_TYPE_BACKWARD;
  4078. int dir, dir2;
  4079. mquant = v->pq; /* Lossy initialization */
  4080. s->mb_intra = 0;
  4081. if (v->skip_is_raw)
  4082. skipped = get_bits1(gb);
  4083. else
  4084. skipped = v->s.mbskip_table[mb_pos];
  4085. if (!skipped) {
  4086. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  4087. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  4088. twomv = 1;
  4089. v->blk_mv_type[s->block_index[0]] = 1;
  4090. v->blk_mv_type[s->block_index[1]] = 1;
  4091. v->blk_mv_type[s->block_index[2]] = 1;
  4092. v->blk_mv_type[s->block_index[3]] = 1;
  4093. } else {
  4094. v->blk_mv_type[s->block_index[0]] = 0;
  4095. v->blk_mv_type[s->block_index[1]] = 0;
  4096. v->blk_mv_type[s->block_index[2]] = 0;
  4097. v->blk_mv_type[s->block_index[3]] = 0;
  4098. }
  4099. }
  4100. if (v->dmb_is_raw)
  4101. direct = get_bits1(gb);
  4102. else
  4103. direct = v->direct_mb_plane[mb_pos];
  4104. if (direct) {
  4105. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  4106. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  4107. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  4108. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  4109. if (twomv) {
  4110. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  4111. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  4112. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  4113. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  4114. for (i = 1; i < 4; i += 2) {
  4115. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  4116. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  4117. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  4118. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  4119. }
  4120. } else {
  4121. for (i = 1; i < 4; i++) {
  4122. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  4123. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  4124. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  4125. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  4126. }
  4127. }
  4128. }
  4129. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  4130. for (i = 0; i < 4; i++) {
  4131. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  4132. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  4133. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  4134. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  4135. }
  4136. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  4137. s->mb_intra = v->is_intra[s->mb_x] = 1;
  4138. for (i = 0; i < 6; i++)
  4139. v->mb_type[0][s->block_index[i]] = 1;
  4140. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  4141. mb_has_coeffs = get_bits1(gb);
  4142. if (mb_has_coeffs)
  4143. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  4144. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  4145. GET_MQUANT();
  4146. s->current_picture.qscale_table[mb_pos] = mquant;
  4147. /* Set DC scale - y and c use the same (not sure if necessary here) */
  4148. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4149. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4150. dst_idx = 0;
  4151. for (i = 0; i < 6; i++) {
  4152. s->dc_val[0][s->block_index[i]] = 0;
  4153. dst_idx += i >> 2;
  4154. val = ((cbp >> (5 - i)) & 1);
  4155. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  4156. v->a_avail = v->c_avail = 0;
  4157. if (i == 2 || i == 3 || !s->first_slice_line)
  4158. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  4159. if (i == 1 || i == 3 || s->mb_x)
  4160. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  4161. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  4162. (i & 4) ? v->codingset2 : v->codingset);
  4163. if (i > 3 && (s->flags & CODEC_FLAG_GRAY))
  4164. continue;
  4165. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  4166. if (i < 4) {
  4167. stride_y = s->linesize << fieldtx;
  4168. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  4169. } else {
  4170. stride_y = s->uvlinesize;
  4171. off = 0;
  4172. }
  4173. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
  4174. }
  4175. } else {
  4176. s->mb_intra = v->is_intra[s->mb_x] = 0;
  4177. if (!direct) {
  4178. if (skipped || !s->mb_intra) {
  4179. bmvtype = decode012(gb);
  4180. switch (bmvtype) {
  4181. case 0:
  4182. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  4183. break;
  4184. case 1:
  4185. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  4186. break;
  4187. case 2:
  4188. bmvtype = BMV_TYPE_INTERPOLATED;
  4189. }
  4190. }
  4191. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  4192. mvsw = get_bits1(gb);
  4193. }
  4194. if (!skipped) { // inter MB
  4195. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  4196. if (mb_has_coeffs)
  4197. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  4198. if (!direct) {
  4199. if (bmvtype == BMV_TYPE_INTERPOLATED & twomv) {
  4200. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  4201. } else if (bmvtype == BMV_TYPE_INTERPOLATED | twomv) {
  4202. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  4203. }
  4204. }
  4205. for (i = 0; i < 6; i++)
  4206. v->mb_type[0][s->block_index[i]] = 0;
  4207. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  4208. /* for all motion vector read MVDATA and motion compensate each block */
  4209. dst_idx = 0;
  4210. if (direct) {
  4211. if (twomv) {
  4212. for (i = 0; i < 4; i++) {
  4213. vc1_mc_4mv_luma(v, i, 0, 0);
  4214. vc1_mc_4mv_luma(v, i, 1, 1);
  4215. }
  4216. vc1_mc_4mv_chroma4(v);
  4217. } else {
  4218. vc1_mc_1mv(v, 0);
  4219. vc1_interp_mc(v);
  4220. }
  4221. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  4222. mvbp = v->fourmvbp;
  4223. for (i = 0; i < 4; i++) {
  4224. dir = i==1 || i==3;
  4225. dmv_x = dmv_y = 0;
  4226. val = ((mvbp >> (3 - i)) & 1);
  4227. if (val)
  4228. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4229. j = i > 1 ? 2 : 0;
  4230. vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  4231. vc1_mc_4mv_luma(v, j, dir, dir);
  4232. vc1_mc_4mv_luma(v, j+1, dir, dir);
  4233. }
  4234. vc1_mc_4mv_chroma4(v);
  4235. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  4236. mvbp = v->twomvbp;
  4237. dmv_x = dmv_y = 0;
  4238. if (mvbp & 2)
  4239. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4240. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  4241. vc1_mc_1mv(v, 0);
  4242. dmv_x = dmv_y = 0;
  4243. if (mvbp & 1)
  4244. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4245. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  4246. vc1_interp_mc(v);
  4247. } else if (twomv) {
  4248. dir = bmvtype == BMV_TYPE_BACKWARD;
  4249. dir2 = dir;
  4250. if (mvsw)
  4251. dir2 = !dir;
  4252. mvbp = v->twomvbp;
  4253. dmv_x = dmv_y = 0;
  4254. if (mvbp & 2)
  4255. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4256. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  4257. dmv_x = dmv_y = 0;
  4258. if (mvbp & 1)
  4259. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4260. vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  4261. if (mvsw) {
  4262. for (i = 0; i < 2; i++) {
  4263. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  4264. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  4265. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  4266. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  4267. }
  4268. } else {
  4269. vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  4270. vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  4271. }
  4272. vc1_mc_4mv_luma(v, 0, dir, 0);
  4273. vc1_mc_4mv_luma(v, 1, dir, 0);
  4274. vc1_mc_4mv_luma(v, 2, dir2, 0);
  4275. vc1_mc_4mv_luma(v, 3, dir2, 0);
  4276. vc1_mc_4mv_chroma4(v);
  4277. } else {
  4278. dir = bmvtype == BMV_TYPE_BACKWARD;
  4279. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  4280. dmv_x = dmv_y = 0;
  4281. if (mvbp)
  4282. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  4283. vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  4284. v->blk_mv_type[s->block_index[0]] = 1;
  4285. v->blk_mv_type[s->block_index[1]] = 1;
  4286. v->blk_mv_type[s->block_index[2]] = 1;
  4287. v->blk_mv_type[s->block_index[3]] = 1;
  4288. vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  4289. for (i = 0; i < 2; i++) {
  4290. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  4291. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  4292. }
  4293. vc1_mc_1mv(v, dir);
  4294. }
  4295. if (cbp)
  4296. GET_MQUANT(); // p. 227
  4297. s->current_picture.qscale_table[mb_pos] = mquant;
  4298. if (!v->ttmbf && cbp)
  4299. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  4300. for (i = 0; i < 6; i++) {
  4301. s->dc_val[0][s->block_index[i]] = 0;
  4302. dst_idx += i >> 2;
  4303. val = ((cbp >> (5 - i)) & 1);
  4304. if (!fieldtx)
  4305. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  4306. else
  4307. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  4308. if (val) {
  4309. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  4310. first_block, s->dest[dst_idx] + off,
  4311. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  4312. (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
  4313. block_cbp |= pat << (i << 2);
  4314. if (!v->ttmbf && ttmb < 8)
  4315. ttmb = -1;
  4316. first_block = 0;
  4317. }
  4318. }
  4319. } else { // skipped
  4320. dir = 0;
  4321. for (i = 0; i < 6; i++) {
  4322. v->mb_type[0][s->block_index[i]] = 0;
  4323. s->dc_val[0][s->block_index[i]] = 0;
  4324. }
  4325. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  4326. s->current_picture.qscale_table[mb_pos] = 0;
  4327. v->blk_mv_type[s->block_index[0]] = 0;
  4328. v->blk_mv_type[s->block_index[1]] = 0;
  4329. v->blk_mv_type[s->block_index[2]] = 0;
  4330. v->blk_mv_type[s->block_index[3]] = 0;
  4331. if (!direct) {
  4332. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  4333. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  4334. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  4335. } else {
  4336. dir = bmvtype == BMV_TYPE_BACKWARD;
  4337. vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  4338. if (mvsw) {
  4339. int dir2 = dir;
  4340. if (mvsw)
  4341. dir2 = !dir;
  4342. for (i = 0; i < 2; i++) {
  4343. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  4344. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  4345. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  4346. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  4347. }
  4348. } else {
  4349. v->blk_mv_type[s->block_index[0]] = 1;
  4350. v->blk_mv_type[s->block_index[1]] = 1;
  4351. v->blk_mv_type[s->block_index[2]] = 1;
  4352. v->blk_mv_type[s->block_index[3]] = 1;
  4353. vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  4354. for (i = 0; i < 2; i++) {
  4355. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  4356. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  4357. }
  4358. }
  4359. }
  4360. }
  4361. vc1_mc_1mv(v, dir);
  4362. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  4363. vc1_interp_mc(v);
  4364. }
  4365. }
  4366. }
  4367. if (s->mb_x == s->mb_width - 1)
  4368. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  4369. v->cbp[s->mb_x] = block_cbp;
  4370. v->ttblk[s->mb_x] = block_tt;
  4371. return 0;
  4372. }
  4373. /** Decode blocks of I-frame
  4374. */
  4375. static void vc1_decode_i_blocks(VC1Context *v)
  4376. {
  4377. int k, j;
  4378. MpegEncContext *s = &v->s;
  4379. int cbp, val;
  4380. uint8_t *coded_val;
  4381. int mb_pos;
  4382. /* select codingmode used for VLC tables selection */
  4383. switch (v->y_ac_table_index) {
  4384. case 0:
  4385. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4386. break;
  4387. case 1:
  4388. v->codingset = CS_HIGH_MOT_INTRA;
  4389. break;
  4390. case 2:
  4391. v->codingset = CS_MID_RATE_INTRA;
  4392. break;
  4393. }
  4394. switch (v->c_ac_table_index) {
  4395. case 0:
  4396. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4397. break;
  4398. case 1:
  4399. v->codingset2 = CS_HIGH_MOT_INTER;
  4400. break;
  4401. case 2:
  4402. v->codingset2 = CS_MID_RATE_INTER;
  4403. break;
  4404. }
  4405. /* Set DC scale - y and c use the same */
  4406. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  4407. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  4408. //do frame decode
  4409. s->mb_x = s->mb_y = 0;
  4410. s->mb_intra = 1;
  4411. s->first_slice_line = 1;
  4412. for (s->mb_y = 0; s->mb_y < s->end_mb_y; s->mb_y++) {
  4413. s->mb_x = 0;
  4414. init_block_index(v);
  4415. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  4416. uint8_t *dst[6];
  4417. ff_update_block_index(s);
  4418. dst[0] = s->dest[0];
  4419. dst[1] = dst[0] + 8;
  4420. dst[2] = s->dest[0] + s->linesize * 8;
  4421. dst[3] = dst[2] + 8;
  4422. dst[4] = s->dest[1];
  4423. dst[5] = s->dest[2];
  4424. s->dsp.clear_blocks(s->block[0]);
  4425. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  4426. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  4427. s->current_picture.qscale_table[mb_pos] = v->pq;
  4428. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  4429. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  4430. // do actual MB decoding and displaying
  4431. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4432. v->s.ac_pred = get_bits1(&v->s.gb);
  4433. for (k = 0; k < 6; k++) {
  4434. val = ((cbp >> (5 - k)) & 1);
  4435. if (k < 4) {
  4436. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4437. val = val ^ pred;
  4438. *coded_val = val;
  4439. }
  4440. cbp |= val << (5 - k);
  4441. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  4442. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4443. continue;
  4444. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  4445. if (v->pq >= 9 && v->overlap) {
  4446. if (v->rangeredfrm)
  4447. for (j = 0; j < 64; j++)
  4448. s->block[k][j] <<= 1;
  4449. s->dsp.put_signed_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4450. } else {
  4451. if (v->rangeredfrm)
  4452. for (j = 0; j < 64; j++)
  4453. s->block[k][j] = (s->block[k][j] - 64) << 1;
  4454. s->dsp.put_pixels_clamped(s->block[k], dst[k], k & 4 ? s->uvlinesize : s->linesize);
  4455. }
  4456. }
  4457. if (v->pq >= 9 && v->overlap) {
  4458. if (s->mb_x) {
  4459. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  4460. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4461. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4462. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  4463. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  4464. }
  4465. }
  4466. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  4467. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4468. if (!s->first_slice_line) {
  4469. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  4470. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  4471. if (!(s->flags & CODEC_FLAG_GRAY)) {
  4472. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  4473. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  4474. }
  4475. }
  4476. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  4477. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  4478. }
  4479. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4480. if (get_bits_count(&s->gb) > v->bits) {
  4481. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  4482. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4483. get_bits_count(&s->gb), v->bits);
  4484. return;
  4485. }
  4486. }
  4487. if (!v->s.loop_filter)
  4488. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4489. else if (s->mb_y)
  4490. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4491. s->first_slice_line = 0;
  4492. }
  4493. if (v->s.loop_filter)
  4494. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4495. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  4496. * profile, these only differ are when decoding MSS2 rectangles. */
  4497. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  4498. }
  4499. /** Decode blocks of I-frame for advanced profile
  4500. */
  4501. static void vc1_decode_i_blocks_adv(VC1Context *v)
  4502. {
  4503. int k;
  4504. MpegEncContext *s = &v->s;
  4505. int cbp, val;
  4506. uint8_t *coded_val;
  4507. int mb_pos;
  4508. int mquant = v->pq;
  4509. int mqdiff;
  4510. GetBitContext *gb = &s->gb;
  4511. /* select codingmode used for VLC tables selection */
  4512. switch (v->y_ac_table_index) {
  4513. case 0:
  4514. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4515. break;
  4516. case 1:
  4517. v->codingset = CS_HIGH_MOT_INTRA;
  4518. break;
  4519. case 2:
  4520. v->codingset = CS_MID_RATE_INTRA;
  4521. break;
  4522. }
  4523. switch (v->c_ac_table_index) {
  4524. case 0:
  4525. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4526. break;
  4527. case 1:
  4528. v->codingset2 = CS_HIGH_MOT_INTER;
  4529. break;
  4530. case 2:
  4531. v->codingset2 = CS_MID_RATE_INTER;
  4532. break;
  4533. }
  4534. // do frame decode
  4535. s->mb_x = s->mb_y = 0;
  4536. s->mb_intra = 1;
  4537. s->first_slice_line = 1;
  4538. s->mb_y = s->start_mb_y;
  4539. if (s->start_mb_y) {
  4540. s->mb_x = 0;
  4541. init_block_index(v);
  4542. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  4543. (1 + s->b8_stride) * sizeof(*s->coded_block));
  4544. }
  4545. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  4546. s->mb_x = 0;
  4547. init_block_index(v);
  4548. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4549. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  4550. ff_update_block_index(s);
  4551. s->dsp.clear_blocks(block[0]);
  4552. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  4553. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  4554. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  4555. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  4556. // do actual MB decoding and displaying
  4557. if (v->fieldtx_is_raw)
  4558. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  4559. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  4560. if ( v->acpred_is_raw)
  4561. v->s.ac_pred = get_bits1(&v->s.gb);
  4562. else
  4563. v->s.ac_pred = v->acpred_plane[mb_pos];
  4564. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  4565. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  4566. GET_MQUANT();
  4567. s->current_picture.qscale_table[mb_pos] = mquant;
  4568. /* Set DC scale - y and c use the same */
  4569. s->y_dc_scale = s->y_dc_scale_table[mquant];
  4570. s->c_dc_scale = s->c_dc_scale_table[mquant];
  4571. for (k = 0; k < 6; k++) {
  4572. val = ((cbp >> (5 - k)) & 1);
  4573. if (k < 4) {
  4574. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  4575. val = val ^ pred;
  4576. *coded_val = val;
  4577. }
  4578. cbp |= val << (5 - k);
  4579. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  4580. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  4581. vc1_decode_i_block_adv(v, block[k], k, val,
  4582. (k < 4) ? v->codingset : v->codingset2, mquant);
  4583. if (k > 3 && (s->flags & CODEC_FLAG_GRAY))
  4584. continue;
  4585. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  4586. }
  4587. vc1_smooth_overlap_filter_iblk(v);
  4588. vc1_put_signed_blocks_clamped(v);
  4589. if (v->s.loop_filter) vc1_loop_filter_iblk_delayed(v, v->pq);
  4590. if (get_bits_count(&s->gb) > v->bits) {
  4591. // TODO: may need modification to handle slice coding
  4592. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4593. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  4594. get_bits_count(&s->gb), v->bits);
  4595. return;
  4596. }
  4597. }
  4598. if (!v->s.loop_filter)
  4599. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4600. else if (s->mb_y)
  4601. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  4602. s->first_slice_line = 0;
  4603. }
  4604. /* raw bottom MB row */
  4605. s->mb_x = 0;
  4606. init_block_index(v);
  4607. for (;s->mb_x < s->mb_width; s->mb_x++) {
  4608. ff_update_block_index(s);
  4609. vc1_put_signed_blocks_clamped(v);
  4610. if (v->s.loop_filter)
  4611. vc1_loop_filter_iblk_delayed(v, v->pq);
  4612. }
  4613. if (v->s.loop_filter)
  4614. ff_mpeg_draw_horiz_band(s, (s->end_mb_y-1)*16, 16);
  4615. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4616. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4617. }
  4618. static void vc1_decode_p_blocks(VC1Context *v)
  4619. {
  4620. MpegEncContext *s = &v->s;
  4621. int apply_loop_filter;
  4622. /* select codingmode used for VLC tables selection */
  4623. switch (v->c_ac_table_index) {
  4624. case 0:
  4625. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4626. break;
  4627. case 1:
  4628. v->codingset = CS_HIGH_MOT_INTRA;
  4629. break;
  4630. case 2:
  4631. v->codingset = CS_MID_RATE_INTRA;
  4632. break;
  4633. }
  4634. switch (v->c_ac_table_index) {
  4635. case 0:
  4636. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4637. break;
  4638. case 1:
  4639. v->codingset2 = CS_HIGH_MOT_INTER;
  4640. break;
  4641. case 2:
  4642. v->codingset2 = CS_MID_RATE_INTER;
  4643. break;
  4644. }
  4645. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY) &&
  4646. v->fcm == PROGRESSIVE;
  4647. s->first_slice_line = 1;
  4648. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  4649. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4650. s->mb_x = 0;
  4651. init_block_index(v);
  4652. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4653. ff_update_block_index(s);
  4654. if (v->fcm == ILACE_FIELD)
  4655. vc1_decode_p_mb_intfi(v);
  4656. else if (v->fcm == ILACE_FRAME)
  4657. vc1_decode_p_mb_intfr(v);
  4658. else vc1_decode_p_mb(v);
  4659. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  4660. vc1_apply_p_loop_filter(v);
  4661. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4662. // TODO: may need modification to handle slice coding
  4663. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4664. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4665. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4666. return;
  4667. }
  4668. }
  4669. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  4670. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  4671. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  4672. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  4673. if (s->mb_y != s->start_mb_y) ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4674. s->first_slice_line = 0;
  4675. }
  4676. if (apply_loop_filter) {
  4677. s->mb_x = 0;
  4678. init_block_index(v);
  4679. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4680. ff_update_block_index(s);
  4681. vc1_apply_p_loop_filter(v);
  4682. }
  4683. }
  4684. if (s->end_mb_y >= s->start_mb_y)
  4685. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4686. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4687. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4688. }
  4689. static void vc1_decode_b_blocks(VC1Context *v)
  4690. {
  4691. MpegEncContext *s = &v->s;
  4692. /* select codingmode used for VLC tables selection */
  4693. switch (v->c_ac_table_index) {
  4694. case 0:
  4695. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  4696. break;
  4697. case 1:
  4698. v->codingset = CS_HIGH_MOT_INTRA;
  4699. break;
  4700. case 2:
  4701. v->codingset = CS_MID_RATE_INTRA;
  4702. break;
  4703. }
  4704. switch (v->c_ac_table_index) {
  4705. case 0:
  4706. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  4707. break;
  4708. case 1:
  4709. v->codingset2 = CS_HIGH_MOT_INTER;
  4710. break;
  4711. case 2:
  4712. v->codingset2 = CS_MID_RATE_INTER;
  4713. break;
  4714. }
  4715. s->first_slice_line = 1;
  4716. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4717. s->mb_x = 0;
  4718. init_block_index(v);
  4719. for (; s->mb_x < s->mb_width; s->mb_x++) {
  4720. ff_update_block_index(s);
  4721. if (v->fcm == ILACE_FIELD)
  4722. vc1_decode_b_mb_intfi(v);
  4723. else if (v->fcm == ILACE_FRAME)
  4724. vc1_decode_b_mb_intfr(v);
  4725. else
  4726. vc1_decode_b_mb(v);
  4727. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  4728. // TODO: may need modification to handle slice coding
  4729. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  4730. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  4731. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  4732. return;
  4733. }
  4734. if (v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  4735. }
  4736. if (!v->s.loop_filter)
  4737. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4738. else if (s->mb_y)
  4739. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  4740. s->first_slice_line = 0;
  4741. }
  4742. if (v->s.loop_filter)
  4743. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  4744. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  4745. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  4746. }
  4747. static void vc1_decode_skip_blocks(VC1Context *v)
  4748. {
  4749. MpegEncContext *s = &v->s;
  4750. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  4751. s->first_slice_line = 1;
  4752. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  4753. s->mb_x = 0;
  4754. init_block_index(v);
  4755. ff_update_block_index(s);
  4756. memcpy(s->dest[0], s->last_picture.f.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  4757. memcpy(s->dest[1], s->last_picture.f.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4758. memcpy(s->dest[2], s->last_picture.f.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  4759. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  4760. s->first_slice_line = 0;
  4761. }
  4762. s->pict_type = AV_PICTURE_TYPE_P;
  4763. }
  4764. void ff_vc1_decode_blocks(VC1Context *v)
  4765. {
  4766. v->s.esc3_level_length = 0;
  4767. if (v->x8_type) {
  4768. ff_intrax8_decode_picture(&v->x8, 2*v->pq + v->halfpq, v->pq * !v->pquantizer);
  4769. } else {
  4770. v->cur_blk_idx = 0;
  4771. v->left_blk_idx = -1;
  4772. v->topleft_blk_idx = 1;
  4773. v->top_blk_idx = 2;
  4774. switch (v->s.pict_type) {
  4775. case AV_PICTURE_TYPE_I:
  4776. if (v->profile == PROFILE_ADVANCED)
  4777. vc1_decode_i_blocks_adv(v);
  4778. else
  4779. vc1_decode_i_blocks(v);
  4780. break;
  4781. case AV_PICTURE_TYPE_P:
  4782. if (v->p_frame_skipped)
  4783. vc1_decode_skip_blocks(v);
  4784. else
  4785. vc1_decode_p_blocks(v);
  4786. break;
  4787. case AV_PICTURE_TYPE_B:
  4788. if (v->bi_type) {
  4789. if (v->profile == PROFILE_ADVANCED)
  4790. vc1_decode_i_blocks_adv(v);
  4791. else
  4792. vc1_decode_i_blocks(v);
  4793. } else
  4794. vc1_decode_b_blocks(v);
  4795. break;
  4796. }
  4797. }
  4798. }
  4799. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  4800. typedef struct {
  4801. /**
  4802. * Transform coefficients for both sprites in 16.16 fixed point format,
  4803. * in the order they appear in the bitstream:
  4804. * x scale
  4805. * rotation 1 (unused)
  4806. * x offset
  4807. * rotation 2 (unused)
  4808. * y scale
  4809. * y offset
  4810. * alpha
  4811. */
  4812. int coefs[2][7];
  4813. int effect_type, effect_flag;
  4814. int effect_pcount1, effect_pcount2; ///< amount of effect parameters stored in effect_params
  4815. int effect_params1[15], effect_params2[10]; ///< effect parameters in 16.16 fixed point format
  4816. } SpriteData;
  4817. static inline int get_fp_val(GetBitContext* gb)
  4818. {
  4819. return (get_bits_long(gb, 30) - (1 << 29)) << 1;
  4820. }
  4821. static void vc1_sprite_parse_transform(GetBitContext* gb, int c[7])
  4822. {
  4823. c[1] = c[3] = 0;
  4824. switch (get_bits(gb, 2)) {
  4825. case 0:
  4826. c[0] = 1 << 16;
  4827. c[2] = get_fp_val(gb);
  4828. c[4] = 1 << 16;
  4829. break;
  4830. case 1:
  4831. c[0] = c[4] = get_fp_val(gb);
  4832. c[2] = get_fp_val(gb);
  4833. break;
  4834. case 2:
  4835. c[0] = get_fp_val(gb);
  4836. c[2] = get_fp_val(gb);
  4837. c[4] = get_fp_val(gb);
  4838. break;
  4839. case 3:
  4840. c[0] = get_fp_val(gb);
  4841. c[1] = get_fp_val(gb);
  4842. c[2] = get_fp_val(gb);
  4843. c[3] = get_fp_val(gb);
  4844. c[4] = get_fp_val(gb);
  4845. break;
  4846. }
  4847. c[5] = get_fp_val(gb);
  4848. if (get_bits1(gb))
  4849. c[6] = get_fp_val(gb);
  4850. else
  4851. c[6] = 1 << 16;
  4852. }
  4853. static void vc1_parse_sprites(VC1Context *v, GetBitContext* gb, SpriteData* sd)
  4854. {
  4855. AVCodecContext *avctx = v->s.avctx;
  4856. int sprite, i;
  4857. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4858. vc1_sprite_parse_transform(gb, sd->coefs[sprite]);
  4859. if (sd->coefs[sprite][1] || sd->coefs[sprite][3])
  4860. avpriv_request_sample(avctx, "Non-zero rotation coefficients");
  4861. av_log(avctx, AV_LOG_DEBUG, sprite ? "S2:" : "S1:");
  4862. for (i = 0; i < 7; i++)
  4863. av_log(avctx, AV_LOG_DEBUG, " %d.%.3d",
  4864. sd->coefs[sprite][i] / (1<<16),
  4865. (abs(sd->coefs[sprite][i]) & 0xFFFF) * 1000 / (1 << 16));
  4866. av_log(avctx, AV_LOG_DEBUG, "\n");
  4867. }
  4868. skip_bits(gb, 2);
  4869. if (sd->effect_type = get_bits_long(gb, 30)) {
  4870. switch (sd->effect_pcount1 = get_bits(gb, 4)) {
  4871. case 7:
  4872. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4873. break;
  4874. case 14:
  4875. vc1_sprite_parse_transform(gb, sd->effect_params1);
  4876. vc1_sprite_parse_transform(gb, sd->effect_params1 + 7);
  4877. break;
  4878. default:
  4879. for (i = 0; i < sd->effect_pcount1; i++)
  4880. sd->effect_params1[i] = get_fp_val(gb);
  4881. }
  4882. if (sd->effect_type != 13 || sd->effect_params1[0] != sd->coefs[0][6]) {
  4883. // effect 13 is simple alpha blending and matches the opacity above
  4884. av_log(avctx, AV_LOG_DEBUG, "Effect: %d; params: ", sd->effect_type);
  4885. for (i = 0; i < sd->effect_pcount1; i++)
  4886. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4887. sd->effect_params1[i] / (1 << 16),
  4888. (abs(sd->effect_params1[i]) & 0xFFFF) * 1000 / (1 << 16));
  4889. av_log(avctx, AV_LOG_DEBUG, "\n");
  4890. }
  4891. sd->effect_pcount2 = get_bits(gb, 16);
  4892. if (sd->effect_pcount2 > 10) {
  4893. av_log(avctx, AV_LOG_ERROR, "Too many effect parameters\n");
  4894. return;
  4895. } else if (sd->effect_pcount2) {
  4896. i = -1;
  4897. av_log(avctx, AV_LOG_DEBUG, "Effect params 2: ");
  4898. while (++i < sd->effect_pcount2) {
  4899. sd->effect_params2[i] = get_fp_val(gb);
  4900. av_log(avctx, AV_LOG_DEBUG, " %d.%.2d",
  4901. sd->effect_params2[i] / (1 << 16),
  4902. (abs(sd->effect_params2[i]) & 0xFFFF) * 1000 / (1 << 16));
  4903. }
  4904. av_log(avctx, AV_LOG_DEBUG, "\n");
  4905. }
  4906. }
  4907. if (sd->effect_flag = get_bits1(gb))
  4908. av_log(avctx, AV_LOG_DEBUG, "Effect flag set\n");
  4909. if (get_bits_count(gb) >= gb->size_in_bits +
  4910. (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE ? 64 : 0))
  4911. av_log(avctx, AV_LOG_ERROR, "Buffer overrun\n");
  4912. if (get_bits_count(gb) < gb->size_in_bits - 8)
  4913. av_log(avctx, AV_LOG_WARNING, "Buffer not fully read\n");
  4914. }
  4915. static void vc1_draw_sprites(VC1Context *v, SpriteData* sd)
  4916. {
  4917. int i, plane, row, sprite;
  4918. int sr_cache[2][2] = { { -1, -1 }, { -1, -1 } };
  4919. uint8_t* src_h[2][2];
  4920. int xoff[2], xadv[2], yoff[2], yadv[2], alpha;
  4921. int ysub[2];
  4922. MpegEncContext *s = &v->s;
  4923. for (i = 0; i < 2; i++) {
  4924. xoff[i] = av_clip(sd->coefs[i][2], 0, v->sprite_width-1 << 16);
  4925. xadv[i] = sd->coefs[i][0];
  4926. if (xadv[i] != 1<<16 || (v->sprite_width << 16) - (v->output_width << 16) - xoff[i])
  4927. xadv[i] = av_clip(xadv[i], 0, ((v->sprite_width<<16) - xoff[i] - 1) / v->output_width);
  4928. yoff[i] = av_clip(sd->coefs[i][5], 0, v->sprite_height-1 << 16);
  4929. yadv[i] = av_clip(sd->coefs[i][4], 0, ((v->sprite_height << 16) - yoff[i]) / v->output_height);
  4930. }
  4931. alpha = av_clip(sd->coefs[1][6], 0, (1<<16) - 1);
  4932. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++) {
  4933. int width = v->output_width>>!!plane;
  4934. for (row = 0; row < v->output_height>>!!plane; row++) {
  4935. uint8_t *dst = v->sprite_output_frame.data[plane] +
  4936. v->sprite_output_frame.linesize[plane] * row;
  4937. for (sprite = 0; sprite <= v->two_sprites; sprite++) {
  4938. uint8_t *iplane = s->current_picture.f.data[plane];
  4939. int iline = s->current_picture.f.linesize[plane];
  4940. int ycoord = yoff[sprite] + yadv[sprite] * row;
  4941. int yline = ycoord >> 16;
  4942. int next_line;
  4943. ysub[sprite] = ycoord & 0xFFFF;
  4944. if (sprite) {
  4945. iplane = s->last_picture.f.data[plane];
  4946. iline = s->last_picture.f.linesize[plane];
  4947. }
  4948. next_line = FFMIN(yline + 1, (v->sprite_height >> !!plane) - 1) * iline;
  4949. if (!(xoff[sprite] & 0xFFFF) && xadv[sprite] == 1 << 16) {
  4950. src_h[sprite][0] = iplane + (xoff[sprite] >> 16) + yline * iline;
  4951. if (ysub[sprite])
  4952. src_h[sprite][1] = iplane + (xoff[sprite] >> 16) + next_line;
  4953. } else {
  4954. if (sr_cache[sprite][0] != yline) {
  4955. if (sr_cache[sprite][1] == yline) {
  4956. FFSWAP(uint8_t*, v->sr_rows[sprite][0], v->sr_rows[sprite][1]);
  4957. FFSWAP(int, sr_cache[sprite][0], sr_cache[sprite][1]);
  4958. } else {
  4959. v->vc1dsp.sprite_h(v->sr_rows[sprite][0], iplane + yline * iline, xoff[sprite], xadv[sprite], width);
  4960. sr_cache[sprite][0] = yline;
  4961. }
  4962. }
  4963. if (ysub[sprite] && sr_cache[sprite][1] != yline + 1) {
  4964. v->vc1dsp.sprite_h(v->sr_rows[sprite][1],
  4965. iplane + next_line, xoff[sprite],
  4966. xadv[sprite], width);
  4967. sr_cache[sprite][1] = yline + 1;
  4968. }
  4969. src_h[sprite][0] = v->sr_rows[sprite][0];
  4970. src_h[sprite][1] = v->sr_rows[sprite][1];
  4971. }
  4972. }
  4973. if (!v->two_sprites) {
  4974. if (ysub[0]) {
  4975. v->vc1dsp.sprite_v_single(dst, src_h[0][0], src_h[0][1], ysub[0], width);
  4976. } else {
  4977. memcpy(dst, src_h[0][0], width);
  4978. }
  4979. } else {
  4980. if (ysub[0] && ysub[1]) {
  4981. v->vc1dsp.sprite_v_double_twoscale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4982. src_h[1][0], src_h[1][1], ysub[1], alpha, width);
  4983. } else if (ysub[0]) {
  4984. v->vc1dsp.sprite_v_double_onescale(dst, src_h[0][0], src_h[0][1], ysub[0],
  4985. src_h[1][0], alpha, width);
  4986. } else if (ysub[1]) {
  4987. v->vc1dsp.sprite_v_double_onescale(dst, src_h[1][0], src_h[1][1], ysub[1],
  4988. src_h[0][0], (1<<16)-1-alpha, width);
  4989. } else {
  4990. v->vc1dsp.sprite_v_double_noscale(dst, src_h[0][0], src_h[1][0], alpha, width);
  4991. }
  4992. }
  4993. }
  4994. if (!plane) {
  4995. for (i = 0; i < 2; i++) {
  4996. xoff[i] >>= 1;
  4997. yoff[i] >>= 1;
  4998. }
  4999. }
  5000. }
  5001. }
  5002. static int vc1_decode_sprites(VC1Context *v, GetBitContext* gb)
  5003. {
  5004. MpegEncContext *s = &v->s;
  5005. AVCodecContext *avctx = s->avctx;
  5006. SpriteData sd;
  5007. vc1_parse_sprites(v, gb, &sd);
  5008. if (!s->current_picture.f.data[0]) {
  5009. av_log(avctx, AV_LOG_ERROR, "Got no sprites\n");
  5010. return -1;
  5011. }
  5012. if (v->two_sprites && (!s->last_picture_ptr || !s->last_picture.f.data[0])) {
  5013. av_log(avctx, AV_LOG_WARNING, "Need two sprites, only got one\n");
  5014. v->two_sprites = 0;
  5015. }
  5016. av_frame_unref(&v->sprite_output_frame);
  5017. if (ff_get_buffer(avctx, &v->sprite_output_frame, 0) < 0) {
  5018. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  5019. return -1;
  5020. }
  5021. vc1_draw_sprites(v, &sd);
  5022. return 0;
  5023. }
  5024. static void vc1_sprite_flush(AVCodecContext *avctx)
  5025. {
  5026. VC1Context *v = avctx->priv_data;
  5027. MpegEncContext *s = &v->s;
  5028. AVFrame *f = &s->current_picture.f;
  5029. int plane, i;
  5030. /* Windows Media Image codecs have a convergence interval of two keyframes.
  5031. Since we can't enforce it, clear to black the missing sprite. This is
  5032. wrong but it looks better than doing nothing. */
  5033. if (f->data[0])
  5034. for (plane = 0; plane < (s->flags&CODEC_FLAG_GRAY ? 1 : 3); plane++)
  5035. for (i = 0; i < v->sprite_height>>!!plane; i++)
  5036. memset(f->data[plane] + i * f->linesize[plane],
  5037. plane ? 128 : 0, f->linesize[plane]);
  5038. }
  5039. #endif
  5040. av_cold int ff_vc1_decode_init_alloc_tables(VC1Context *v)
  5041. {
  5042. MpegEncContext *s = &v->s;
  5043. int i;
  5044. /* Allocate mb bitplanes */
  5045. v->mv_type_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  5046. v->direct_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  5047. v->forward_mb_plane = av_malloc (s->mb_stride * s->mb_height);
  5048. v->fieldtx_plane = av_mallocz(s->mb_stride * s->mb_height);
  5049. v->acpred_plane = av_malloc (s->mb_stride * s->mb_height);
  5050. v->over_flags_plane = av_malloc (s->mb_stride * s->mb_height);
  5051. v->n_allocated_blks = s->mb_width + 2;
  5052. v->block = av_malloc(sizeof(*v->block) * v->n_allocated_blks);
  5053. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  5054. v->cbp = v->cbp_base + s->mb_stride;
  5055. v->ttblk_base = av_malloc(sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  5056. v->ttblk = v->ttblk_base + s->mb_stride;
  5057. v->is_intra_base = av_mallocz(sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  5058. v->is_intra = v->is_intra_base + s->mb_stride;
  5059. v->luma_mv_base = av_malloc(sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  5060. v->luma_mv = v->luma_mv_base + s->mb_stride;
  5061. /* allocate block type info in that way so it could be used with s->block_index[] */
  5062. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  5063. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  5064. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  5065. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  5066. /* allocate memory to store block level MV info */
  5067. v->blk_mv_type_base = av_mallocz( s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  5068. v->blk_mv_type = v->blk_mv_type_base + s->b8_stride + 1;
  5069. v->mv_f_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  5070. v->mv_f[0] = v->mv_f_base + s->b8_stride + 1;
  5071. v->mv_f[1] = v->mv_f[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  5072. v->mv_f_next_base = av_mallocz(2 * (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2));
  5073. v->mv_f_next[0] = v->mv_f_next_base + s->b8_stride + 1;
  5074. v->mv_f_next[1] = v->mv_f_next[0] + (s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  5075. /* Init coded blocks info */
  5076. if (v->profile == PROFILE_ADVANCED) {
  5077. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  5078. // return -1;
  5079. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  5080. // return -1;
  5081. }
  5082. ff_intrax8_common_init(&v->x8,s);
  5083. if (s->avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || s->avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5084. for (i = 0; i < 4; i++)
  5085. if (!(v->sr_rows[i >> 1][i & 1] = av_malloc(v->output_width))) return -1;
  5086. }
  5087. if (!v->mv_type_mb_plane || !v->direct_mb_plane || !v->acpred_plane || !v->over_flags_plane ||
  5088. !v->block || !v->cbp_base || !v->ttblk_base || !v->is_intra_base || !v->luma_mv_base ||
  5089. !v->mb_type_base)
  5090. return -1;
  5091. return 0;
  5092. }
  5093. av_cold void ff_vc1_init_transposed_scantables(VC1Context *v)
  5094. {
  5095. int i;
  5096. for (i = 0; i < 64; i++) {
  5097. #define transpose(x) ((x >> 3) | ((x & 7) << 3))
  5098. v->zz_8x8[0][i] = transpose(ff_wmv1_scantable[0][i]);
  5099. v->zz_8x8[1][i] = transpose(ff_wmv1_scantable[1][i]);
  5100. v->zz_8x8[2][i] = transpose(ff_wmv1_scantable[2][i]);
  5101. v->zz_8x8[3][i] = transpose(ff_wmv1_scantable[3][i]);
  5102. v->zzi_8x8[i] = transpose(ff_vc1_adv_interlaced_8x8_zz[i]);
  5103. }
  5104. v->left_blk_sh = 0;
  5105. v->top_blk_sh = 3;
  5106. }
  5107. /** Initialize a VC1/WMV3 decoder
  5108. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  5109. * @todo TODO: Decypher remaining bits in extra_data
  5110. */
  5111. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  5112. {
  5113. VC1Context *v = avctx->priv_data;
  5114. MpegEncContext *s = &v->s;
  5115. GetBitContext gb;
  5116. /* save the container output size for WMImage */
  5117. v->output_width = avctx->width;
  5118. v->output_height = avctx->height;
  5119. if (!avctx->extradata_size || !avctx->extradata)
  5120. return -1;
  5121. if (!(avctx->flags & CODEC_FLAG_GRAY))
  5122. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  5123. else
  5124. avctx->pix_fmt = AV_PIX_FMT_GRAY8;
  5125. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  5126. v->s.avctx = avctx;
  5127. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  5128. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  5129. if (ff_vc1_init_common(v) < 0)
  5130. return -1;
  5131. ff_h264chroma_init(&v->h264chroma, 8);
  5132. ff_vc1dsp_init(&v->vc1dsp);
  5133. if (avctx->codec_id == AV_CODEC_ID_WMV3 || avctx->codec_id == AV_CODEC_ID_WMV3IMAGE) {
  5134. int count = 0;
  5135. // looks like WMV3 has a sequence header stored in the extradata
  5136. // advanced sequence header may be before the first frame
  5137. // the last byte of the extradata is a version number, 1 for the
  5138. // samples we can decode
  5139. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  5140. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0)
  5141. return -1;
  5142. count = avctx->extradata_size*8 - get_bits_count(&gb);
  5143. if (count > 0) {
  5144. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  5145. count, get_bits(&gb, count));
  5146. } else if (count < 0) {
  5147. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  5148. }
  5149. } else { // VC1/WVC1/WVP2
  5150. const uint8_t *start = avctx->extradata;
  5151. uint8_t *end = avctx->extradata + avctx->extradata_size;
  5152. const uint8_t *next;
  5153. int size, buf2_size;
  5154. uint8_t *buf2 = NULL;
  5155. int seq_initialized = 0, ep_initialized = 0;
  5156. if (avctx->extradata_size < 16) {
  5157. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  5158. return -1;
  5159. }
  5160. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5161. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  5162. next = start;
  5163. for (; next < end; start = next) {
  5164. next = find_next_marker(start + 4, end);
  5165. size = next - start - 4;
  5166. if (size <= 0)
  5167. continue;
  5168. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  5169. init_get_bits(&gb, buf2, buf2_size * 8);
  5170. switch (AV_RB32(start)) {
  5171. case VC1_CODE_SEQHDR:
  5172. if (ff_vc1_decode_sequence_header(avctx, v, &gb) < 0) {
  5173. av_free(buf2);
  5174. return -1;
  5175. }
  5176. seq_initialized = 1;
  5177. break;
  5178. case VC1_CODE_ENTRYPOINT:
  5179. if (ff_vc1_decode_entry_point(avctx, v, &gb) < 0) {
  5180. av_free(buf2);
  5181. return -1;
  5182. }
  5183. ep_initialized = 1;
  5184. break;
  5185. }
  5186. }
  5187. av_free(buf2);
  5188. if (!seq_initialized || !ep_initialized) {
  5189. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  5190. return -1;
  5191. }
  5192. v->res_sprite = (avctx->codec_id == AV_CODEC_ID_VC1IMAGE);
  5193. }
  5194. avctx->profile = v->profile;
  5195. if (v->profile == PROFILE_ADVANCED)
  5196. avctx->level = v->level;
  5197. avctx->has_b_frames = !!avctx->max_b_frames;
  5198. s->mb_width = (avctx->coded_width + 15) >> 4;
  5199. s->mb_height = (avctx->coded_height + 15) >> 4;
  5200. if (v->profile == PROFILE_ADVANCED || v->res_fasttx) {
  5201. ff_vc1_init_transposed_scantables(v);
  5202. } else {
  5203. memcpy(v->zz_8x8, ff_wmv1_scantable, 4*64);
  5204. v->left_blk_sh = 3;
  5205. v->top_blk_sh = 0;
  5206. }
  5207. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5208. v->sprite_width = avctx->coded_width;
  5209. v->sprite_height = avctx->coded_height;
  5210. avctx->coded_width = avctx->width = v->output_width;
  5211. avctx->coded_height = avctx->height = v->output_height;
  5212. // prevent 16.16 overflows
  5213. if (v->sprite_width > 1 << 14 ||
  5214. v->sprite_height > 1 << 14 ||
  5215. v->output_width > 1 << 14 ||
  5216. v->output_height > 1 << 14) return -1;
  5217. }
  5218. return 0;
  5219. }
  5220. /** Close a VC1/WMV3 decoder
  5221. * @warning Initial try at using MpegEncContext stuff
  5222. */
  5223. av_cold int ff_vc1_decode_end(AVCodecContext *avctx)
  5224. {
  5225. VC1Context *v = avctx->priv_data;
  5226. int i;
  5227. av_frame_unref(&v->sprite_output_frame);
  5228. for (i = 0; i < 4; i++)
  5229. av_freep(&v->sr_rows[i >> 1][i & 1]);
  5230. av_freep(&v->hrd_rate);
  5231. av_freep(&v->hrd_buffer);
  5232. ff_MPV_common_end(&v->s);
  5233. av_freep(&v->mv_type_mb_plane);
  5234. av_freep(&v->direct_mb_plane);
  5235. av_freep(&v->forward_mb_plane);
  5236. av_freep(&v->fieldtx_plane);
  5237. av_freep(&v->acpred_plane);
  5238. av_freep(&v->over_flags_plane);
  5239. av_freep(&v->mb_type_base);
  5240. av_freep(&v->blk_mv_type_base);
  5241. av_freep(&v->mv_f_base);
  5242. av_freep(&v->mv_f_next_base);
  5243. av_freep(&v->block);
  5244. av_freep(&v->cbp_base);
  5245. av_freep(&v->ttblk_base);
  5246. av_freep(&v->is_intra_base); // FIXME use v->mb_type[]
  5247. av_freep(&v->luma_mv_base);
  5248. ff_intrax8_common_end(&v->x8);
  5249. return 0;
  5250. }
  5251. /** Decode a VC1/WMV3 frame
  5252. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  5253. */
  5254. static int vc1_decode_frame(AVCodecContext *avctx, void *data,
  5255. int *got_frame, AVPacket *avpkt)
  5256. {
  5257. const uint8_t *buf = avpkt->data;
  5258. int buf_size = avpkt->size, n_slices = 0, i, ret;
  5259. VC1Context *v = avctx->priv_data;
  5260. MpegEncContext *s = &v->s;
  5261. AVFrame *pict = data;
  5262. uint8_t *buf2 = NULL;
  5263. const uint8_t *buf_start = buf;
  5264. int mb_height, n_slices1;
  5265. struct {
  5266. uint8_t *buf;
  5267. GetBitContext gb;
  5268. int mby_start;
  5269. } *slices = NULL, *tmp;
  5270. /* no supplementary picture */
  5271. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  5272. /* special case for last picture */
  5273. if (s->low_delay == 0 && s->next_picture_ptr) {
  5274. if ((ret = av_frame_ref(pict, &s->next_picture_ptr->f)) < 0)
  5275. return ret;
  5276. s->next_picture_ptr = NULL;
  5277. *got_frame = 1;
  5278. }
  5279. return 0;
  5280. }
  5281. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU) {
  5282. if (v->profile < PROFILE_ADVANCED)
  5283. avctx->pix_fmt = AV_PIX_FMT_VDPAU_WMV3;
  5284. else
  5285. avctx->pix_fmt = AV_PIX_FMT_VDPAU_VC1;
  5286. }
  5287. //for advanced profile we may need to parse and unescape data
  5288. if (avctx->codec_id == AV_CODEC_ID_VC1 || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5289. int buf_size2 = 0;
  5290. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5291. if (IS_MARKER(AV_RB32(buf))) { /* frame starts with marker and needs to be parsed */
  5292. const uint8_t *start, *end, *next;
  5293. int size;
  5294. next = buf;
  5295. for (start = buf, end = buf + buf_size; next < end; start = next) {
  5296. next = find_next_marker(start + 4, end);
  5297. size = next - start - 4;
  5298. if (size <= 0) continue;
  5299. switch (AV_RB32(start)) {
  5300. case VC1_CODE_FRAME:
  5301. if (avctx->hwaccel ||
  5302. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  5303. buf_start = start;
  5304. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  5305. break;
  5306. case VC1_CODE_FIELD: {
  5307. int buf_size3;
  5308. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5309. if (!tmp)
  5310. goto err;
  5311. slices = tmp;
  5312. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5313. if (!slices[n_slices].buf)
  5314. goto err;
  5315. buf_size3 = vc1_unescape_buffer(start + 4, size,
  5316. slices[n_slices].buf);
  5317. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5318. buf_size3 << 3);
  5319. /* assuming that the field marker is at the exact middle,
  5320. hope it's correct */
  5321. slices[n_slices].mby_start = s->mb_height >> 1;
  5322. n_slices1 = n_slices - 1; // index of the last slice of the first field
  5323. n_slices++;
  5324. break;
  5325. }
  5326. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  5327. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  5328. init_get_bits(&s->gb, buf2, buf_size2 * 8);
  5329. ff_vc1_decode_entry_point(avctx, v, &s->gb);
  5330. break;
  5331. case VC1_CODE_SLICE: {
  5332. int buf_size3;
  5333. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5334. if (!tmp)
  5335. goto err;
  5336. slices = tmp;
  5337. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5338. if (!slices[n_slices].buf)
  5339. goto err;
  5340. buf_size3 = vc1_unescape_buffer(start + 4, size,
  5341. slices[n_slices].buf);
  5342. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5343. buf_size3 << 3);
  5344. slices[n_slices].mby_start = get_bits(&slices[n_slices].gb, 9);
  5345. n_slices++;
  5346. break;
  5347. }
  5348. }
  5349. }
  5350. } else if (v->interlace && ((buf[0] & 0xC0) == 0xC0)) { /* WVC1 interlaced stores both fields divided by marker */
  5351. const uint8_t *divider;
  5352. int buf_size3;
  5353. divider = find_next_marker(buf, buf + buf_size);
  5354. if ((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD) {
  5355. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  5356. goto err;
  5357. } else { // found field marker, unescape second field
  5358. tmp = av_realloc(slices, sizeof(*slices) * (n_slices+1));
  5359. if (!tmp)
  5360. goto err;
  5361. slices = tmp;
  5362. slices[n_slices].buf = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  5363. if (!slices[n_slices].buf)
  5364. goto err;
  5365. buf_size3 = vc1_unescape_buffer(divider + 4, buf + buf_size - divider - 4, slices[n_slices].buf);
  5366. init_get_bits(&slices[n_slices].gb, slices[n_slices].buf,
  5367. buf_size3 << 3);
  5368. slices[n_slices].mby_start = s->mb_height >> 1;
  5369. n_slices1 = n_slices - 1;
  5370. n_slices++;
  5371. }
  5372. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  5373. } else {
  5374. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  5375. }
  5376. init_get_bits(&s->gb, buf2, buf_size2*8);
  5377. } else
  5378. init_get_bits(&s->gb, buf, buf_size*8);
  5379. if (v->res_sprite) {
  5380. v->new_sprite = !get_bits1(&s->gb);
  5381. v->two_sprites = get_bits1(&s->gb);
  5382. /* res_sprite means a Windows Media Image stream, AV_CODEC_ID_*IMAGE means
  5383. we're using the sprite compositor. These are intentionally kept separate
  5384. so you can get the raw sprites by using the wmv3 decoder for WMVP or
  5385. the vc1 one for WVP2 */
  5386. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5387. if (v->new_sprite) {
  5388. // switch AVCodecContext parameters to those of the sprites
  5389. avctx->width = avctx->coded_width = v->sprite_width;
  5390. avctx->height = avctx->coded_height = v->sprite_height;
  5391. } else {
  5392. goto image;
  5393. }
  5394. }
  5395. }
  5396. if (s->context_initialized &&
  5397. (s->width != avctx->coded_width ||
  5398. s->height != avctx->coded_height)) {
  5399. ff_vc1_decode_end(avctx);
  5400. }
  5401. if (!s->context_initialized) {
  5402. if (ff_msmpeg4_decode_init(avctx) < 0 || ff_vc1_decode_init_alloc_tables(v) < 0)
  5403. goto err;
  5404. s->low_delay = !avctx->has_b_frames || v->res_sprite;
  5405. if (v->profile == PROFILE_ADVANCED) {
  5406. s->h_edge_pos = avctx->coded_width;
  5407. s->v_edge_pos = avctx->coded_height;
  5408. }
  5409. }
  5410. /* We need to set current_picture_ptr before reading the header,
  5411. * otherwise we cannot store anything in there. */
  5412. if (s->current_picture_ptr == NULL || s->current_picture_ptr->f.data[0]) {
  5413. int i = ff_find_unused_picture(s, 0);
  5414. if (i < 0)
  5415. goto err;
  5416. s->current_picture_ptr = &s->picture[i];
  5417. }
  5418. // do parse frame header
  5419. v->pic_header_flag = 0;
  5420. v->first_pic_header_flag = 1;
  5421. if (v->profile < PROFILE_ADVANCED) {
  5422. if (ff_vc1_parse_frame_header(v, &s->gb) < 0) {
  5423. goto err;
  5424. }
  5425. } else {
  5426. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5427. goto err;
  5428. }
  5429. }
  5430. v->first_pic_header_flag = 0;
  5431. if ((avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE)
  5432. && s->pict_type != AV_PICTURE_TYPE_I) {
  5433. av_log(v->s.avctx, AV_LOG_ERROR, "Sprite decoder: expected I-frame\n");
  5434. goto err;
  5435. }
  5436. // process pulldown flags
  5437. s->current_picture_ptr->f.repeat_pict = 0;
  5438. // Pulldown flags are only valid when 'broadcast' has been set.
  5439. // So ticks_per_frame will be 2
  5440. if (v->rff) {
  5441. // repeat field
  5442. s->current_picture_ptr->f.repeat_pict = 1;
  5443. } else if (v->rptfrm) {
  5444. // repeat frames
  5445. s->current_picture_ptr->f.repeat_pict = v->rptfrm * 2;
  5446. }
  5447. // for skipping the frame
  5448. s->current_picture.f.pict_type = s->pict_type;
  5449. s->current_picture.f.key_frame = s->pict_type == AV_PICTURE_TYPE_I;
  5450. /* skip B-frames if we don't have reference frames */
  5451. if (s->last_picture_ptr == NULL && (s->pict_type == AV_PICTURE_TYPE_B || s->droppable)) {
  5452. goto err;
  5453. }
  5454. if ((avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B) ||
  5455. (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I) ||
  5456. avctx->skip_frame >= AVDISCARD_ALL) {
  5457. goto end;
  5458. }
  5459. if (s->next_p_frame_damaged) {
  5460. if (s->pict_type == AV_PICTURE_TYPE_B)
  5461. goto end;
  5462. else
  5463. s->next_p_frame_damaged = 0;
  5464. }
  5465. if (ff_MPV_frame_start(s, avctx) < 0) {
  5466. goto err;
  5467. }
  5468. s->me.qpel_put = s->dsp.put_qpel_pixels_tab;
  5469. s->me.qpel_avg = s->dsp.avg_qpel_pixels_tab;
  5470. if ((CONFIG_VC1_VDPAU_DECODER)
  5471. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  5472. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  5473. else if (avctx->hwaccel) {
  5474. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  5475. goto err;
  5476. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  5477. goto err;
  5478. if (avctx->hwaccel->end_frame(avctx) < 0)
  5479. goto err;
  5480. } else {
  5481. ff_mpeg_er_frame_start(s);
  5482. v->bits = buf_size * 8;
  5483. v->end_mb_x = s->mb_width;
  5484. if (v->field_mode) {
  5485. s->current_picture.f.linesize[0] <<= 1;
  5486. s->current_picture.f.linesize[1] <<= 1;
  5487. s->current_picture.f.linesize[2] <<= 1;
  5488. s->linesize <<= 1;
  5489. s->uvlinesize <<= 1;
  5490. }
  5491. mb_height = s->mb_height >> v->field_mode;
  5492. for (i = 0; i <= n_slices; i++) {
  5493. if (i > 0 && slices[i - 1].mby_start >= mb_height) {
  5494. if (v->field_mode <= 0) {
  5495. av_log(v->s.avctx, AV_LOG_ERROR, "Slice %d starts beyond "
  5496. "picture boundary (%d >= %d)\n", i,
  5497. slices[i - 1].mby_start, mb_height);
  5498. continue;
  5499. }
  5500. v->second_field = 1;
  5501. v->blocks_off = s->mb_width * s->mb_height << 1;
  5502. v->mb_off = s->mb_stride * s->mb_height >> 1;
  5503. } else {
  5504. v->second_field = 0;
  5505. v->blocks_off = 0;
  5506. v->mb_off = 0;
  5507. }
  5508. if (i) {
  5509. v->pic_header_flag = 0;
  5510. if (v->field_mode && i == n_slices1 + 2) {
  5511. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5512. av_log(v->s.avctx, AV_LOG_ERROR, "Field header damaged\n");
  5513. continue;
  5514. }
  5515. } else if (get_bits1(&s->gb)) {
  5516. v->pic_header_flag = 1;
  5517. if (ff_vc1_parse_frame_header_adv(v, &s->gb) < 0) {
  5518. av_log(v->s.avctx, AV_LOG_ERROR, "Slice header damaged\n");
  5519. continue;
  5520. }
  5521. }
  5522. }
  5523. s->start_mb_y = (i == 0) ? 0 : FFMAX(0, slices[i-1].mby_start % mb_height);
  5524. if (!v->field_mode || v->second_field)
  5525. s->end_mb_y = (i == n_slices ) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5526. else
  5527. s->end_mb_y = (i <= n_slices1 + 1) ? mb_height : FFMIN(mb_height, slices[i].mby_start % mb_height);
  5528. ff_vc1_decode_blocks(v);
  5529. if (i != n_slices)
  5530. s->gb = slices[i].gb;
  5531. }
  5532. if (v->field_mode) {
  5533. v->second_field = 0;
  5534. s->current_picture.f.linesize[0] >>= 1;
  5535. s->current_picture.f.linesize[1] >>= 1;
  5536. s->current_picture.f.linesize[2] >>= 1;
  5537. s->linesize >>= 1;
  5538. s->uvlinesize >>= 1;
  5539. if (v->s.pict_type != AV_PICTURE_TYPE_BI && v->s.pict_type != AV_PICTURE_TYPE_B) {
  5540. FFSWAP(uint8_t *, v->mv_f_next[0], v->mv_f[0]);
  5541. FFSWAP(uint8_t *, v->mv_f_next[1], v->mv_f[1]);
  5542. }
  5543. }
  5544. av_dlog(s->avctx, "Consumed %i/%i bits\n",
  5545. get_bits_count(&s->gb), s->gb.size_in_bits);
  5546. // if (get_bits_count(&s->gb) > buf_size * 8)
  5547. // return -1;
  5548. if (!v->field_mode)
  5549. ff_er_frame_end(&s->er);
  5550. }
  5551. ff_MPV_frame_end(s);
  5552. if (avctx->codec_id == AV_CODEC_ID_WMV3IMAGE || avctx->codec_id == AV_CODEC_ID_VC1IMAGE) {
  5553. image:
  5554. avctx->width = avctx->coded_width = v->output_width;
  5555. avctx->height = avctx->coded_height = v->output_height;
  5556. if (avctx->skip_frame >= AVDISCARD_NONREF)
  5557. goto end;
  5558. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  5559. if (vc1_decode_sprites(v, &s->gb))
  5560. goto err;
  5561. #endif
  5562. if ((ret = av_frame_ref(pict, &v->sprite_output_frame)) < 0)
  5563. goto err;
  5564. *got_frame = 1;
  5565. } else {
  5566. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  5567. if ((ret = av_frame_ref(pict, &s->current_picture_ptr->f)) < 0)
  5568. goto err;
  5569. ff_print_debug_info(s, s->current_picture_ptr);
  5570. } else if (s->last_picture_ptr != NULL) {
  5571. if ((ret = av_frame_ref(pict, &s->last_picture_ptr->f)) < 0)
  5572. goto err;
  5573. ff_print_debug_info(s, s->last_picture_ptr);
  5574. }
  5575. if (s->last_picture_ptr || s->low_delay) {
  5576. *got_frame = 1;
  5577. }
  5578. }
  5579. end:
  5580. av_free(buf2);
  5581. for (i = 0; i < n_slices; i++)
  5582. av_free(slices[i].buf);
  5583. av_free(slices);
  5584. return buf_size;
  5585. err:
  5586. av_free(buf2);
  5587. for (i = 0; i < n_slices; i++)
  5588. av_free(slices[i].buf);
  5589. av_free(slices);
  5590. return -1;
  5591. }
  5592. static const AVProfile profiles[] = {
  5593. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  5594. { FF_PROFILE_VC1_MAIN, "Main" },
  5595. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  5596. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  5597. { FF_PROFILE_UNKNOWN },
  5598. };
  5599. static const enum AVPixelFormat vc1_hwaccel_pixfmt_list_420[] = {
  5600. #if CONFIG_DXVA2
  5601. AV_PIX_FMT_DXVA2_VLD,
  5602. #endif
  5603. #if CONFIG_VAAPI
  5604. AV_PIX_FMT_VAAPI_VLD,
  5605. #endif
  5606. #if CONFIG_VDPAU
  5607. AV_PIX_FMT_VDPAU,
  5608. #endif
  5609. AV_PIX_FMT_YUV420P,
  5610. AV_PIX_FMT_NONE
  5611. };
  5612. AVCodec ff_vc1_decoder = {
  5613. .name = "vc1",
  5614. .type = AVMEDIA_TYPE_VIDEO,
  5615. .id = AV_CODEC_ID_VC1,
  5616. .priv_data_size = sizeof(VC1Context),
  5617. .init = vc1_decode_init,
  5618. .close = ff_vc1_decode_end,
  5619. .decode = vc1_decode_frame,
  5620. .flush = ff_mpeg_flush,
  5621. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5622. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  5623. .pix_fmts = vc1_hwaccel_pixfmt_list_420,
  5624. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5625. };
  5626. #if CONFIG_WMV3_DECODER
  5627. AVCodec ff_wmv3_decoder = {
  5628. .name = "wmv3",
  5629. .type = AVMEDIA_TYPE_VIDEO,
  5630. .id = AV_CODEC_ID_WMV3,
  5631. .priv_data_size = sizeof(VC1Context),
  5632. .init = vc1_decode_init,
  5633. .close = ff_vc1_decode_end,
  5634. .decode = vc1_decode_frame,
  5635. .flush = ff_mpeg_flush,
  5636. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  5637. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  5638. .pix_fmts = vc1_hwaccel_pixfmt_list_420,
  5639. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5640. };
  5641. #endif
  5642. #if CONFIG_WMV3_VDPAU_DECODER
  5643. AVCodec ff_wmv3_vdpau_decoder = {
  5644. .name = "wmv3_vdpau",
  5645. .type = AVMEDIA_TYPE_VIDEO,
  5646. .id = AV_CODEC_ID_WMV3,
  5647. .priv_data_size = sizeof(VC1Context),
  5648. .init = vc1_decode_init,
  5649. .close = ff_vc1_decode_end,
  5650. .decode = vc1_decode_frame,
  5651. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5652. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  5653. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_VDPAU_WMV3, AV_PIX_FMT_NONE },
  5654. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5655. };
  5656. #endif
  5657. #if CONFIG_VC1_VDPAU_DECODER
  5658. AVCodec ff_vc1_vdpau_decoder = {
  5659. .name = "vc1_vdpau",
  5660. .type = AVMEDIA_TYPE_VIDEO,
  5661. .id = AV_CODEC_ID_VC1,
  5662. .priv_data_size = sizeof(VC1Context),
  5663. .init = vc1_decode_init,
  5664. .close = ff_vc1_decode_end,
  5665. .decode = vc1_decode_frame,
  5666. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  5667. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  5668. .pix_fmts = (const enum AVPixelFormat[]){ AV_PIX_FMT_VDPAU_VC1, AV_PIX_FMT_NONE },
  5669. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  5670. };
  5671. #endif
  5672. #if CONFIG_WMV3IMAGE_DECODER
  5673. AVCodec ff_wmv3image_decoder = {
  5674. .name = "wmv3image",
  5675. .type = AVMEDIA_TYPE_VIDEO,
  5676. .id = AV_CODEC_ID_WMV3IMAGE,
  5677. .priv_data_size = sizeof(VC1Context),
  5678. .init = vc1_decode_init,
  5679. .close = ff_vc1_decode_end,
  5680. .decode = vc1_decode_frame,
  5681. .capabilities = CODEC_CAP_DR1,
  5682. .flush = vc1_sprite_flush,
  5683. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image"),
  5684. .pix_fmts = ff_pixfmt_list_420
  5685. };
  5686. #endif
  5687. #if CONFIG_VC1IMAGE_DECODER
  5688. AVCodec ff_vc1image_decoder = {
  5689. .name = "vc1image",
  5690. .type = AVMEDIA_TYPE_VIDEO,
  5691. .id = AV_CODEC_ID_VC1IMAGE,
  5692. .priv_data_size = sizeof(VC1Context),
  5693. .init = vc1_decode_init,
  5694. .close = ff_vc1_decode_end,
  5695. .decode = vc1_decode_frame,
  5696. .capabilities = CODEC_CAP_DR1,
  5697. .flush = vc1_sprite_flush,
  5698. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 Image v2"),
  5699. .pix_fmts = ff_pixfmt_list_420
  5700. };
  5701. #endif