You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

245 lines
6.1KB

  1. /*
  2. * MDCT/IMDCT transforms
  3. * Copyright (c) 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "dsputil.h"
  22. /**
  23. * @file mdct.c
  24. * MDCT/IMDCT transforms.
  25. */
  26. // Generate a Kaiser-Bessel Derived Window.
  27. #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
  28. void ff_kbd_window_init(float *window, float alpha, int n)
  29. {
  30. int i, j;
  31. double sum = 0.0, bessel, tmp;
  32. double local_window[n];
  33. double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
  34. for (i = 0; i < n; i++) {
  35. tmp = i * (n - i) * alpha2;
  36. bessel = 1.0;
  37. for (j = BESSEL_I0_ITER; j > 0; j--)
  38. bessel = bessel * tmp / (j * j) + 1;
  39. sum += bessel;
  40. local_window[i] = sum;
  41. }
  42. sum++;
  43. for (i = 0; i < n; i++)
  44. window[i] = sqrt(local_window[i] / sum);
  45. }
  46. // Generate a sine window.
  47. void ff_sine_window_init(float *window, int n) {
  48. int i;
  49. for(i = 0; i < n; i++)
  50. window[i] = sin((i + 0.5) / (2 * n) * M_PI);
  51. }
  52. /**
  53. * init MDCT or IMDCT computation.
  54. */
  55. int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
  56. {
  57. int n, n4, i;
  58. double alpha;
  59. memset(s, 0, sizeof(*s));
  60. n = 1 << nbits;
  61. s->nbits = nbits;
  62. s->n = n;
  63. n4 = n >> 2;
  64. s->tcos = av_malloc(n4 * sizeof(FFTSample));
  65. if (!s->tcos)
  66. goto fail;
  67. s->tsin = av_malloc(n4 * sizeof(FFTSample));
  68. if (!s->tsin)
  69. goto fail;
  70. for(i=0;i<n4;i++) {
  71. alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
  72. s->tcos[i] = -cos(alpha);
  73. s->tsin[i] = -sin(alpha);
  74. }
  75. if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
  76. goto fail;
  77. return 0;
  78. fail:
  79. av_freep(&s->tcos);
  80. av_freep(&s->tsin);
  81. return -1;
  82. }
  83. /* complex multiplication: p = a * b */
  84. #define CMUL(pre, pim, are, aim, bre, bim) \
  85. {\
  86. double _are = (are);\
  87. double _aim = (aim);\
  88. double _bre = (bre);\
  89. double _bim = (bim);\
  90. (pre) = _are * _bre - _aim * _bim;\
  91. (pim) = _are * _bim + _aim * _bre;\
  92. }
  93. static void imdct_c(MDCTContext *s, const FFTSample *input, FFTSample *tmp)
  94. {
  95. int k, n4, n2, n, j;
  96. const uint16_t *revtab = s->fft.revtab;
  97. const FFTSample *tcos = s->tcos;
  98. const FFTSample *tsin = s->tsin;
  99. const FFTSample *in1, *in2;
  100. FFTComplex *z = (FFTComplex *)tmp;
  101. n = 1 << s->nbits;
  102. n2 = n >> 1;
  103. n4 = n >> 2;
  104. /* pre rotation */
  105. in1 = input;
  106. in2 = input + n2 - 1;
  107. for(k = 0; k < n4; k++) {
  108. j=revtab[k];
  109. CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
  110. in1 += 2;
  111. in2 -= 2;
  112. }
  113. ff_fft_calc(&s->fft, z);
  114. /* post rotation + reordering */
  115. /* XXX: optimize */
  116. for(k = 0; k < n4; k++) {
  117. CMUL(z[k].re, z[k].im, z[k].re, z[k].im, tcos[k], tsin[k]);
  118. }
  119. }
  120. /**
  121. * Compute inverse MDCT of size N = 2^nbits
  122. * @param output N samples
  123. * @param input N/2 samples
  124. * @param tmp N/2 samples
  125. */
  126. void ff_imdct_calc(MDCTContext *s, FFTSample *output,
  127. const FFTSample *input, FFTSample *tmp)
  128. {
  129. int k, n8, n2, n;
  130. FFTComplex *z = (FFTComplex *)tmp;
  131. n = 1 << s->nbits;
  132. n2 = n >> 1;
  133. n8 = n >> 3;
  134. imdct_c(s, input, tmp);
  135. for(k = 0; k < n8; k++) {
  136. output[2*k] = -z[n8 + k].im;
  137. output[n2-1-2*k] = z[n8 + k].im;
  138. output[2*k+1] = z[n8-1-k].re;
  139. output[n2-1-2*k-1] = -z[n8-1-k].re;
  140. output[n2 + 2*k]=-z[k+n8].re;
  141. output[n-1- 2*k]=-z[k+n8].re;
  142. output[n2 + 2*k+1]=z[n8-k-1].im;
  143. output[n-2 - 2 * k] = z[n8-k-1].im;
  144. }
  145. }
  146. /**
  147. * Compute the middle half of the inverse MDCT of size N = 2^nbits,
  148. * thus excluding the parts that can be derived by symmetry
  149. * @param output N/2 samples
  150. * @param input N/2 samples
  151. * @param tmp N/2 samples
  152. */
  153. void ff_imdct_half(MDCTContext *s, FFTSample *output,
  154. const FFTSample *input, FFTSample *tmp)
  155. {
  156. int k, n8, n4, n;
  157. FFTComplex *z = (FFTComplex *)tmp;
  158. n = 1 << s->nbits;
  159. n4 = n >> 2;
  160. n8 = n >> 3;
  161. imdct_c(s, input, tmp);
  162. for(k = 0; k < n8; k++) {
  163. output[n4-1-2*k] = z[n8+k].im;
  164. output[n4-1-2*k-1] = -z[n8-k-1].re;
  165. output[n4 + 2*k] = -z[n8+k].re;
  166. output[n4 + 2*k+1] = z[n8-k-1].im;
  167. }
  168. }
  169. /**
  170. * Compute MDCT of size N = 2^nbits
  171. * @param input N samples
  172. * @param out N/2 samples
  173. * @param tmp temporary storage of N/2 samples
  174. */
  175. void ff_mdct_calc(MDCTContext *s, FFTSample *out,
  176. const FFTSample *input, FFTSample *tmp)
  177. {
  178. int i, j, n, n8, n4, n2, n3;
  179. FFTSample re, im, re1, im1;
  180. const uint16_t *revtab = s->fft.revtab;
  181. const FFTSample *tcos = s->tcos;
  182. const FFTSample *tsin = s->tsin;
  183. FFTComplex *x = (FFTComplex *)tmp;
  184. n = 1 << s->nbits;
  185. n2 = n >> 1;
  186. n4 = n >> 2;
  187. n8 = n >> 3;
  188. n3 = 3 * n4;
  189. /* pre rotation */
  190. for(i=0;i<n8;i++) {
  191. re = -input[2*i+3*n4] - input[n3-1-2*i];
  192. im = -input[n4+2*i] + input[n4-1-2*i];
  193. j = revtab[i];
  194. CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
  195. re = input[2*i] - input[n2-1-2*i];
  196. im = -(input[n2+2*i] + input[n-1-2*i]);
  197. j = revtab[n8 + i];
  198. CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
  199. }
  200. ff_fft_calc(&s->fft, x);
  201. /* post rotation */
  202. for(i=0;i<n4;i++) {
  203. re = x[i].re;
  204. im = x[i].im;
  205. CMUL(re1, im1, re, im, -tsin[i], -tcos[i]);
  206. out[2*i] = im1;
  207. out[n2-1-2*i] = re1;
  208. }
  209. }
  210. void ff_mdct_end(MDCTContext *s)
  211. {
  212. av_freep(&s->tcos);
  213. av_freep(&s->tsin);
  214. ff_fft_end(&s->fft);
  215. }