You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

8166 lines
315KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "dsputil.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264.h"
  30. #include "h264data.h"
  31. #include "h264_parser.h"
  32. #include "golomb.h"
  33. #include "rectangle.h"
  34. #include "cabac.h"
  35. #ifdef ARCH_X86
  36. #include "i386/h264_i386.h"
  37. #endif
  38. //#undef NDEBUG
  39. #include <assert.h>
  40. /**
  41. * Value of Picture.reference when Picture is not a reference picture, but
  42. * is held for delayed output.
  43. */
  44. #define DELAYED_PIC_REF 4
  45. static VLC coeff_token_vlc[4];
  46. static VLC chroma_dc_coeff_token_vlc;
  47. static VLC total_zeros_vlc[15];
  48. static VLC chroma_dc_total_zeros_vlc[3];
  49. static VLC run_vlc[6];
  50. static VLC run7_vlc;
  51. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  52. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  53. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  54. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  55. static void remove_long_at_index(H264Context *h, int i);
  56. static av_always_inline uint32_t pack16to32(int a, int b){
  57. #ifdef WORDS_BIGENDIAN
  58. return (b&0xFFFF) + (a<<16);
  59. #else
  60. return (a&0xFFFF) + (b<<16);
  61. #endif
  62. }
  63. const uint8_t ff_rem6[52]={
  64. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  65. };
  66. const uint8_t ff_div6[52]={
  67. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  68. };
  69. static void fill_caches(H264Context *h, int mb_type, int for_deblock){
  70. MpegEncContext * const s = &h->s;
  71. const int mb_xy= h->mb_xy;
  72. int topleft_xy, top_xy, topright_xy, left_xy[2];
  73. int topleft_type, top_type, topright_type, left_type[2];
  74. int left_block[8];
  75. int topleft_partition= -1;
  76. int i;
  77. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  78. //FIXME deblocking could skip the intra and nnz parts.
  79. if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  80. return;
  81. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  82. * stuff, I can't imagine that these complex rules are worth it. */
  83. topleft_xy = top_xy - 1;
  84. topright_xy= top_xy + 1;
  85. left_xy[1] = left_xy[0] = mb_xy-1;
  86. left_block[0]= 0;
  87. left_block[1]= 1;
  88. left_block[2]= 2;
  89. left_block[3]= 3;
  90. left_block[4]= 7;
  91. left_block[5]= 10;
  92. left_block[6]= 8;
  93. left_block[7]= 11;
  94. if(FRAME_MBAFF){
  95. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  96. const int top_pair_xy = pair_xy - s->mb_stride;
  97. const int topleft_pair_xy = top_pair_xy - 1;
  98. const int topright_pair_xy = top_pair_xy + 1;
  99. const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  100. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  101. const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  102. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  103. const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
  104. const int bottom = (s->mb_y & 1);
  105. tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
  106. if (bottom
  107. ? !curr_mb_frame_flag // bottom macroblock
  108. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  109. ) {
  110. top_xy -= s->mb_stride;
  111. }
  112. if (bottom
  113. ? !curr_mb_frame_flag // bottom macroblock
  114. : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
  115. ) {
  116. topleft_xy -= s->mb_stride;
  117. } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
  118. topleft_xy += s->mb_stride;
  119. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  120. topleft_partition = 0;
  121. }
  122. if (bottom
  123. ? !curr_mb_frame_flag // bottom macroblock
  124. : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
  125. ) {
  126. topright_xy -= s->mb_stride;
  127. }
  128. if (left_mb_frame_flag != curr_mb_frame_flag) {
  129. left_xy[1] = left_xy[0] = pair_xy - 1;
  130. if (curr_mb_frame_flag) {
  131. if (bottom) {
  132. left_block[0]= 2;
  133. left_block[1]= 2;
  134. left_block[2]= 3;
  135. left_block[3]= 3;
  136. left_block[4]= 8;
  137. left_block[5]= 11;
  138. left_block[6]= 8;
  139. left_block[7]= 11;
  140. } else {
  141. left_block[0]= 0;
  142. left_block[1]= 0;
  143. left_block[2]= 1;
  144. left_block[3]= 1;
  145. left_block[4]= 7;
  146. left_block[5]= 10;
  147. left_block[6]= 7;
  148. left_block[7]= 10;
  149. }
  150. } else {
  151. left_xy[1] += s->mb_stride;
  152. //left_block[0]= 0;
  153. left_block[1]= 2;
  154. left_block[2]= 0;
  155. left_block[3]= 2;
  156. //left_block[4]= 7;
  157. left_block[5]= 10;
  158. left_block[6]= 7;
  159. left_block[7]= 10;
  160. }
  161. }
  162. }
  163. h->top_mb_xy = top_xy;
  164. h->left_mb_xy[0] = left_xy[0];
  165. h->left_mb_xy[1] = left_xy[1];
  166. if(for_deblock){
  167. topleft_type = 0;
  168. topright_type = 0;
  169. top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
  170. left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
  171. left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
  172. if(FRAME_MBAFF && !IS_INTRA(mb_type)){
  173. int list;
  174. int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
  175. for(i=0; i<16; i++)
  176. h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
  177. for(list=0; list<h->list_count; list++){
  178. if(USES_LIST(mb_type,list)){
  179. uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
  180. uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
  181. int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  182. for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
  183. dst[0] = src[0];
  184. dst[1] = src[1];
  185. dst[2] = src[2];
  186. dst[3] = src[3];
  187. }
  188. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  189. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
  190. ref += h->b8_stride;
  191. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  192. *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
  193. }else{
  194. fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
  195. fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
  196. }
  197. }
  198. }
  199. }else{
  200. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  201. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  202. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  203. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  204. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  205. }
  206. if(IS_INTRA(mb_type)){
  207. h->topleft_samples_available=
  208. h->top_samples_available=
  209. h->left_samples_available= 0xFFFF;
  210. h->topright_samples_available= 0xEEEA;
  211. if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
  212. h->topleft_samples_available= 0xB3FF;
  213. h->top_samples_available= 0x33FF;
  214. h->topright_samples_available= 0x26EA;
  215. }
  216. for(i=0; i<2; i++){
  217. if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
  218. h->topleft_samples_available&= 0xDF5F;
  219. h->left_samples_available&= 0x5F5F;
  220. }
  221. }
  222. if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
  223. h->topleft_samples_available&= 0x7FFF;
  224. if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
  225. h->topright_samples_available&= 0xFBFF;
  226. if(IS_INTRA4x4(mb_type)){
  227. if(IS_INTRA4x4(top_type)){
  228. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  229. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  230. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  231. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  232. }else{
  233. int pred;
  234. if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
  235. pred= -1;
  236. else{
  237. pred= 2;
  238. }
  239. h->intra4x4_pred_mode_cache[4+8*0]=
  240. h->intra4x4_pred_mode_cache[5+8*0]=
  241. h->intra4x4_pred_mode_cache[6+8*0]=
  242. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  243. }
  244. for(i=0; i<2; i++){
  245. if(IS_INTRA4x4(left_type[i])){
  246. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  247. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  248. }else{
  249. int pred;
  250. if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
  251. pred= -1;
  252. else{
  253. pred= 2;
  254. }
  255. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  256. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  257. }
  258. }
  259. }
  260. }
  261. /*
  262. 0 . T T. T T T T
  263. 1 L . .L . . . .
  264. 2 L . .L . . . .
  265. 3 . T TL . . . .
  266. 4 L . .L . . . .
  267. 5 L . .. . . . .
  268. */
  269. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  270. if(top_type){
  271. h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
  272. h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
  273. h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
  274. h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
  275. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
  276. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
  277. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
  278. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
  279. }else{
  280. h->non_zero_count_cache[4+8*0]=
  281. h->non_zero_count_cache[5+8*0]=
  282. h->non_zero_count_cache[6+8*0]=
  283. h->non_zero_count_cache[7+8*0]=
  284. h->non_zero_count_cache[1+8*0]=
  285. h->non_zero_count_cache[2+8*0]=
  286. h->non_zero_count_cache[1+8*3]=
  287. h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  288. }
  289. for (i=0; i<2; i++) {
  290. if(left_type[i]){
  291. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
  292. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
  293. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
  294. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
  295. }else{
  296. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  297. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  298. h->non_zero_count_cache[0+8*1 + 8*i]=
  299. h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
  300. }
  301. }
  302. if( h->pps.cabac ) {
  303. // top_cbp
  304. if(top_type) {
  305. h->top_cbp = h->cbp_table[top_xy];
  306. } else if(IS_INTRA(mb_type)) {
  307. h->top_cbp = 0x1C0;
  308. } else {
  309. h->top_cbp = 0;
  310. }
  311. // left_cbp
  312. if (left_type[0]) {
  313. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  314. } else if(IS_INTRA(mb_type)) {
  315. h->left_cbp = 0x1C0;
  316. } else {
  317. h->left_cbp = 0;
  318. }
  319. if (left_type[0]) {
  320. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  321. }
  322. if (left_type[1]) {
  323. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  324. }
  325. }
  326. #if 1
  327. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  328. int list;
  329. for(list=0; list<h->list_count; list++){
  330. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  331. /*if(!h->mv_cache_clean[list]){
  332. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  333. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  334. h->mv_cache_clean[list]= 1;
  335. }*/
  336. continue;
  337. }
  338. h->mv_cache_clean[list]= 0;
  339. if(USES_LIST(top_type, list)){
  340. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  341. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  342. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  343. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  344. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  345. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  346. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  347. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  348. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  349. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  350. }else{
  351. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  352. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  353. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  354. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  355. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  356. }
  357. for(i=0; i<2; i++){
  358. int cache_idx = scan8[0] - 1 + i*2*8;
  359. if(USES_LIST(left_type[i], list)){
  360. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  361. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  362. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  363. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  364. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  365. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  366. }else{
  367. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  368. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  369. h->ref_cache[list][cache_idx ]=
  370. h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  371. }
  372. }
  373. if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
  374. continue;
  375. if(USES_LIST(topleft_type, list)){
  376. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  377. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  378. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  379. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  380. }else{
  381. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  382. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  383. }
  384. if(USES_LIST(topright_type, list)){
  385. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  386. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  387. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  388. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  389. }else{
  390. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  391. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  392. }
  393. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  394. continue;
  395. h->ref_cache[list][scan8[5 ]+1] =
  396. h->ref_cache[list][scan8[7 ]+1] =
  397. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  398. h->ref_cache[list][scan8[4 ]] =
  399. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  400. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  401. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  402. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  403. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  404. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  405. if( h->pps.cabac ) {
  406. /* XXX beurk, Load mvd */
  407. if(USES_LIST(top_type, list)){
  408. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  409. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  410. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  411. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  412. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  413. }else{
  414. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  415. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  416. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  417. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  418. }
  419. if(USES_LIST(left_type[0], list)){
  420. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  421. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  422. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  423. }else{
  424. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  425. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  426. }
  427. if(USES_LIST(left_type[1], list)){
  428. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  429. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  430. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  431. }else{
  432. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  433. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  434. }
  435. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  436. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  437. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  438. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  439. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  440. if(h->slice_type_nos == FF_B_TYPE){
  441. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  442. if(IS_DIRECT(top_type)){
  443. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  444. }else if(IS_8X8(top_type)){
  445. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  446. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  447. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  448. }else{
  449. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  450. }
  451. if(IS_DIRECT(left_type[0]))
  452. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  453. else if(IS_8X8(left_type[0]))
  454. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  455. else
  456. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  457. if(IS_DIRECT(left_type[1]))
  458. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  459. else if(IS_8X8(left_type[1]))
  460. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  461. else
  462. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  463. }
  464. }
  465. if(FRAME_MBAFF){
  466. #define MAP_MVS\
  467. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  468. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  469. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  470. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  471. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  472. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  473. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  474. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  475. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  476. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  477. if(MB_FIELD){
  478. #define MAP_F2F(idx, mb_type)\
  479. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  480. h->ref_cache[list][idx] <<= 1;\
  481. h->mv_cache[list][idx][1] /= 2;\
  482. h->mvd_cache[list][idx][1] /= 2;\
  483. }
  484. MAP_MVS
  485. #undef MAP_F2F
  486. }else{
  487. #define MAP_F2F(idx, mb_type)\
  488. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  489. h->ref_cache[list][idx] >>= 1;\
  490. h->mv_cache[list][idx][1] <<= 1;\
  491. h->mvd_cache[list][idx][1] <<= 1;\
  492. }
  493. MAP_MVS
  494. #undef MAP_F2F
  495. }
  496. }
  497. }
  498. }
  499. #endif
  500. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  501. }
  502. static inline void write_back_intra_pred_mode(H264Context *h){
  503. const int mb_xy= h->mb_xy;
  504. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  505. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  506. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  507. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  508. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  509. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  510. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  511. }
  512. /**
  513. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  514. */
  515. static inline int check_intra4x4_pred_mode(H264Context *h){
  516. MpegEncContext * const s = &h->s;
  517. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  518. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  519. int i;
  520. if(!(h->top_samples_available&0x8000)){
  521. for(i=0; i<4; i++){
  522. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  523. if(status<0){
  524. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  525. return -1;
  526. } else if(status){
  527. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  528. }
  529. }
  530. }
  531. if(!(h->left_samples_available&0x8000)){
  532. for(i=0; i<4; i++){
  533. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  534. if(status<0){
  535. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  536. return -1;
  537. } else if(status){
  538. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  539. }
  540. }
  541. }
  542. return 0;
  543. } //FIXME cleanup like next
  544. /**
  545. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  546. */
  547. static inline int check_intra_pred_mode(H264Context *h, int mode){
  548. MpegEncContext * const s = &h->s;
  549. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  550. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  551. if(mode > 6U) {
  552. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  553. return -1;
  554. }
  555. if(!(h->top_samples_available&0x8000)){
  556. mode= top[ mode ];
  557. if(mode<0){
  558. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  559. return -1;
  560. }
  561. }
  562. if(!(h->left_samples_available&0x8000)){
  563. mode= left[ mode ];
  564. if(mode<0){
  565. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  566. return -1;
  567. }
  568. }
  569. return mode;
  570. }
  571. /**
  572. * gets the predicted intra4x4 prediction mode.
  573. */
  574. static inline int pred_intra_mode(H264Context *h, int n){
  575. const int index8= scan8[n];
  576. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  577. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  578. const int min= FFMIN(left, top);
  579. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  580. if(min<0) return DC_PRED;
  581. else return min;
  582. }
  583. static inline void write_back_non_zero_count(H264Context *h){
  584. const int mb_xy= h->mb_xy;
  585. h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
  586. h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
  587. h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
  588. h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
  589. h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
  590. h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
  591. h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
  592. h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
  593. h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
  594. h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
  595. h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
  596. h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
  597. h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
  598. if(FRAME_MBAFF){
  599. // store all luma nnzs, for deblocking
  600. int v = 0, i;
  601. for(i=0; i<16; i++)
  602. v += (!!h->non_zero_count_cache[scan8[i]]) << i;
  603. *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
  604. }
  605. }
  606. /**
  607. * gets the predicted number of non-zero coefficients.
  608. * @param n block index
  609. */
  610. static inline int pred_non_zero_count(H264Context *h, int n){
  611. const int index8= scan8[n];
  612. const int left= h->non_zero_count_cache[index8 - 1];
  613. const int top = h->non_zero_count_cache[index8 - 8];
  614. int i= left + top;
  615. if(i<64) i= (i+1)>>1;
  616. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  617. return i&31;
  618. }
  619. static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
  620. const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
  621. MpegEncContext *s = &h->s;
  622. /* there is no consistent mapping of mvs to neighboring locations that will
  623. * make mbaff happy, so we can't move all this logic to fill_caches */
  624. if(FRAME_MBAFF){
  625. const uint32_t *mb_types = s->current_picture_ptr->mb_type;
  626. const int16_t *mv;
  627. *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
  628. *C = h->mv_cache[list][scan8[0]-2];
  629. if(!MB_FIELD
  630. && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
  631. int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
  632. if(IS_INTERLACED(mb_types[topright_xy])){
  633. #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
  634. const int x4 = X4, y4 = Y4;\
  635. const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
  636. if(!USES_LIST(mb_type,list))\
  637. return LIST_NOT_USED;\
  638. mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
  639. h->mv_cache[list][scan8[0]-2][0] = mv[0];\
  640. h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
  641. return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
  642. SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
  643. }
  644. }
  645. if(topright_ref == PART_NOT_AVAILABLE
  646. && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
  647. && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
  648. if(!MB_FIELD
  649. && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
  650. SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
  651. }
  652. if(MB_FIELD
  653. && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
  654. && i >= scan8[0]+8){
  655. // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
  656. SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
  657. }
  658. }
  659. #undef SET_DIAG_MV
  660. }
  661. if(topright_ref != PART_NOT_AVAILABLE){
  662. *C= h->mv_cache[list][ i - 8 + part_width ];
  663. return topright_ref;
  664. }else{
  665. tprintf(s->avctx, "topright MV not available\n");
  666. *C= h->mv_cache[list][ i - 8 - 1 ];
  667. return h->ref_cache[list][ i - 8 - 1 ];
  668. }
  669. }
  670. /**
  671. * gets the predicted MV.
  672. * @param n the block index
  673. * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
  674. * @param mx the x component of the predicted motion vector
  675. * @param my the y component of the predicted motion vector
  676. */
  677. static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
  678. const int index8= scan8[n];
  679. const int top_ref= h->ref_cache[list][ index8 - 8 ];
  680. const int left_ref= h->ref_cache[list][ index8 - 1 ];
  681. const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
  682. const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
  683. const int16_t * C;
  684. int diagonal_ref, match_count;
  685. assert(part_width==1 || part_width==2 || part_width==4);
  686. /* mv_cache
  687. B . . A T T T T
  688. U . . L . . , .
  689. U . . L . . . .
  690. U . . L . . , .
  691. . . . L . . . .
  692. */
  693. diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
  694. match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
  695. tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
  696. if(match_count > 1){ //most common
  697. *mx= mid_pred(A[0], B[0], C[0]);
  698. *my= mid_pred(A[1], B[1], C[1]);
  699. }else if(match_count==1){
  700. if(left_ref==ref){
  701. *mx= A[0];
  702. *my= A[1];
  703. }else if(top_ref==ref){
  704. *mx= B[0];
  705. *my= B[1];
  706. }else{
  707. *mx= C[0];
  708. *my= C[1];
  709. }
  710. }else{
  711. if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
  712. *mx= A[0];
  713. *my= A[1];
  714. }else{
  715. *mx= mid_pred(A[0], B[0], C[0]);
  716. *my= mid_pred(A[1], B[1], C[1]);
  717. }
  718. }
  719. tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
  720. }
  721. /**
  722. * gets the directionally predicted 16x8 MV.
  723. * @param n the block index
  724. * @param mx the x component of the predicted motion vector
  725. * @param my the y component of the predicted motion vector
  726. */
  727. static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  728. if(n==0){
  729. const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
  730. const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
  731. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
  732. if(top_ref == ref){
  733. *mx= B[0];
  734. *my= B[1];
  735. return;
  736. }
  737. }else{
  738. const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
  739. const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
  740. tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  741. if(left_ref == ref){
  742. *mx= A[0];
  743. *my= A[1];
  744. return;
  745. }
  746. }
  747. //RARE
  748. pred_motion(h, n, 4, list, ref, mx, my);
  749. }
  750. /**
  751. * gets the directionally predicted 8x16 MV.
  752. * @param n the block index
  753. * @param mx the x component of the predicted motion vector
  754. * @param my the y component of the predicted motion vector
  755. */
  756. static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
  757. if(n==0){
  758. const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
  759. const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
  760. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
  761. if(left_ref == ref){
  762. *mx= A[0];
  763. *my= A[1];
  764. return;
  765. }
  766. }else{
  767. const int16_t * C;
  768. int diagonal_ref;
  769. diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
  770. tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
  771. if(diagonal_ref == ref){
  772. *mx= C[0];
  773. *my= C[1];
  774. return;
  775. }
  776. }
  777. //RARE
  778. pred_motion(h, n, 2, list, ref, mx, my);
  779. }
  780. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
  781. const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
  782. const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
  783. tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
  784. if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
  785. || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
  786. || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
  787. *mx = *my = 0;
  788. return;
  789. }
  790. pred_motion(h, 0, 4, 0, 0, mx, my);
  791. return;
  792. }
  793. static inline void direct_dist_scale_factor(H264Context * const h){
  794. const int poc = h->s.current_picture_ptr->poc;
  795. const int poc1 = h->ref_list[1][0].poc;
  796. int i;
  797. for(i=0; i<h->ref_count[0]; i++){
  798. int poc0 = h->ref_list[0][i].poc;
  799. int td = av_clip(poc1 - poc0, -128, 127);
  800. if(td == 0 /* FIXME || pic0 is a long-term ref */){
  801. h->dist_scale_factor[i] = 256;
  802. }else{
  803. int tb = av_clip(poc - poc0, -128, 127);
  804. int tx = (16384 + (FFABS(td) >> 1)) / td;
  805. h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
  806. }
  807. }
  808. if(FRAME_MBAFF){
  809. for(i=0; i<h->ref_count[0]; i++){
  810. h->dist_scale_factor_field[2*i] =
  811. h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
  812. }
  813. }
  814. }
  815. static inline void direct_ref_list_init(H264Context * const h){
  816. MpegEncContext * const s = &h->s;
  817. Picture * const ref1 = &h->ref_list[1][0];
  818. Picture * const cur = s->current_picture_ptr;
  819. int list, i, j;
  820. if(cur->pict_type == FF_I_TYPE)
  821. cur->ref_count[0] = 0;
  822. if(cur->pict_type != FF_B_TYPE)
  823. cur->ref_count[1] = 0;
  824. for(list=0; list<2; list++){
  825. cur->ref_count[list] = h->ref_count[list];
  826. for(j=0; j<h->ref_count[list]; j++)
  827. cur->ref_poc[list][j] = h->ref_list[list][j].poc;
  828. }
  829. if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
  830. return;
  831. for(list=0; list<2; list++){
  832. for(i=0; i<ref1->ref_count[list]; i++){
  833. const int poc = ref1->ref_poc[list][i];
  834. h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
  835. for(j=0; j<h->ref_count[list]; j++)
  836. if(h->ref_list[list][j].poc == poc){
  837. h->map_col_to_list0[list][i] = j;
  838. break;
  839. }
  840. }
  841. }
  842. if(FRAME_MBAFF){
  843. for(list=0; list<2; list++){
  844. for(i=0; i<ref1->ref_count[list]; i++){
  845. j = h->map_col_to_list0[list][i];
  846. h->map_col_to_list0_field[list][2*i] = 2*j;
  847. h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
  848. }
  849. }
  850. }
  851. }
  852. static inline void pred_direct_motion(H264Context * const h, int *mb_type){
  853. MpegEncContext * const s = &h->s;
  854. const int mb_xy = h->mb_xy;
  855. const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  856. const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  857. const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
  858. const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
  859. const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
  860. const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
  861. const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
  862. const int is_b8x8 = IS_8X8(*mb_type);
  863. unsigned int sub_mb_type;
  864. int i8, i4;
  865. #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
  866. if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
  867. /* FIXME save sub mb types from previous frames (or derive from MVs)
  868. * so we know exactly what block size to use */
  869. sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
  870. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  871. }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
  872. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  873. *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
  874. }else{
  875. sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
  876. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
  877. }
  878. if(!is_b8x8)
  879. *mb_type |= MB_TYPE_DIRECT2;
  880. if(MB_FIELD)
  881. *mb_type |= MB_TYPE_INTERLACED;
  882. tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
  883. if(h->direct_spatial_mv_pred){
  884. int ref[2];
  885. int mv[2][2];
  886. int list;
  887. /* FIXME interlacing + spatial direct uses wrong colocated block positions */
  888. /* ref = min(neighbors) */
  889. for(list=0; list<2; list++){
  890. int refa = h->ref_cache[list][scan8[0] - 1];
  891. int refb = h->ref_cache[list][scan8[0] - 8];
  892. int refc = h->ref_cache[list][scan8[0] - 8 + 4];
  893. if(refc == -2)
  894. refc = h->ref_cache[list][scan8[0] - 8 - 1];
  895. ref[list] = FFMIN3((unsigned)refa, (unsigned)refb, (unsigned)refc);
  896. if(ref[list] < 0)
  897. ref[list] = -1;
  898. }
  899. if(ref[0] < 0 && ref[1] < 0){
  900. ref[0] = ref[1] = 0;
  901. mv[0][0] = mv[0][1] =
  902. mv[1][0] = mv[1][1] = 0;
  903. }else{
  904. for(list=0; list<2; list++){
  905. if(ref[list] >= 0)
  906. pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
  907. else
  908. mv[list][0] = mv[list][1] = 0;
  909. }
  910. }
  911. if(ref[1] < 0){
  912. if(!is_b8x8)
  913. *mb_type &= ~MB_TYPE_L1;
  914. sub_mb_type &= ~MB_TYPE_L1;
  915. }else if(ref[0] < 0){
  916. if(!is_b8x8)
  917. *mb_type &= ~MB_TYPE_L0;
  918. sub_mb_type &= ~MB_TYPE_L0;
  919. }
  920. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  921. int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  922. int mb_types_col[2];
  923. int b8_stride = h->b8_stride;
  924. int b4_stride = h->b_stride;
  925. *mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
  926. if(IS_INTERLACED(*mb_type)){
  927. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  928. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  929. if(s->mb_y&1){
  930. l1ref0 -= 2*b8_stride;
  931. l1ref1 -= 2*b8_stride;
  932. l1mv0 -= 4*b4_stride;
  933. l1mv1 -= 4*b4_stride;
  934. }
  935. b8_stride *= 3;
  936. b4_stride *= 6;
  937. }else{
  938. int cur_poc = s->current_picture_ptr->poc;
  939. int *col_poc = h->ref_list[1]->field_poc;
  940. int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
  941. int dy = 2*col_parity - (s->mb_y&1);
  942. mb_types_col[0] =
  943. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
  944. l1ref0 += dy*b8_stride;
  945. l1ref1 += dy*b8_stride;
  946. l1mv0 += 2*dy*b4_stride;
  947. l1mv1 += 2*dy*b4_stride;
  948. b8_stride = 0;
  949. }
  950. for(i8=0; i8<4; i8++){
  951. int x8 = i8&1;
  952. int y8 = i8>>1;
  953. int xy8 = x8+y8*b8_stride;
  954. int xy4 = 3*x8+y8*b4_stride;
  955. int a=0, b=0;
  956. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  957. continue;
  958. h->sub_mb_type[i8] = sub_mb_type;
  959. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  960. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  961. if(!IS_INTRA(mb_types_col[y8])
  962. && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
  963. || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
  964. if(ref[0] > 0)
  965. a= pack16to32(mv[0][0],mv[0][1]);
  966. if(ref[1] > 0)
  967. b= pack16to32(mv[1][0],mv[1][1]);
  968. }else{
  969. a= pack16to32(mv[0][0],mv[0][1]);
  970. b= pack16to32(mv[1][0],mv[1][1]);
  971. }
  972. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
  973. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
  974. }
  975. }else if(IS_16X16(*mb_type)){
  976. int a=0, b=0;
  977. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
  978. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
  979. if(!IS_INTRA(mb_type_col)
  980. && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
  981. || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
  982. && (h->x264_build>33 || !h->x264_build)))){
  983. if(ref[0] > 0)
  984. a= pack16to32(mv[0][0],mv[0][1]);
  985. if(ref[1] > 0)
  986. b= pack16to32(mv[1][0],mv[1][1]);
  987. }else{
  988. a= pack16to32(mv[0][0],mv[0][1]);
  989. b= pack16to32(mv[1][0],mv[1][1]);
  990. }
  991. fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
  992. fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
  993. }else{
  994. for(i8=0; i8<4; i8++){
  995. const int x8 = i8&1;
  996. const int y8 = i8>>1;
  997. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  998. continue;
  999. h->sub_mb_type[i8] = sub_mb_type;
  1000. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
  1001. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
  1002. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
  1003. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
  1004. /* col_zero_flag */
  1005. if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
  1006. || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
  1007. && (h->x264_build>33 || !h->x264_build)))){
  1008. const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
  1009. if(IS_SUB_8X8(sub_mb_type)){
  1010. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1011. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1012. if(ref[0] == 0)
  1013. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1014. if(ref[1] == 0)
  1015. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1016. }
  1017. }else
  1018. for(i4=0; i4<4; i4++){
  1019. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1020. if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
  1021. if(ref[0] == 0)
  1022. *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
  1023. if(ref[1] == 0)
  1024. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
  1025. }
  1026. }
  1027. }
  1028. }
  1029. }
  1030. }else{ /* direct temporal mv pred */
  1031. const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
  1032. const int *dist_scale_factor = h->dist_scale_factor;
  1033. if(FRAME_MBAFF){
  1034. if(IS_INTERLACED(*mb_type)){
  1035. map_col_to_list0[0] = h->map_col_to_list0_field[0];
  1036. map_col_to_list0[1] = h->map_col_to_list0_field[1];
  1037. dist_scale_factor = h->dist_scale_factor_field;
  1038. }
  1039. if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
  1040. /* FIXME assumes direct_8x8_inference == 1 */
  1041. const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
  1042. int mb_types_col[2];
  1043. int y_shift;
  1044. *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
  1045. | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
  1046. | (*mb_type & MB_TYPE_INTERLACED);
  1047. sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
  1048. if(IS_INTERLACED(*mb_type)){
  1049. /* frame to field scaling */
  1050. mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
  1051. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1052. if(s->mb_y&1){
  1053. l1ref0 -= 2*h->b8_stride;
  1054. l1ref1 -= 2*h->b8_stride;
  1055. l1mv0 -= 4*h->b_stride;
  1056. l1mv1 -= 4*h->b_stride;
  1057. }
  1058. y_shift = 0;
  1059. if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
  1060. && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
  1061. && !is_b8x8)
  1062. *mb_type |= MB_TYPE_16x8;
  1063. else
  1064. *mb_type |= MB_TYPE_8x8;
  1065. }else{
  1066. /* field to frame scaling */
  1067. /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
  1068. * but in MBAFF, top and bottom POC are equal */
  1069. int dy = (s->mb_y&1) ? 1 : 2;
  1070. mb_types_col[0] =
  1071. mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
  1072. l1ref0 += dy*h->b8_stride;
  1073. l1ref1 += dy*h->b8_stride;
  1074. l1mv0 += 2*dy*h->b_stride;
  1075. l1mv1 += 2*dy*h->b_stride;
  1076. y_shift = 2;
  1077. if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
  1078. && !is_b8x8)
  1079. *mb_type |= MB_TYPE_16x16;
  1080. else
  1081. *mb_type |= MB_TYPE_8x8;
  1082. }
  1083. for(i8=0; i8<4; i8++){
  1084. const int x8 = i8&1;
  1085. const int y8 = i8>>1;
  1086. int ref0, scale;
  1087. const int16_t (*l1mv)[2]= l1mv0;
  1088. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1089. continue;
  1090. h->sub_mb_type[i8] = sub_mb_type;
  1091. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1092. if(IS_INTRA(mb_types_col[y8])){
  1093. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1094. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1095. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1096. continue;
  1097. }
  1098. ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
  1099. if(ref0 >= 0)
  1100. ref0 = map_col_to_list0[0][ref0*2>>y_shift];
  1101. else{
  1102. ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
  1103. l1mv= l1mv1;
  1104. }
  1105. scale = dist_scale_factor[ref0];
  1106. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1107. {
  1108. const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
  1109. int my_col = (mv_col[1]<<y_shift)/2;
  1110. int mx = (scale * mv_col[0] + 128) >> 8;
  1111. int my = (scale * my_col + 128) >> 8;
  1112. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1113. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
  1114. }
  1115. }
  1116. return;
  1117. }
  1118. }
  1119. /* one-to-one mv scaling */
  1120. if(IS_16X16(*mb_type)){
  1121. int ref, mv0, mv1;
  1122. fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
  1123. if(IS_INTRA(mb_type_col)){
  1124. ref=mv0=mv1=0;
  1125. }else{
  1126. const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
  1127. : map_col_to_list0[1][l1ref1[0]];
  1128. const int scale = dist_scale_factor[ref0];
  1129. const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
  1130. int mv_l0[2];
  1131. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1132. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1133. ref= ref0;
  1134. mv0= pack16to32(mv_l0[0],mv_l0[1]);
  1135. mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1136. }
  1137. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
  1138. fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
  1139. fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
  1140. }else{
  1141. for(i8=0; i8<4; i8++){
  1142. const int x8 = i8&1;
  1143. const int y8 = i8>>1;
  1144. int ref0, scale;
  1145. const int16_t (*l1mv)[2]= l1mv0;
  1146. if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
  1147. continue;
  1148. h->sub_mb_type[i8] = sub_mb_type;
  1149. fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
  1150. if(IS_INTRA(mb_type_col)){
  1151. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
  1152. fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
  1153. fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
  1154. continue;
  1155. }
  1156. ref0 = l1ref0[x8 + y8*h->b8_stride];
  1157. if(ref0 >= 0)
  1158. ref0 = map_col_to_list0[0][ref0];
  1159. else{
  1160. ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
  1161. l1mv= l1mv1;
  1162. }
  1163. scale = dist_scale_factor[ref0];
  1164. fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
  1165. if(IS_SUB_8X8(sub_mb_type)){
  1166. const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
  1167. int mx = (scale * mv_col[0] + 128) >> 8;
  1168. int my = (scale * mv_col[1] + 128) >> 8;
  1169. fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
  1170. fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
  1171. }else
  1172. for(i4=0; i4<4; i4++){
  1173. const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
  1174. int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
  1175. mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
  1176. mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
  1177. *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
  1178. pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
  1179. }
  1180. }
  1181. }
  1182. }
  1183. }
  1184. static inline void write_back_motion(H264Context *h, int mb_type){
  1185. MpegEncContext * const s = &h->s;
  1186. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1187. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1188. int list;
  1189. if(!USES_LIST(mb_type, 0))
  1190. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1191. for(list=0; list<h->list_count; list++){
  1192. int y;
  1193. if(!USES_LIST(mb_type, list))
  1194. continue;
  1195. for(y=0; y<4; y++){
  1196. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1197. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1198. }
  1199. if( h->pps.cabac ) {
  1200. if(IS_SKIP(mb_type))
  1201. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1202. else
  1203. for(y=0; y<4; y++){
  1204. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1205. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1206. }
  1207. }
  1208. {
  1209. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1210. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1211. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1212. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1213. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1214. }
  1215. }
  1216. if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
  1217. if(IS_8X8(mb_type)){
  1218. uint8_t *direct_table = &h->direct_table[b8_xy];
  1219. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1220. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1221. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1222. }
  1223. }
  1224. }
  1225. /**
  1226. * Decodes a network abstraction layer unit.
  1227. * @param consumed is the number of bytes used as input
  1228. * @param length is the length of the array
  1229. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  1230. * @returns decoded bytes, might be src+1 if no escapes
  1231. */
  1232. static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  1233. int i, si, di;
  1234. uint8_t *dst;
  1235. int bufidx;
  1236. // src[0]&0x80; //forbidden bit
  1237. h->nal_ref_idc= src[0]>>5;
  1238. h->nal_unit_type= src[0]&0x1F;
  1239. src++; length--;
  1240. #if 0
  1241. for(i=0; i<length; i++)
  1242. printf("%2X ", src[i]);
  1243. #endif
  1244. for(i=0; i+1<length; i+=2){
  1245. if(src[i]) continue;
  1246. if(i>0 && src[i-1]==0) i--;
  1247. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  1248. if(src[i+2]!=3){
  1249. /* startcode, so we must be past the end */
  1250. length=i;
  1251. }
  1252. break;
  1253. }
  1254. }
  1255. if(i>=length-1){ //no escaped 0
  1256. *dst_length= length;
  1257. *consumed= length+1; //+1 for the header
  1258. return src;
  1259. }
  1260. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  1261. h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
  1262. dst= h->rbsp_buffer[bufidx];
  1263. if (dst == NULL){
  1264. return NULL;
  1265. }
  1266. //printf("decoding esc\n");
  1267. si=di=0;
  1268. while(si<length){
  1269. //remove escapes (very rare 1:2^22)
  1270. if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
  1271. if(src[si+2]==3){ //escape
  1272. dst[di++]= 0;
  1273. dst[di++]= 0;
  1274. si+=3;
  1275. continue;
  1276. }else //next start code
  1277. break;
  1278. }
  1279. dst[di++]= src[si++];
  1280. }
  1281. *dst_length= di;
  1282. *consumed= si + 1;//+1 for the header
  1283. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  1284. return dst;
  1285. }
  1286. /**
  1287. * identifies the exact end of the bitstream
  1288. * @return the length of the trailing, or 0 if damaged
  1289. */
  1290. static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  1291. int v= *src;
  1292. int r;
  1293. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  1294. for(r=1; r<9; r++){
  1295. if(v&1) return r;
  1296. v>>=1;
  1297. }
  1298. return 0;
  1299. }
  1300. /**
  1301. * IDCT transforms the 16 dc values and dequantizes them.
  1302. * @param qp quantization parameter
  1303. */
  1304. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1305. #define stride 16
  1306. int i;
  1307. int temp[16]; //FIXME check if this is a good idea
  1308. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1309. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1310. //memset(block, 64, 2*256);
  1311. //return;
  1312. for(i=0; i<4; i++){
  1313. const int offset= y_offset[i];
  1314. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1315. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1316. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1317. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1318. temp[4*i+0]= z0+z3;
  1319. temp[4*i+1]= z1+z2;
  1320. temp[4*i+2]= z1-z2;
  1321. temp[4*i+3]= z0-z3;
  1322. }
  1323. for(i=0; i<4; i++){
  1324. const int offset= x_offset[i];
  1325. const int z0= temp[4*0+i] + temp[4*2+i];
  1326. const int z1= temp[4*0+i] - temp[4*2+i];
  1327. const int z2= temp[4*1+i] - temp[4*3+i];
  1328. const int z3= temp[4*1+i] + temp[4*3+i];
  1329. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  1330. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  1331. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  1332. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  1333. }
  1334. }
  1335. #if 0
  1336. /**
  1337. * DCT transforms the 16 dc values.
  1338. * @param qp quantization parameter ??? FIXME
  1339. */
  1340. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  1341. // const int qmul= dequant_coeff[qp][0];
  1342. int i;
  1343. int temp[16]; //FIXME check if this is a good idea
  1344. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  1345. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  1346. for(i=0; i<4; i++){
  1347. const int offset= y_offset[i];
  1348. const int z0= block[offset+stride*0] + block[offset+stride*4];
  1349. const int z1= block[offset+stride*0] - block[offset+stride*4];
  1350. const int z2= block[offset+stride*1] - block[offset+stride*5];
  1351. const int z3= block[offset+stride*1] + block[offset+stride*5];
  1352. temp[4*i+0]= z0+z3;
  1353. temp[4*i+1]= z1+z2;
  1354. temp[4*i+2]= z1-z2;
  1355. temp[4*i+3]= z0-z3;
  1356. }
  1357. for(i=0; i<4; i++){
  1358. const int offset= x_offset[i];
  1359. const int z0= temp[4*0+i] + temp[4*2+i];
  1360. const int z1= temp[4*0+i] - temp[4*2+i];
  1361. const int z2= temp[4*1+i] - temp[4*3+i];
  1362. const int z3= temp[4*1+i] + temp[4*3+i];
  1363. block[stride*0 +offset]= (z0 + z3)>>1;
  1364. block[stride*2 +offset]= (z1 + z2)>>1;
  1365. block[stride*8 +offset]= (z1 - z2)>>1;
  1366. block[stride*10+offset]= (z0 - z3)>>1;
  1367. }
  1368. }
  1369. #endif
  1370. #undef xStride
  1371. #undef stride
  1372. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  1373. const int stride= 16*2;
  1374. const int xStride= 16;
  1375. int a,b,c,d,e;
  1376. a= block[stride*0 + xStride*0];
  1377. b= block[stride*0 + xStride*1];
  1378. c= block[stride*1 + xStride*0];
  1379. d= block[stride*1 + xStride*1];
  1380. e= a-b;
  1381. a= a+b;
  1382. b= c-d;
  1383. c= c+d;
  1384. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  1385. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  1386. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  1387. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  1388. }
  1389. #if 0
  1390. static void chroma_dc_dct_c(DCTELEM *block){
  1391. const int stride= 16*2;
  1392. const int xStride= 16;
  1393. int a,b,c,d,e;
  1394. a= block[stride*0 + xStride*0];
  1395. b= block[stride*0 + xStride*1];
  1396. c= block[stride*1 + xStride*0];
  1397. d= block[stride*1 + xStride*1];
  1398. e= a-b;
  1399. a= a+b;
  1400. b= c-d;
  1401. c= c+d;
  1402. block[stride*0 + xStride*0]= (a+c);
  1403. block[stride*0 + xStride*1]= (e+b);
  1404. block[stride*1 + xStride*0]= (a-c);
  1405. block[stride*1 + xStride*1]= (e-b);
  1406. }
  1407. #endif
  1408. /**
  1409. * gets the chroma qp.
  1410. */
  1411. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  1412. return h->pps.chroma_qp_table[t][qscale];
  1413. }
  1414. //FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
  1415. //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
  1416. static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
  1417. int i;
  1418. const int * const quant_table= quant_coeff[qscale];
  1419. const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
  1420. const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
  1421. const unsigned int threshold2= (threshold1<<1);
  1422. int last_non_zero;
  1423. if(separate_dc){
  1424. if(qscale<=18){
  1425. //avoid overflows
  1426. const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
  1427. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
  1428. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1429. int level= block[0]*quant_coeff[qscale+18][0];
  1430. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1431. if(level>0){
  1432. level= (dc_bias + level)>>(QUANT_SHIFT-2);
  1433. block[0]= level;
  1434. }else{
  1435. level= (dc_bias - level)>>(QUANT_SHIFT-2);
  1436. block[0]= -level;
  1437. }
  1438. // last_non_zero = i;
  1439. }else{
  1440. block[0]=0;
  1441. }
  1442. }else{
  1443. const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
  1444. const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
  1445. const unsigned int dc_threshold2= (dc_threshold1<<1);
  1446. int level= block[0]*quant_table[0];
  1447. if(((unsigned)(level+dc_threshold1))>dc_threshold2){
  1448. if(level>0){
  1449. level= (dc_bias + level)>>(QUANT_SHIFT+1);
  1450. block[0]= level;
  1451. }else{
  1452. level= (dc_bias - level)>>(QUANT_SHIFT+1);
  1453. block[0]= -level;
  1454. }
  1455. // last_non_zero = i;
  1456. }else{
  1457. block[0]=0;
  1458. }
  1459. }
  1460. last_non_zero= 0;
  1461. i=1;
  1462. }else{
  1463. last_non_zero= -1;
  1464. i=0;
  1465. }
  1466. for(; i<16; i++){
  1467. const int j= scantable[i];
  1468. int level= block[j]*quant_table[j];
  1469. // if( bias+level >= (1<<(QMAT_SHIFT - 3))
  1470. // || bias-level >= (1<<(QMAT_SHIFT - 3))){
  1471. if(((unsigned)(level+threshold1))>threshold2){
  1472. if(level>0){
  1473. level= (bias + level)>>QUANT_SHIFT;
  1474. block[j]= level;
  1475. }else{
  1476. level= (bias - level)>>QUANT_SHIFT;
  1477. block[j]= -level;
  1478. }
  1479. last_non_zero = i;
  1480. }else{
  1481. block[j]=0;
  1482. }
  1483. }
  1484. return last_non_zero;
  1485. }
  1486. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  1487. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1488. int src_x_offset, int src_y_offset,
  1489. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  1490. MpegEncContext * const s = &h->s;
  1491. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  1492. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  1493. const int luma_xy= (mx&3) + ((my&3)<<2);
  1494. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  1495. uint8_t * src_cb, * src_cr;
  1496. int extra_width= h->emu_edge_width;
  1497. int extra_height= h->emu_edge_height;
  1498. int emu=0;
  1499. const int full_mx= mx>>2;
  1500. const int full_my= my>>2;
  1501. const int pic_width = 16*s->mb_width;
  1502. const int pic_height = 16*s->mb_height >> MB_FIELD;
  1503. if(!pic->data[0]) //FIXME this is unacceptable, some sensible error concealment must be done for missing reference frames
  1504. return;
  1505. if(mx&7) extra_width -= 3;
  1506. if(my&7) extra_height -= 3;
  1507. if( full_mx < 0-extra_width
  1508. || full_my < 0-extra_height
  1509. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  1510. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  1511. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  1512. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  1513. emu=1;
  1514. }
  1515. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  1516. if(!square){
  1517. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  1518. }
  1519. if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  1520. if(MB_FIELD){
  1521. // chroma offset when predicting from a field of opposite parity
  1522. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  1523. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  1524. }
  1525. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1526. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  1527. if(emu){
  1528. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1529. src_cb= s->edge_emu_buffer;
  1530. }
  1531. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1532. if(emu){
  1533. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  1534. src_cr= s->edge_emu_buffer;
  1535. }
  1536. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  1537. }
  1538. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  1539. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1540. int x_offset, int y_offset,
  1541. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1542. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1543. int list0, int list1){
  1544. MpegEncContext * const s = &h->s;
  1545. qpel_mc_func *qpix_op= qpix_put;
  1546. h264_chroma_mc_func chroma_op= chroma_put;
  1547. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1548. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1549. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1550. x_offset += 8*s->mb_x;
  1551. y_offset += 8*(s->mb_y >> MB_FIELD);
  1552. if(list0){
  1553. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  1554. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  1555. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1556. qpix_op, chroma_op);
  1557. qpix_op= qpix_avg;
  1558. chroma_op= chroma_avg;
  1559. }
  1560. if(list1){
  1561. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  1562. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  1563. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1564. qpix_op, chroma_op);
  1565. }
  1566. }
  1567. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  1568. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1569. int x_offset, int y_offset,
  1570. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1571. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  1572. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  1573. int list0, int list1){
  1574. MpegEncContext * const s = &h->s;
  1575. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  1576. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  1577. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  1578. x_offset += 8*s->mb_x;
  1579. y_offset += 8*(s->mb_y >> MB_FIELD);
  1580. if(list0 && list1){
  1581. /* don't optimize for luma-only case, since B-frames usually
  1582. * use implicit weights => chroma too. */
  1583. uint8_t *tmp_cb = s->obmc_scratchpad;
  1584. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  1585. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  1586. int refn0 = h->ref_cache[0][ scan8[n] ];
  1587. int refn1 = h->ref_cache[1][ scan8[n] ];
  1588. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  1589. dest_y, dest_cb, dest_cr,
  1590. x_offset, y_offset, qpix_put, chroma_put);
  1591. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  1592. tmp_y, tmp_cb, tmp_cr,
  1593. x_offset, y_offset, qpix_put, chroma_put);
  1594. if(h->use_weight == 2){
  1595. int weight0 = h->implicit_weight[refn0][refn1];
  1596. int weight1 = 64 - weight0;
  1597. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  1598. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1599. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  1600. }else{
  1601. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  1602. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  1603. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  1604. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1605. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  1606. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  1607. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1608. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  1609. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  1610. }
  1611. }else{
  1612. int list = list1 ? 1 : 0;
  1613. int refn = h->ref_cache[list][ scan8[n] ];
  1614. Picture *ref= &h->ref_list[list][refn];
  1615. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  1616. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1617. qpix_put, chroma_put);
  1618. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  1619. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  1620. if(h->use_weight_chroma){
  1621. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1622. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  1623. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  1624. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  1625. }
  1626. }
  1627. }
  1628. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  1629. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1630. int x_offset, int y_offset,
  1631. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  1632. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  1633. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  1634. int list0, int list1){
  1635. if((h->use_weight==2 && list0 && list1
  1636. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  1637. || h->use_weight==1)
  1638. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1639. x_offset, y_offset, qpix_put, chroma_put,
  1640. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  1641. else
  1642. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  1643. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  1644. }
  1645. static inline void prefetch_motion(H264Context *h, int list){
  1646. /* fetch pixels for estimated mv 4 macroblocks ahead
  1647. * optimized for 64byte cache lines */
  1648. MpegEncContext * const s = &h->s;
  1649. const int refn = h->ref_cache[list][scan8[0]];
  1650. if(refn >= 0){
  1651. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  1652. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  1653. uint8_t **src= h->ref_list[list][refn].data;
  1654. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  1655. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1656. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  1657. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1658. }
  1659. }
  1660. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  1661. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  1662. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  1663. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  1664. MpegEncContext * const s = &h->s;
  1665. const int mb_xy= h->mb_xy;
  1666. const int mb_type= s->current_picture.mb_type[mb_xy];
  1667. assert(IS_INTER(mb_type));
  1668. prefetch_motion(h, 0);
  1669. if(IS_16X16(mb_type)){
  1670. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  1671. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  1672. &weight_op[0], &weight_avg[0],
  1673. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1674. }else if(IS_16X8(mb_type)){
  1675. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  1676. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1677. &weight_op[1], &weight_avg[1],
  1678. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1679. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  1680. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  1681. &weight_op[1], &weight_avg[1],
  1682. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1683. }else if(IS_8X16(mb_type)){
  1684. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  1685. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1686. &weight_op[2], &weight_avg[2],
  1687. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  1688. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  1689. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1690. &weight_op[2], &weight_avg[2],
  1691. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  1692. }else{
  1693. int i;
  1694. assert(IS_8X8(mb_type));
  1695. for(i=0; i<4; i++){
  1696. const int sub_mb_type= h->sub_mb_type[i];
  1697. const int n= 4*i;
  1698. int x_offset= (i&1)<<2;
  1699. int y_offset= (i&2)<<1;
  1700. if(IS_SUB_8X8(sub_mb_type)){
  1701. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1702. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  1703. &weight_op[3], &weight_avg[3],
  1704. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1705. }else if(IS_SUB_8X4(sub_mb_type)){
  1706. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1707. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1708. &weight_op[4], &weight_avg[4],
  1709. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1710. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  1711. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  1712. &weight_op[4], &weight_avg[4],
  1713. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1714. }else if(IS_SUB_4X8(sub_mb_type)){
  1715. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  1716. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1717. &weight_op[5], &weight_avg[5],
  1718. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1719. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  1720. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1721. &weight_op[5], &weight_avg[5],
  1722. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1723. }else{
  1724. int j;
  1725. assert(IS_SUB_4X4(sub_mb_type));
  1726. for(j=0; j<4; j++){
  1727. int sub_x_offset= x_offset + 2*(j&1);
  1728. int sub_y_offset= y_offset + (j&2);
  1729. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  1730. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  1731. &weight_op[6], &weight_avg[6],
  1732. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  1733. }
  1734. }
  1735. }
  1736. }
  1737. prefetch_motion(h, 1);
  1738. }
  1739. static av_cold void decode_init_vlc(void){
  1740. static int done = 0;
  1741. if (!done) {
  1742. int i;
  1743. done = 1;
  1744. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  1745. &chroma_dc_coeff_token_len [0], 1, 1,
  1746. &chroma_dc_coeff_token_bits[0], 1, 1, 1);
  1747. for(i=0; i<4; i++){
  1748. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  1749. &coeff_token_len [i][0], 1, 1,
  1750. &coeff_token_bits[i][0], 1, 1, 1);
  1751. }
  1752. for(i=0; i<3; i++){
  1753. init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  1754. &chroma_dc_total_zeros_len [i][0], 1, 1,
  1755. &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
  1756. }
  1757. for(i=0; i<15; i++){
  1758. init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
  1759. &total_zeros_len [i][0], 1, 1,
  1760. &total_zeros_bits[i][0], 1, 1, 1);
  1761. }
  1762. for(i=0; i<6; i++){
  1763. init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
  1764. &run_len [i][0], 1, 1,
  1765. &run_bits[i][0], 1, 1, 1);
  1766. }
  1767. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  1768. &run_len [6][0], 1, 1,
  1769. &run_bits[6][0], 1, 1, 1);
  1770. }
  1771. }
  1772. static void free_tables(H264Context *h){
  1773. int i;
  1774. H264Context *hx;
  1775. av_freep(&h->intra4x4_pred_mode);
  1776. av_freep(&h->chroma_pred_mode_table);
  1777. av_freep(&h->cbp_table);
  1778. av_freep(&h->mvd_table[0]);
  1779. av_freep(&h->mvd_table[1]);
  1780. av_freep(&h->direct_table);
  1781. av_freep(&h->non_zero_count);
  1782. av_freep(&h->slice_table_base);
  1783. h->slice_table= NULL;
  1784. av_freep(&h->mb2b_xy);
  1785. av_freep(&h->mb2b8_xy);
  1786. for(i = 0; i < MAX_SPS_COUNT; i++)
  1787. av_freep(h->sps_buffers + i);
  1788. for(i = 0; i < MAX_PPS_COUNT; i++)
  1789. av_freep(h->pps_buffers + i);
  1790. for(i = 0; i < h->s.avctx->thread_count; i++) {
  1791. hx = h->thread_context[i];
  1792. if(!hx) continue;
  1793. av_freep(&hx->top_borders[1]);
  1794. av_freep(&hx->top_borders[0]);
  1795. av_freep(&hx->s.obmc_scratchpad);
  1796. }
  1797. }
  1798. static void init_dequant8_coeff_table(H264Context *h){
  1799. int i,q,x;
  1800. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  1801. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  1802. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  1803. for(i=0; i<2; i++ ){
  1804. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  1805. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  1806. break;
  1807. }
  1808. for(q=0; q<52; q++){
  1809. int shift = ff_div6[q];
  1810. int idx = ff_rem6[q];
  1811. for(x=0; x<64; x++)
  1812. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  1813. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  1814. h->pps.scaling_matrix8[i][x]) << shift;
  1815. }
  1816. }
  1817. }
  1818. static void init_dequant4_coeff_table(H264Context *h){
  1819. int i,j,q,x;
  1820. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  1821. for(i=0; i<6; i++ ){
  1822. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  1823. for(j=0; j<i; j++){
  1824. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  1825. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  1826. break;
  1827. }
  1828. }
  1829. if(j<i)
  1830. continue;
  1831. for(q=0; q<52; q++){
  1832. int shift = ff_div6[q] + 2;
  1833. int idx = ff_rem6[q];
  1834. for(x=0; x<16; x++)
  1835. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  1836. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  1837. h->pps.scaling_matrix4[i][x]) << shift;
  1838. }
  1839. }
  1840. }
  1841. static void init_dequant_tables(H264Context *h){
  1842. int i,x;
  1843. init_dequant4_coeff_table(h);
  1844. if(h->pps.transform_8x8_mode)
  1845. init_dequant8_coeff_table(h);
  1846. if(h->sps.transform_bypass){
  1847. for(i=0; i<6; i++)
  1848. for(x=0; x<16; x++)
  1849. h->dequant4_coeff[i][0][x] = 1<<6;
  1850. if(h->pps.transform_8x8_mode)
  1851. for(i=0; i<2; i++)
  1852. for(x=0; x<64; x++)
  1853. h->dequant8_coeff[i][0][x] = 1<<6;
  1854. }
  1855. }
  1856. /**
  1857. * allocates tables.
  1858. * needs width/height
  1859. */
  1860. static int alloc_tables(H264Context *h){
  1861. MpegEncContext * const s = &h->s;
  1862. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  1863. int x,y;
  1864. CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
  1865. CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
  1866. CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
  1867. CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
  1868. CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
  1869. CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
  1870. CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
  1871. CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
  1872. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
  1873. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  1874. CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
  1875. CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
  1876. for(y=0; y<s->mb_height; y++){
  1877. for(x=0; x<s->mb_width; x++){
  1878. const int mb_xy= x + y*s->mb_stride;
  1879. const int b_xy = 4*x + 4*y*h->b_stride;
  1880. const int b8_xy= 2*x + 2*y*h->b8_stride;
  1881. h->mb2b_xy [mb_xy]= b_xy;
  1882. h->mb2b8_xy[mb_xy]= b8_xy;
  1883. }
  1884. }
  1885. s->obmc_scratchpad = NULL;
  1886. if(!h->dequant4_coeff[0])
  1887. init_dequant_tables(h);
  1888. return 0;
  1889. fail:
  1890. free_tables(h);
  1891. return -1;
  1892. }
  1893. /**
  1894. * Mimic alloc_tables(), but for every context thread.
  1895. */
  1896. static void clone_tables(H264Context *dst, H264Context *src){
  1897. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  1898. dst->non_zero_count = src->non_zero_count;
  1899. dst->slice_table = src->slice_table;
  1900. dst->cbp_table = src->cbp_table;
  1901. dst->mb2b_xy = src->mb2b_xy;
  1902. dst->mb2b8_xy = src->mb2b8_xy;
  1903. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  1904. dst->mvd_table[0] = src->mvd_table[0];
  1905. dst->mvd_table[1] = src->mvd_table[1];
  1906. dst->direct_table = src->direct_table;
  1907. dst->s.obmc_scratchpad = NULL;
  1908. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  1909. }
  1910. /**
  1911. * Init context
  1912. * Allocate buffers which are not shared amongst multiple threads.
  1913. */
  1914. static int context_init(H264Context *h){
  1915. CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1916. CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
  1917. return 0;
  1918. fail:
  1919. return -1; // free_tables will clean up for us
  1920. }
  1921. static av_cold void common_init(H264Context *h){
  1922. MpegEncContext * const s = &h->s;
  1923. s->width = s->avctx->width;
  1924. s->height = s->avctx->height;
  1925. s->codec_id= s->avctx->codec->id;
  1926. ff_h264_pred_init(&h->hpc, s->codec_id);
  1927. h->dequant_coeff_pps= -1;
  1928. s->unrestricted_mv=1;
  1929. s->decode=1; //FIXME
  1930. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  1931. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  1932. }
  1933. static av_cold int decode_init(AVCodecContext *avctx){
  1934. H264Context *h= avctx->priv_data;
  1935. MpegEncContext * const s = &h->s;
  1936. MPV_decode_defaults(s);
  1937. s->avctx = avctx;
  1938. common_init(h);
  1939. s->out_format = FMT_H264;
  1940. s->workaround_bugs= avctx->workaround_bugs;
  1941. // set defaults
  1942. // s->decode_mb= ff_h263_decode_mb;
  1943. s->quarter_sample = 1;
  1944. s->low_delay= 1;
  1945. if(avctx->codec_id == CODEC_ID_SVQ3)
  1946. avctx->pix_fmt= PIX_FMT_YUVJ420P;
  1947. else
  1948. avctx->pix_fmt= PIX_FMT_YUV420P;
  1949. decode_init_vlc();
  1950. if(avctx->extradata_size > 0 && avctx->extradata &&
  1951. *(char *)avctx->extradata == 1){
  1952. h->is_avc = 1;
  1953. h->got_avcC = 0;
  1954. } else {
  1955. h->is_avc = 0;
  1956. }
  1957. h->thread_context[0] = h;
  1958. return 0;
  1959. }
  1960. static int frame_start(H264Context *h){
  1961. MpegEncContext * const s = &h->s;
  1962. int i;
  1963. if(MPV_frame_start(s, s->avctx) < 0)
  1964. return -1;
  1965. ff_er_frame_start(s);
  1966. /*
  1967. * MPV_frame_start uses pict_type to derive key_frame.
  1968. * This is incorrect for H.264; IDR markings must be used.
  1969. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  1970. * See decode_nal_units().
  1971. */
  1972. s->current_picture_ptr->key_frame= 0;
  1973. assert(s->linesize && s->uvlinesize);
  1974. for(i=0; i<16; i++){
  1975. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1976. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1977. }
  1978. for(i=0; i<4; i++){
  1979. h->block_offset[16+i]=
  1980. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1981. h->block_offset[24+16+i]=
  1982. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1983. }
  1984. /* can't be in alloc_tables because linesize isn't known there.
  1985. * FIXME: redo bipred weight to not require extra buffer? */
  1986. for(i = 0; i < s->avctx->thread_count; i++)
  1987. if(!h->thread_context[i]->s.obmc_scratchpad)
  1988. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  1989. /* some macroblocks will be accessed before they're available */
  1990. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  1991. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
  1992. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  1993. // We mark the current picture as non-reference after allocating it, so
  1994. // that if we break out due to an error it can be released automatically
  1995. // in the next MPV_frame_start().
  1996. // SVQ3 as well as most other codecs have only last/next/current and thus
  1997. // get released even with set reference, besides SVQ3 and others do not
  1998. // mark frames as reference later "naturally".
  1999. if(s->codec_id != CODEC_ID_SVQ3)
  2000. s->current_picture_ptr->reference= 0;
  2001. s->current_picture_ptr->field_poc[0]=
  2002. s->current_picture_ptr->field_poc[1]= INT_MAX;
  2003. assert(s->current_picture_ptr->long_ref==0);
  2004. return 0;
  2005. }
  2006. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  2007. MpegEncContext * const s = &h->s;
  2008. int i;
  2009. src_y -= linesize;
  2010. src_cb -= uvlinesize;
  2011. src_cr -= uvlinesize;
  2012. // There are two lines saved, the line above the the top macroblock of a pair,
  2013. // and the line above the bottom macroblock
  2014. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2015. for(i=1; i<17; i++){
  2016. h->left_border[i]= src_y[15+i* linesize];
  2017. }
  2018. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  2019. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  2020. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2021. h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
  2022. h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
  2023. for(i=1; i<9; i++){
  2024. h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
  2025. h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
  2026. }
  2027. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  2028. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  2029. }
  2030. }
  2031. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  2032. MpegEncContext * const s = &h->s;
  2033. int temp8, i;
  2034. uint64_t temp64;
  2035. int deblock_left;
  2036. int deblock_top;
  2037. int mb_xy;
  2038. if(h->deblocking_filter == 2) {
  2039. mb_xy = h->mb_xy;
  2040. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  2041. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  2042. } else {
  2043. deblock_left = (s->mb_x > 0);
  2044. deblock_top = (s->mb_y > 0);
  2045. }
  2046. src_y -= linesize + 1;
  2047. src_cb -= uvlinesize + 1;
  2048. src_cr -= uvlinesize + 1;
  2049. #define XCHG(a,b,t,xchg)\
  2050. t= a;\
  2051. if(xchg)\
  2052. a= b;\
  2053. b= t;
  2054. if(deblock_left){
  2055. for(i = !deblock_top; i<17; i++){
  2056. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2057. }
  2058. }
  2059. if(deblock_top){
  2060. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2061. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2062. if(s->mb_x+1 < s->mb_width){
  2063. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2064. }
  2065. }
  2066. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2067. if(deblock_left){
  2068. for(i = !deblock_top; i<9; i++){
  2069. XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
  2070. XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
  2071. }
  2072. }
  2073. if(deblock_top){
  2074. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2075. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2076. }
  2077. }
  2078. }
  2079. static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
  2080. MpegEncContext * const s = &h->s;
  2081. int i;
  2082. src_y -= 2 * linesize;
  2083. src_cb -= 2 * uvlinesize;
  2084. src_cr -= 2 * uvlinesize;
  2085. // There are two lines saved, the line above the the top macroblock of a pair,
  2086. // and the line above the bottom macroblock
  2087. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  2088. h->left_border[1]= h->top_borders[1][s->mb_x][15];
  2089. for(i=2; i<34; i++){
  2090. h->left_border[i]= src_y[15+i* linesize];
  2091. }
  2092. *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
  2093. *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
  2094. *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
  2095. *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
  2096. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2097. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
  2098. h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
  2099. h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
  2100. h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
  2101. for(i=2; i<18; i++){
  2102. h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
  2103. h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
  2104. }
  2105. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
  2106. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
  2107. *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
  2108. *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
  2109. }
  2110. }
  2111. static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
  2112. MpegEncContext * const s = &h->s;
  2113. int temp8, i;
  2114. uint64_t temp64;
  2115. int deblock_left = (s->mb_x > 0);
  2116. int deblock_top = (s->mb_y > 1);
  2117. tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
  2118. src_y -= 2 * linesize + 1;
  2119. src_cb -= 2 * uvlinesize + 1;
  2120. src_cr -= 2 * uvlinesize + 1;
  2121. #define XCHG(a,b,t,xchg)\
  2122. t= a;\
  2123. if(xchg)\
  2124. a= b;\
  2125. b= t;
  2126. if(deblock_left){
  2127. for(i = (!deblock_top)<<1; i<34; i++){
  2128. XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
  2129. }
  2130. }
  2131. if(deblock_top){
  2132. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  2133. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  2134. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
  2135. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
  2136. if(s->mb_x+1 < s->mb_width){
  2137. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  2138. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
  2139. }
  2140. }
  2141. if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2142. if(deblock_left){
  2143. for(i = (!deblock_top) << 1; i<18; i++){
  2144. XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
  2145. XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
  2146. }
  2147. }
  2148. if(deblock_top){
  2149. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  2150. XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  2151. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
  2152. XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
  2153. }
  2154. }
  2155. }
  2156. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  2157. MpegEncContext * const s = &h->s;
  2158. const int mb_x= s->mb_x;
  2159. const int mb_y= s->mb_y;
  2160. const int mb_xy= h->mb_xy;
  2161. const int mb_type= s->current_picture.mb_type[mb_xy];
  2162. uint8_t *dest_y, *dest_cb, *dest_cr;
  2163. int linesize, uvlinesize /*dct_offset*/;
  2164. int i;
  2165. int *block_offset = &h->block_offset[0];
  2166. const unsigned int bottom = mb_y & 1;
  2167. const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
  2168. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  2169. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  2170. dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2171. dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2172. dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2173. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  2174. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  2175. if (!simple && MB_FIELD) {
  2176. linesize = h->mb_linesize = s->linesize * 2;
  2177. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  2178. block_offset = &h->block_offset[24];
  2179. if(mb_y&1){ //FIXME move out of this function?
  2180. dest_y -= s->linesize*15;
  2181. dest_cb-= s->uvlinesize*7;
  2182. dest_cr-= s->uvlinesize*7;
  2183. }
  2184. if(FRAME_MBAFF) {
  2185. int list;
  2186. for(list=0; list<h->list_count; list++){
  2187. if(!USES_LIST(mb_type, list))
  2188. continue;
  2189. if(IS_16X16(mb_type)){
  2190. int8_t *ref = &h->ref_cache[list][scan8[0]];
  2191. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  2192. }else{
  2193. for(i=0; i<16; i+=4){
  2194. //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
  2195. int ref = h->ref_cache[list][scan8[i]];
  2196. if(ref >= 0)
  2197. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  2198. }
  2199. }
  2200. }
  2201. }
  2202. } else {
  2203. linesize = h->mb_linesize = s->linesize;
  2204. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  2205. // dct_offset = s->linesize * 16;
  2206. }
  2207. if(transform_bypass){
  2208. idct_dc_add =
  2209. idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  2210. }else if(IS_8x8DCT(mb_type)){
  2211. idct_dc_add = s->dsp.h264_idct8_dc_add;
  2212. idct_add = s->dsp.h264_idct8_add;
  2213. }else{
  2214. idct_dc_add = s->dsp.h264_idct_dc_add;
  2215. idct_add = s->dsp.h264_idct_add;
  2216. }
  2217. if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
  2218. && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
  2219. int mbt_y = mb_y&~1;
  2220. uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
  2221. uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2222. uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
  2223. xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
  2224. }
  2225. if (!simple && IS_INTRA_PCM(mb_type)) {
  2226. unsigned int x, y;
  2227. // The pixels are stored in h->mb array in the same order as levels,
  2228. // copy them in output in the correct order.
  2229. for(i=0; i<16; i++) {
  2230. for (y=0; y<4; y++) {
  2231. for (x=0; x<4; x++) {
  2232. *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
  2233. }
  2234. }
  2235. }
  2236. for(i=16; i<16+4; i++) {
  2237. for (y=0; y<4; y++) {
  2238. for (x=0; x<4; x++) {
  2239. *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2240. }
  2241. }
  2242. }
  2243. for(i=20; i<20+4; i++) {
  2244. for (y=0; y<4; y++) {
  2245. for (x=0; x<4; x++) {
  2246. *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
  2247. }
  2248. }
  2249. }
  2250. } else {
  2251. if(IS_INTRA(mb_type)){
  2252. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2253. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  2254. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2255. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  2256. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  2257. }
  2258. if(IS_INTRA4x4(mb_type)){
  2259. if(simple || !s->encoding){
  2260. if(IS_8x8DCT(mb_type)){
  2261. for(i=0; i<16; i+=4){
  2262. uint8_t * const ptr= dest_y + block_offset[i];
  2263. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2264. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  2265. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  2266. (h->topright_samples_available<<i)&0x4000, linesize);
  2267. if(nnz){
  2268. if(nnz == 1 && h->mb[i*16])
  2269. idct_dc_add(ptr, h->mb + i*16, linesize);
  2270. else
  2271. idct_add(ptr, h->mb + i*16, linesize);
  2272. }
  2273. }
  2274. }else
  2275. for(i=0; i<16; i++){
  2276. uint8_t * const ptr= dest_y + block_offset[i];
  2277. uint8_t *topright;
  2278. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  2279. int nnz, tr;
  2280. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  2281. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  2282. assert(mb_y || linesize <= block_offset[i]);
  2283. if(!topright_avail){
  2284. tr= ptr[3 - linesize]*0x01010101;
  2285. topright= (uint8_t*) &tr;
  2286. }else
  2287. topright= ptr + 4 - linesize;
  2288. }else
  2289. topright= NULL;
  2290. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  2291. nnz = h->non_zero_count_cache[ scan8[i] ];
  2292. if(nnz){
  2293. if(is_h264){
  2294. if(nnz == 1 && h->mb[i*16])
  2295. idct_dc_add(ptr, h->mb + i*16, linesize);
  2296. else
  2297. idct_add(ptr, h->mb + i*16, linesize);
  2298. }else
  2299. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  2300. }
  2301. }
  2302. }
  2303. }else{
  2304. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  2305. if(is_h264){
  2306. if(!transform_bypass)
  2307. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  2308. }else
  2309. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  2310. }
  2311. if(h->deblocking_filter && (simple || !FRAME_MBAFF))
  2312. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  2313. }else if(is_h264){
  2314. hl_motion(h, dest_y, dest_cb, dest_cr,
  2315. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  2316. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  2317. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  2318. }
  2319. if(!IS_INTRA4x4(mb_type)){
  2320. if(is_h264){
  2321. if(IS_INTRA16x16(mb_type)){
  2322. for(i=0; i<16; i++){
  2323. if(h->non_zero_count_cache[ scan8[i] ])
  2324. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2325. else if(h->mb[i*16])
  2326. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2327. }
  2328. }else{
  2329. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  2330. for(i=0; i<16; i+=di){
  2331. int nnz = h->non_zero_count_cache[ scan8[i] ];
  2332. if(nnz){
  2333. if(nnz==1 && h->mb[i*16])
  2334. idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2335. else
  2336. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  2337. }
  2338. }
  2339. }
  2340. }else{
  2341. for(i=0; i<16; i++){
  2342. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  2343. uint8_t * const ptr= dest_y + block_offset[i];
  2344. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  2345. }
  2346. }
  2347. }
  2348. }
  2349. if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  2350. uint8_t *dest[2] = {dest_cb, dest_cr};
  2351. if(transform_bypass){
  2352. idct_add = idct_dc_add = s->dsp.add_pixels4;
  2353. }else{
  2354. idct_add = s->dsp.h264_idct_add;
  2355. idct_dc_add = s->dsp.h264_idct_dc_add;
  2356. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  2357. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  2358. }
  2359. if(is_h264){
  2360. for(i=16; i<16+8; i++){
  2361. if(h->non_zero_count_cache[ scan8[i] ])
  2362. idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2363. else if(h->mb[i*16])
  2364. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  2365. }
  2366. }else{
  2367. for(i=16; i<16+8; i++){
  2368. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  2369. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  2370. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
  2371. }
  2372. }
  2373. }
  2374. }
  2375. }
  2376. if(h->deblocking_filter) {
  2377. if (!simple && FRAME_MBAFF) {
  2378. //FIXME try deblocking one mb at a time?
  2379. // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
  2380. const int mb_y = s->mb_y - 1;
  2381. uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
  2382. const int mb_xy= mb_x + mb_y*s->mb_stride;
  2383. const int mb_type_top = s->current_picture.mb_type[mb_xy];
  2384. const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
  2385. if (!bottom) return;
  2386. pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
  2387. pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2388. pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
  2389. if(IS_INTRA(mb_type_top | mb_type_bottom))
  2390. xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
  2391. backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
  2392. // deblock a pair
  2393. // top
  2394. s->mb_y--; h->mb_xy -= s->mb_stride;
  2395. tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
  2396. fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2397. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2398. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2399. filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
  2400. // bottom
  2401. s->mb_y++; h->mb_xy += s->mb_stride;
  2402. tprintf(h->s.avctx, "call mbaff filter_mb\n");
  2403. fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2404. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2405. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
  2406. filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2407. } else {
  2408. tprintf(h->s.avctx, "call filter_mb\n");
  2409. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  2410. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  2411. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  2412. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  2413. filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  2414. }
  2415. }
  2416. }
  2417. /**
  2418. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  2419. */
  2420. static void hl_decode_mb_simple(H264Context *h){
  2421. hl_decode_mb_internal(h, 1);
  2422. }
  2423. /**
  2424. * Process a macroblock; this handles edge cases, such as interlacing.
  2425. */
  2426. static void av_noinline hl_decode_mb_complex(H264Context *h){
  2427. hl_decode_mb_internal(h, 0);
  2428. }
  2429. static void hl_decode_mb(H264Context *h){
  2430. MpegEncContext * const s = &h->s;
  2431. const int mb_xy= h->mb_xy;
  2432. const int mb_type= s->current_picture.mb_type[mb_xy];
  2433. int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 ||
  2434. (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || (ENABLE_H264_ENCODER && s->encoding) || ENABLE_SMALL;
  2435. if(ENABLE_H264_ENCODER && !s->decode)
  2436. return;
  2437. if (is_complex)
  2438. hl_decode_mb_complex(h);
  2439. else hl_decode_mb_simple(h);
  2440. }
  2441. static void pic_as_field(Picture *pic, const int parity){
  2442. int i;
  2443. for (i = 0; i < 4; ++i) {
  2444. if (parity == PICT_BOTTOM_FIELD)
  2445. pic->data[i] += pic->linesize[i];
  2446. pic->reference = parity;
  2447. pic->linesize[i] *= 2;
  2448. }
  2449. }
  2450. static int split_field_copy(Picture *dest, Picture *src,
  2451. int parity, int id_add){
  2452. int match = !!(src->reference & parity);
  2453. if (match) {
  2454. *dest = *src;
  2455. pic_as_field(dest, parity);
  2456. dest->pic_id *= 2;
  2457. dest->pic_id += id_add;
  2458. }
  2459. return match;
  2460. }
  2461. /**
  2462. * Split one reference list into field parts, interleaving by parity
  2463. * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
  2464. * set to look at the actual start of data for that field.
  2465. *
  2466. * @param dest output list
  2467. * @param dest_len maximum number of fields to put in dest
  2468. * @param src the source reference list containing fields and/or field pairs
  2469. * (aka short_ref/long_ref, or
  2470. * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
  2471. * @param src_len number of Picture's in source (pairs and unmatched fields)
  2472. * @param parity the parity of the picture being decoded/needing
  2473. * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
  2474. * @return number of fields placed in dest
  2475. */
  2476. static int split_field_half_ref_list(Picture *dest, int dest_len,
  2477. Picture *src, int src_len, int parity){
  2478. int same_parity = 1;
  2479. int same_i = 0;
  2480. int opp_i = 0;
  2481. int out_i;
  2482. int field_output;
  2483. for (out_i = 0; out_i < dest_len; out_i += field_output) {
  2484. if (same_parity && same_i < src_len) {
  2485. field_output = split_field_copy(dest + out_i, src + same_i,
  2486. parity, 1);
  2487. same_parity = !field_output;
  2488. same_i++;
  2489. } else if (opp_i < src_len) {
  2490. field_output = split_field_copy(dest + out_i, src + opp_i,
  2491. PICT_FRAME - parity, 0);
  2492. same_parity = field_output;
  2493. opp_i++;
  2494. } else {
  2495. break;
  2496. }
  2497. }
  2498. return out_i;
  2499. }
  2500. /**
  2501. * Split the reference frame list into a reference field list.
  2502. * This implements H.264 spec 8.2.4.2.5 for a combined input list.
  2503. * The input list contains both reference field pairs and
  2504. * unmatched reference fields; it is ordered as spec describes
  2505. * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
  2506. * unmatched field pairs are also present. Conceptually this is equivalent
  2507. * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
  2508. *
  2509. * @param dest output reference list where ordered fields are to be placed
  2510. * @param dest_len max number of fields to place at dest
  2511. * @param src source reference list, as described above
  2512. * @param src_len number of pictures (pairs and unmatched fields) in src
  2513. * @param parity parity of field being currently decoded
  2514. * (one of PICT_{TOP,BOTTOM}_FIELD)
  2515. * @param long_i index into src array that holds first long reference picture,
  2516. * or src_len if no long refs present.
  2517. */
  2518. static int split_field_ref_list(Picture *dest, int dest_len,
  2519. Picture *src, int src_len,
  2520. int parity, int long_i){
  2521. int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
  2522. dest += i;
  2523. dest_len -= i;
  2524. i += split_field_half_ref_list(dest, dest_len, src + long_i,
  2525. src_len - long_i, parity);
  2526. return i;
  2527. }
  2528. /**
  2529. * fills the default_ref_list.
  2530. */
  2531. static int fill_default_ref_list(H264Context *h){
  2532. MpegEncContext * const s = &h->s;
  2533. int i;
  2534. int smallest_poc_greater_than_current = -1;
  2535. int structure_sel;
  2536. Picture sorted_short_ref[32];
  2537. Picture field_entry_list[2][32];
  2538. Picture *frame_list[2];
  2539. if (FIELD_PICTURE) {
  2540. structure_sel = PICT_FRAME;
  2541. frame_list[0] = field_entry_list[0];
  2542. frame_list[1] = field_entry_list[1];
  2543. } else {
  2544. structure_sel = 0;
  2545. frame_list[0] = h->default_ref_list[0];
  2546. frame_list[1] = h->default_ref_list[1];
  2547. }
  2548. if(h->slice_type_nos==FF_B_TYPE){
  2549. int list;
  2550. int len[2];
  2551. int short_len[2];
  2552. int out_i;
  2553. int limit= INT_MIN;
  2554. /* sort frame according to POC in B slice */
  2555. for(out_i=0; out_i<h->short_ref_count; out_i++){
  2556. int best_i=INT_MIN;
  2557. int best_poc=INT_MAX;
  2558. for(i=0; i<h->short_ref_count; i++){
  2559. const int poc= h->short_ref[i]->poc;
  2560. if(poc > limit && poc < best_poc){
  2561. best_poc= poc;
  2562. best_i= i;
  2563. }
  2564. }
  2565. assert(best_i != INT_MIN);
  2566. limit= best_poc;
  2567. sorted_short_ref[out_i]= *h->short_ref[best_i];
  2568. tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
  2569. if (-1 == smallest_poc_greater_than_current) {
  2570. if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
  2571. smallest_poc_greater_than_current = out_i;
  2572. }
  2573. }
  2574. }
  2575. tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
  2576. // find the largest POC
  2577. for(list=0; list<2; list++){
  2578. int index = 0;
  2579. int j= -99;
  2580. int step= list ? -1 : 1;
  2581. for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
  2582. int sel;
  2583. while(j<0 || j>= h->short_ref_count){
  2584. if(j != -99 && step == (list ? -1 : 1))
  2585. return -1;
  2586. step = -step;
  2587. j= smallest_poc_greater_than_current + (step>>1);
  2588. }
  2589. sel = sorted_short_ref[j].reference | structure_sel;
  2590. if(sel != PICT_FRAME) continue;
  2591. frame_list[list][index ]= sorted_short_ref[j];
  2592. frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
  2593. }
  2594. short_len[list] = index;
  2595. for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
  2596. int sel;
  2597. if(h->long_ref[i] == NULL) continue;
  2598. sel = h->long_ref[i]->reference | structure_sel;
  2599. if(sel != PICT_FRAME) continue;
  2600. frame_list[ list ][index ]= *h->long_ref[i];
  2601. frame_list[ list ][index++].pic_id= i;
  2602. }
  2603. len[list] = index;
  2604. }
  2605. for(list=0; list<2; list++){
  2606. if (FIELD_PICTURE)
  2607. len[list] = split_field_ref_list(h->default_ref_list[list],
  2608. h->ref_count[list],
  2609. frame_list[list],
  2610. len[list],
  2611. s->picture_structure,
  2612. short_len[list]);
  2613. // swap the two first elements of L1 when L0 and L1 are identical
  2614. if(list && len[0] > 1 && len[0] == len[1])
  2615. for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
  2616. if(i == len[0]){
  2617. FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
  2618. break;
  2619. }
  2620. if(len[list] < h->ref_count[ list ])
  2621. memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
  2622. }
  2623. }else{
  2624. int index=0;
  2625. int short_len;
  2626. for(i=0; i<h->short_ref_count; i++){
  2627. int sel;
  2628. sel = h->short_ref[i]->reference | structure_sel;
  2629. if(sel != PICT_FRAME) continue;
  2630. frame_list[0][index ]= *h->short_ref[i];
  2631. frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
  2632. }
  2633. short_len = index;
  2634. for(i = 0; i < 16; i++){
  2635. int sel;
  2636. if(h->long_ref[i] == NULL) continue;
  2637. sel = h->long_ref[i]->reference | structure_sel;
  2638. if(sel != PICT_FRAME) continue;
  2639. frame_list[0][index ]= *h->long_ref[i];
  2640. frame_list[0][index++].pic_id= i;
  2641. }
  2642. if (FIELD_PICTURE)
  2643. index = split_field_ref_list(h->default_ref_list[0],
  2644. h->ref_count[0], frame_list[0],
  2645. index, s->picture_structure,
  2646. short_len);
  2647. if(index < h->ref_count[0])
  2648. memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
  2649. }
  2650. #ifdef TRACE
  2651. for (i=0; i<h->ref_count[0]; i++) {
  2652. tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
  2653. }
  2654. if(h->slice_type_nos==FF_B_TYPE){
  2655. for (i=0; i<h->ref_count[1]; i++) {
  2656. tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
  2657. }
  2658. }
  2659. #endif
  2660. return 0;
  2661. }
  2662. static void print_short_term(H264Context *h);
  2663. static void print_long_term(H264Context *h);
  2664. /**
  2665. * Extract structure information about the picture described by pic_num in
  2666. * the current decoding context (frame or field). Note that pic_num is
  2667. * picture number without wrapping (so, 0<=pic_num<max_pic_num).
  2668. * @param pic_num picture number for which to extract structure information
  2669. * @param structure one of PICT_XXX describing structure of picture
  2670. * with pic_num
  2671. * @return frame number (short term) or long term index of picture
  2672. * described by pic_num
  2673. */
  2674. static int pic_num_extract(H264Context *h, int pic_num, int *structure){
  2675. MpegEncContext * const s = &h->s;
  2676. *structure = s->picture_structure;
  2677. if(FIELD_PICTURE){
  2678. if (!(pic_num & 1))
  2679. /* opposite field */
  2680. *structure ^= PICT_FRAME;
  2681. pic_num >>= 1;
  2682. }
  2683. return pic_num;
  2684. }
  2685. static int decode_ref_pic_list_reordering(H264Context *h){
  2686. MpegEncContext * const s = &h->s;
  2687. int list, index, pic_structure;
  2688. print_short_term(h);
  2689. print_long_term(h);
  2690. if(h->slice_type_nos==FF_I_TYPE) return 0; //FIXME move before function
  2691. for(list=0; list<h->list_count; list++){
  2692. memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
  2693. if(get_bits1(&s->gb)){
  2694. int pred= h->curr_pic_num;
  2695. for(index=0; ; index++){
  2696. unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
  2697. unsigned int pic_id;
  2698. int i;
  2699. Picture *ref = NULL;
  2700. if(reordering_of_pic_nums_idc==3)
  2701. break;
  2702. if(index >= h->ref_count[list]){
  2703. av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
  2704. return -1;
  2705. }
  2706. if(reordering_of_pic_nums_idc<3){
  2707. if(reordering_of_pic_nums_idc<2){
  2708. const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
  2709. int frame_num;
  2710. if(abs_diff_pic_num > h->max_pic_num){
  2711. av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
  2712. return -1;
  2713. }
  2714. if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
  2715. else pred+= abs_diff_pic_num;
  2716. pred &= h->max_pic_num - 1;
  2717. frame_num = pic_num_extract(h, pred, &pic_structure);
  2718. for(i= h->short_ref_count-1; i>=0; i--){
  2719. ref = h->short_ref[i];
  2720. assert(ref->reference);
  2721. assert(!ref->long_ref);
  2722. if(ref->data[0] != NULL &&
  2723. ref->frame_num == frame_num &&
  2724. (ref->reference & pic_structure) &&
  2725. ref->long_ref == 0) // ignore non-existing pictures by testing data[0] pointer
  2726. break;
  2727. }
  2728. if(i>=0)
  2729. ref->pic_id= pred;
  2730. }else{
  2731. int long_idx;
  2732. pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
  2733. long_idx= pic_num_extract(h, pic_id, &pic_structure);
  2734. if(long_idx>31){
  2735. av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
  2736. return -1;
  2737. }
  2738. ref = h->long_ref[long_idx];
  2739. assert(!(ref && !ref->reference));
  2740. if(ref && (ref->reference & pic_structure)){
  2741. ref->pic_id= pic_id;
  2742. assert(ref->long_ref);
  2743. i=0;
  2744. }else{
  2745. i=-1;
  2746. }
  2747. }
  2748. if (i < 0) {
  2749. av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
  2750. memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
  2751. } else {
  2752. for(i=index; i+1<h->ref_count[list]; i++){
  2753. if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
  2754. break;
  2755. }
  2756. for(; i > index; i--){
  2757. h->ref_list[list][i]= h->ref_list[list][i-1];
  2758. }
  2759. h->ref_list[list][index]= *ref;
  2760. if (FIELD_PICTURE){
  2761. pic_as_field(&h->ref_list[list][index], pic_structure);
  2762. }
  2763. }
  2764. }else{
  2765. av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
  2766. return -1;
  2767. }
  2768. }
  2769. }
  2770. }
  2771. for(list=0; list<h->list_count; list++){
  2772. for(index= 0; index < h->ref_count[list]; index++){
  2773. if(!h->ref_list[list][index].data[0])
  2774. h->ref_list[list][index]= s->current_picture;
  2775. }
  2776. }
  2777. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  2778. direct_dist_scale_factor(h);
  2779. direct_ref_list_init(h);
  2780. return 0;
  2781. }
  2782. static void fill_mbaff_ref_list(H264Context *h){
  2783. int list, i, j;
  2784. for(list=0; list<2; list++){ //FIXME try list_count
  2785. for(i=0; i<h->ref_count[list]; i++){
  2786. Picture *frame = &h->ref_list[list][i];
  2787. Picture *field = &h->ref_list[list][16+2*i];
  2788. field[0] = *frame;
  2789. for(j=0; j<3; j++)
  2790. field[0].linesize[j] <<= 1;
  2791. field[0].reference = PICT_TOP_FIELD;
  2792. field[1] = field[0];
  2793. for(j=0; j<3; j++)
  2794. field[1].data[j] += frame->linesize[j];
  2795. field[1].reference = PICT_BOTTOM_FIELD;
  2796. h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
  2797. h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
  2798. for(j=0; j<2; j++){
  2799. h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
  2800. h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
  2801. }
  2802. }
  2803. }
  2804. for(j=0; j<h->ref_count[1]; j++){
  2805. for(i=0; i<h->ref_count[0]; i++)
  2806. h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
  2807. memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2808. memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
  2809. }
  2810. }
  2811. static int pred_weight_table(H264Context *h){
  2812. MpegEncContext * const s = &h->s;
  2813. int list, i;
  2814. int luma_def, chroma_def;
  2815. h->use_weight= 0;
  2816. h->use_weight_chroma= 0;
  2817. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  2818. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  2819. luma_def = 1<<h->luma_log2_weight_denom;
  2820. chroma_def = 1<<h->chroma_log2_weight_denom;
  2821. for(list=0; list<2; list++){
  2822. for(i=0; i<h->ref_count[list]; i++){
  2823. int luma_weight_flag, chroma_weight_flag;
  2824. luma_weight_flag= get_bits1(&s->gb);
  2825. if(luma_weight_flag){
  2826. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  2827. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  2828. if( h->luma_weight[list][i] != luma_def
  2829. || h->luma_offset[list][i] != 0)
  2830. h->use_weight= 1;
  2831. }else{
  2832. h->luma_weight[list][i]= luma_def;
  2833. h->luma_offset[list][i]= 0;
  2834. }
  2835. chroma_weight_flag= get_bits1(&s->gb);
  2836. if(chroma_weight_flag){
  2837. int j;
  2838. for(j=0; j<2; j++){
  2839. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  2840. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  2841. if( h->chroma_weight[list][i][j] != chroma_def
  2842. || h->chroma_offset[list][i][j] != 0)
  2843. h->use_weight_chroma= 1;
  2844. }
  2845. }else{
  2846. int j;
  2847. for(j=0; j<2; j++){
  2848. h->chroma_weight[list][i][j]= chroma_def;
  2849. h->chroma_offset[list][i][j]= 0;
  2850. }
  2851. }
  2852. }
  2853. if(h->slice_type_nos != FF_B_TYPE) break;
  2854. }
  2855. h->use_weight= h->use_weight || h->use_weight_chroma;
  2856. return 0;
  2857. }
  2858. static void implicit_weight_table(H264Context *h){
  2859. MpegEncContext * const s = &h->s;
  2860. int ref0, ref1;
  2861. int cur_poc = s->current_picture_ptr->poc;
  2862. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  2863. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  2864. h->use_weight= 0;
  2865. h->use_weight_chroma= 0;
  2866. return;
  2867. }
  2868. h->use_weight= 2;
  2869. h->use_weight_chroma= 2;
  2870. h->luma_log2_weight_denom= 5;
  2871. h->chroma_log2_weight_denom= 5;
  2872. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  2873. int poc0 = h->ref_list[0][ref0].poc;
  2874. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  2875. int poc1 = h->ref_list[1][ref1].poc;
  2876. int td = av_clip(poc1 - poc0, -128, 127);
  2877. if(td){
  2878. int tb = av_clip(cur_poc - poc0, -128, 127);
  2879. int tx = (16384 + (FFABS(td) >> 1)) / td;
  2880. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  2881. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  2882. h->implicit_weight[ref0][ref1] = 32;
  2883. else
  2884. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  2885. }else
  2886. h->implicit_weight[ref0][ref1] = 32;
  2887. }
  2888. }
  2889. }
  2890. /**
  2891. * Mark a picture as no longer needed for reference. The refmask
  2892. * argument allows unreferencing of individual fields or the whole frame.
  2893. * If the picture becomes entirely unreferenced, but is being held for
  2894. * display purposes, it is marked as such.
  2895. * @param refmask mask of fields to unreference; the mask is bitwise
  2896. * anded with the reference marking of pic
  2897. * @return non-zero if pic becomes entirely unreferenced (except possibly
  2898. * for display purposes) zero if one of the fields remains in
  2899. * reference
  2900. */
  2901. static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
  2902. int i;
  2903. if (pic->reference &= refmask) {
  2904. return 0;
  2905. } else {
  2906. for(i = 0; h->delayed_pic[i]; i++)
  2907. if(pic == h->delayed_pic[i]){
  2908. pic->reference=DELAYED_PIC_REF;
  2909. break;
  2910. }
  2911. return 1;
  2912. }
  2913. }
  2914. /**
  2915. * instantaneous decoder refresh.
  2916. */
  2917. static void idr(H264Context *h){
  2918. int i;
  2919. for(i=0; i<16; i++){
  2920. if (h->long_ref[i] != NULL) {
  2921. unreference_pic(h, h->long_ref[i], 0);
  2922. remove_long_at_index(h, i);
  2923. }
  2924. }
  2925. assert(h->long_ref_count==0);
  2926. for(i=0; i<h->short_ref_count; i++){
  2927. unreference_pic(h, h->short_ref[i], 0);
  2928. h->short_ref[i]= NULL;
  2929. }
  2930. h->short_ref_count=0;
  2931. h->prev_frame_num= 0;
  2932. h->prev_frame_num_offset= 0;
  2933. h->prev_poc_msb=
  2934. h->prev_poc_lsb= 0;
  2935. }
  2936. /* forget old pics after a seek */
  2937. static void flush_dpb(AVCodecContext *avctx){
  2938. H264Context *h= avctx->priv_data;
  2939. int i;
  2940. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  2941. if(h->delayed_pic[i])
  2942. h->delayed_pic[i]->reference= 0;
  2943. h->delayed_pic[i]= NULL;
  2944. }
  2945. h->outputed_poc= INT_MIN;
  2946. idr(h);
  2947. if(h->s.current_picture_ptr)
  2948. h->s.current_picture_ptr->reference= 0;
  2949. h->s.first_field= 0;
  2950. ff_mpeg_flush(avctx);
  2951. }
  2952. /**
  2953. * Find a Picture in the short term reference list by frame number.
  2954. * @param frame_num frame number to search for
  2955. * @param idx the index into h->short_ref where returned picture is found
  2956. * undefined if no picture found.
  2957. * @return pointer to the found picture, or NULL if no pic with the provided
  2958. * frame number is found
  2959. */
  2960. static Picture * find_short(H264Context *h, int frame_num, int *idx){
  2961. MpegEncContext * const s = &h->s;
  2962. int i;
  2963. for(i=0; i<h->short_ref_count; i++){
  2964. Picture *pic= h->short_ref[i];
  2965. if(s->avctx->debug&FF_DEBUG_MMCO)
  2966. av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
  2967. if(pic->frame_num == frame_num) {
  2968. *idx = i;
  2969. return pic;
  2970. }
  2971. }
  2972. return NULL;
  2973. }
  2974. /**
  2975. * Remove a picture from the short term reference list by its index in
  2976. * that list. This does no checking on the provided index; it is assumed
  2977. * to be valid. Other list entries are shifted down.
  2978. * @param i index into h->short_ref of picture to remove.
  2979. */
  2980. static void remove_short_at_index(H264Context *h, int i){
  2981. assert(i >= 0 && i < h->short_ref_count);
  2982. h->short_ref[i]= NULL;
  2983. if (--h->short_ref_count)
  2984. memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
  2985. }
  2986. /**
  2987. *
  2988. * @return the removed picture or NULL if an error occurs
  2989. */
  2990. static Picture * remove_short(H264Context *h, int frame_num){
  2991. MpegEncContext * const s = &h->s;
  2992. Picture *pic;
  2993. int i;
  2994. if(s->avctx->debug&FF_DEBUG_MMCO)
  2995. av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
  2996. pic = find_short(h, frame_num, &i);
  2997. if (pic)
  2998. remove_short_at_index(h, i);
  2999. return pic;
  3000. }
  3001. /**
  3002. * Remove a picture from the long term reference list by its index in
  3003. * that list. This does no checking on the provided index; it is assumed
  3004. * to be valid. The removed entry is set to NULL. Other entries are unaffected.
  3005. * @param i index into h->long_ref of picture to remove.
  3006. */
  3007. static void remove_long_at_index(H264Context *h, int i){
  3008. assert(h->long_ref[i]->long_ref == 1);
  3009. h->long_ref[i]->long_ref= 0;
  3010. h->long_ref[i]= NULL;
  3011. h->long_ref_count--;
  3012. }
  3013. /**
  3014. *
  3015. * @return the removed picture or NULL if an error occurs
  3016. */
  3017. static Picture * remove_long(H264Context *h, int i){
  3018. Picture *pic;
  3019. pic= h->long_ref[i];
  3020. if (pic)
  3021. remove_long_at_index(h, i);
  3022. return pic;
  3023. }
  3024. /**
  3025. * print short term list
  3026. */
  3027. static void print_short_term(H264Context *h) {
  3028. uint32_t i;
  3029. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3030. av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
  3031. for(i=0; i<h->short_ref_count; i++){
  3032. Picture *pic= h->short_ref[i];
  3033. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3034. }
  3035. }
  3036. }
  3037. /**
  3038. * print long term list
  3039. */
  3040. static void print_long_term(H264Context *h) {
  3041. uint32_t i;
  3042. if(h->s.avctx->debug&FF_DEBUG_MMCO) {
  3043. av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
  3044. for(i = 0; i < 16; i++){
  3045. Picture *pic= h->long_ref[i];
  3046. if (pic) {
  3047. av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
  3048. }
  3049. }
  3050. }
  3051. }
  3052. /**
  3053. * Executes the reference picture marking (memory management control operations).
  3054. */
  3055. static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
  3056. MpegEncContext * const s = &h->s;
  3057. int i, j;
  3058. int current_ref_assigned=0;
  3059. Picture *pic;
  3060. if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
  3061. av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
  3062. for(i=0; i<mmco_count; i++){
  3063. int structure, frame_num;
  3064. if(s->avctx->debug&FF_DEBUG_MMCO)
  3065. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
  3066. switch(mmco[i].opcode){
  3067. case MMCO_SHORT2UNUSED:
  3068. if(s->avctx->debug&FF_DEBUG_MMCO)
  3069. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
  3070. frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
  3071. pic = find_short(h, frame_num, &j);
  3072. if (pic) {
  3073. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3074. remove_short_at_index(h, j);
  3075. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3076. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short failure\n");
  3077. break;
  3078. case MMCO_SHORT2LONG:
  3079. if (FIELD_PICTURE && mmco[i].long_arg < h->long_ref_count &&
  3080. h->long_ref[mmco[i].long_arg]->frame_num ==
  3081. mmco[i].short_pic_num / 2) {
  3082. /* do nothing, we've already moved this field pair. */
  3083. } else {
  3084. int frame_num = mmco[i].short_pic_num >> FIELD_PICTURE;
  3085. pic= remove_long(h, mmco[i].long_arg);
  3086. if(pic) unreference_pic(h, pic, 0);
  3087. h->long_ref[ mmco[i].long_arg ]= remove_short(h, frame_num);
  3088. if (h->long_ref[ mmco[i].long_arg ]){
  3089. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3090. h->long_ref_count++;
  3091. }
  3092. }
  3093. break;
  3094. case MMCO_LONG2UNUSED:
  3095. j = pic_num_extract(h, mmco[i].long_arg, &structure);
  3096. pic = h->long_ref[j];
  3097. if (pic) {
  3098. if (unreference_pic(h, pic, structure ^ PICT_FRAME))
  3099. remove_long_at_index(h, j);
  3100. } else if(s->avctx->debug&FF_DEBUG_MMCO)
  3101. av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
  3102. break;
  3103. case MMCO_LONG:
  3104. // Comment below left from previous code as it is an interresting note.
  3105. /* First field in pair is in short term list or
  3106. * at a different long term index.
  3107. * This is not allowed; see 7.4.3, notes 2 and 3.
  3108. * Report the problem and keep the pair where it is,
  3109. * and mark this field valid.
  3110. */
  3111. if (h->long_ref[mmco[i].long_arg] != s->current_picture_ptr) {
  3112. pic= remove_long(h, mmco[i].long_arg);
  3113. if(pic) unreference_pic(h, pic, 0);
  3114. h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
  3115. h->long_ref[ mmco[i].long_arg ]->long_ref=1;
  3116. h->long_ref_count++;
  3117. }
  3118. s->current_picture_ptr->reference |= s->picture_structure;
  3119. current_ref_assigned=1;
  3120. break;
  3121. case MMCO_SET_MAX_LONG:
  3122. assert(mmco[i].long_arg <= 16);
  3123. // just remove the long term which index is greater than new max
  3124. for(j = mmco[i].long_arg; j<16; j++){
  3125. pic = remove_long(h, j);
  3126. if (pic) unreference_pic(h, pic, 0);
  3127. }
  3128. break;
  3129. case MMCO_RESET:
  3130. while(h->short_ref_count){
  3131. pic= remove_short(h, h->short_ref[0]->frame_num);
  3132. if(pic) unreference_pic(h, pic, 0);
  3133. }
  3134. for(j = 0; j < 16; j++) {
  3135. pic= remove_long(h, j);
  3136. if(pic) unreference_pic(h, pic, 0);
  3137. }
  3138. s->current_picture_ptr->poc=
  3139. s->current_picture_ptr->field_poc[0]=
  3140. s->current_picture_ptr->field_poc[1]=
  3141. h->poc_lsb=
  3142. h->poc_msb=
  3143. h->frame_num=
  3144. s->current_picture_ptr->frame_num= 0;
  3145. break;
  3146. default: assert(0);
  3147. }
  3148. }
  3149. if (!current_ref_assigned) {
  3150. /* Second field of complementary field pair; the first field of
  3151. * which is already referenced. If short referenced, it
  3152. * should be first entry in short_ref. If not, it must exist
  3153. * in long_ref; trying to put it on the short list here is an
  3154. * error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
  3155. */
  3156. if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
  3157. /* Just mark the second field valid */
  3158. s->current_picture_ptr->reference = PICT_FRAME;
  3159. } else if (s->current_picture_ptr->long_ref) {
  3160. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
  3161. "assignment for second field "
  3162. "in complementary field pair "
  3163. "(first field is long term)\n");
  3164. } else {
  3165. pic= remove_short(h, s->current_picture_ptr->frame_num);
  3166. if(pic){
  3167. unreference_pic(h, pic, 0);
  3168. av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
  3169. }
  3170. if(h->short_ref_count)
  3171. memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
  3172. h->short_ref[0]= s->current_picture_ptr;
  3173. h->short_ref[0]->long_ref=0;
  3174. h->short_ref_count++;
  3175. s->current_picture_ptr->reference |= s->picture_structure;
  3176. }
  3177. }
  3178. if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
  3179. /* We have too many reference frames, probably due to corrupted
  3180. * stream. Need to discard one frame. Prevents overrun of the
  3181. * short_ref and long_ref buffers.
  3182. */
  3183. av_log(h->s.avctx, AV_LOG_ERROR,
  3184. "number of reference frames exceeds max (probably "
  3185. "corrupt input), discarding one\n");
  3186. if (h->long_ref_count && !h->short_ref_count) {
  3187. for (i = 0; i < 16; ++i)
  3188. if (h->long_ref[i])
  3189. break;
  3190. assert(i < 16);
  3191. pic = h->long_ref[i];
  3192. remove_long_at_index(h, i);
  3193. } else {
  3194. pic = h->short_ref[h->short_ref_count - 1];
  3195. remove_short_at_index(h, h->short_ref_count - 1);
  3196. }
  3197. unreference_pic(h, pic, 0);
  3198. }
  3199. print_short_term(h);
  3200. print_long_term(h);
  3201. return 0;
  3202. }
  3203. static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
  3204. MpegEncContext * const s = &h->s;
  3205. int i;
  3206. h->mmco_index= 0;
  3207. if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
  3208. s->broken_link= get_bits1(gb) -1;
  3209. if(get_bits1(gb)){
  3210. h->mmco[0].opcode= MMCO_LONG;
  3211. h->mmco[0].long_arg= 0;
  3212. h->mmco_index= 1;
  3213. }
  3214. }else{
  3215. if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
  3216. for(i= 0; i<MAX_MMCO_COUNT; i++) {
  3217. MMCOOpcode opcode= get_ue_golomb(gb);
  3218. h->mmco[i].opcode= opcode;
  3219. if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
  3220. h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
  3221. /* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
  3222. av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
  3223. return -1;
  3224. }*/
  3225. }
  3226. if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
  3227. unsigned int long_arg= get_ue_golomb(gb);
  3228. if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
  3229. av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
  3230. return -1;
  3231. }
  3232. h->mmco[i].long_arg= long_arg;
  3233. }
  3234. if(opcode > (unsigned)MMCO_LONG){
  3235. av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
  3236. return -1;
  3237. }
  3238. if(opcode == MMCO_END)
  3239. break;
  3240. }
  3241. h->mmco_index= i;
  3242. }else{
  3243. assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
  3244. if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
  3245. !(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
  3246. h->mmco[0].opcode= MMCO_SHORT2UNUSED;
  3247. h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
  3248. h->mmco_index= 1;
  3249. if (FIELD_PICTURE) {
  3250. h->mmco[0].short_pic_num *= 2;
  3251. h->mmco[1].opcode= MMCO_SHORT2UNUSED;
  3252. h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
  3253. h->mmco_index= 2;
  3254. }
  3255. }
  3256. }
  3257. }
  3258. return 0;
  3259. }
  3260. static int init_poc(H264Context *h){
  3261. MpegEncContext * const s = &h->s;
  3262. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  3263. int field_poc[2];
  3264. Picture *cur = s->current_picture_ptr;
  3265. h->frame_num_offset= h->prev_frame_num_offset;
  3266. if(h->frame_num < h->prev_frame_num)
  3267. h->frame_num_offset += max_frame_num;
  3268. if(h->sps.poc_type==0){
  3269. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  3270. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  3271. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  3272. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  3273. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  3274. else
  3275. h->poc_msb = h->prev_poc_msb;
  3276. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  3277. field_poc[0] =
  3278. field_poc[1] = h->poc_msb + h->poc_lsb;
  3279. if(s->picture_structure == PICT_FRAME)
  3280. field_poc[1] += h->delta_poc_bottom;
  3281. }else if(h->sps.poc_type==1){
  3282. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  3283. int i;
  3284. if(h->sps.poc_cycle_length != 0)
  3285. abs_frame_num = h->frame_num_offset + h->frame_num;
  3286. else
  3287. abs_frame_num = 0;
  3288. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  3289. abs_frame_num--;
  3290. expected_delta_per_poc_cycle = 0;
  3291. for(i=0; i < h->sps.poc_cycle_length; i++)
  3292. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  3293. if(abs_frame_num > 0){
  3294. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  3295. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  3296. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  3297. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  3298. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  3299. } else
  3300. expectedpoc = 0;
  3301. if(h->nal_ref_idc == 0)
  3302. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  3303. field_poc[0] = expectedpoc + h->delta_poc[0];
  3304. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  3305. if(s->picture_structure == PICT_FRAME)
  3306. field_poc[1] += h->delta_poc[1];
  3307. }else{
  3308. int poc= 2*(h->frame_num_offset + h->frame_num);
  3309. if(!h->nal_ref_idc)
  3310. poc--;
  3311. field_poc[0]= poc;
  3312. field_poc[1]= poc;
  3313. }
  3314. if(s->picture_structure != PICT_BOTTOM_FIELD)
  3315. s->current_picture_ptr->field_poc[0]= field_poc[0];
  3316. if(s->picture_structure != PICT_TOP_FIELD)
  3317. s->current_picture_ptr->field_poc[1]= field_poc[1];
  3318. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  3319. return 0;
  3320. }
  3321. /**
  3322. * initialize scan tables
  3323. */
  3324. static void init_scan_tables(H264Context *h){
  3325. MpegEncContext * const s = &h->s;
  3326. int i;
  3327. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  3328. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  3329. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  3330. }else{
  3331. for(i=0; i<16; i++){
  3332. #define T(x) (x>>2) | ((x<<2) & 0xF)
  3333. h->zigzag_scan[i] = T(zigzag_scan[i]);
  3334. h-> field_scan[i] = T( field_scan[i]);
  3335. #undef T
  3336. }
  3337. }
  3338. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  3339. memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
  3340. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  3341. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  3342. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  3343. }else{
  3344. for(i=0; i<64; i++){
  3345. #define T(x) (x>>3) | ((x&7)<<3)
  3346. h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
  3347. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  3348. h->field_scan8x8[i] = T(field_scan8x8[i]);
  3349. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  3350. #undef T
  3351. }
  3352. }
  3353. if(h->sps.transform_bypass){ //FIXME same ugly
  3354. h->zigzag_scan_q0 = zigzag_scan;
  3355. h->zigzag_scan8x8_q0 = zigzag_scan8x8;
  3356. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  3357. h->field_scan_q0 = field_scan;
  3358. h->field_scan8x8_q0 = field_scan8x8;
  3359. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  3360. }else{
  3361. h->zigzag_scan_q0 = h->zigzag_scan;
  3362. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  3363. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  3364. h->field_scan_q0 = h->field_scan;
  3365. h->field_scan8x8_q0 = h->field_scan8x8;
  3366. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  3367. }
  3368. }
  3369. /**
  3370. * Replicates H264 "master" context to thread contexts.
  3371. */
  3372. static void clone_slice(H264Context *dst, H264Context *src)
  3373. {
  3374. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  3375. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  3376. dst->s.current_picture = src->s.current_picture;
  3377. dst->s.linesize = src->s.linesize;
  3378. dst->s.uvlinesize = src->s.uvlinesize;
  3379. dst->s.first_field = src->s.first_field;
  3380. dst->prev_poc_msb = src->prev_poc_msb;
  3381. dst->prev_poc_lsb = src->prev_poc_lsb;
  3382. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  3383. dst->prev_frame_num = src->prev_frame_num;
  3384. dst->short_ref_count = src->short_ref_count;
  3385. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  3386. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  3387. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  3388. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  3389. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  3390. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  3391. }
  3392. /**
  3393. * decodes a slice header.
  3394. * This will also call MPV_common_init() and frame_start() as needed.
  3395. *
  3396. * @param h h264context
  3397. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  3398. *
  3399. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  3400. */
  3401. static int decode_slice_header(H264Context *h, H264Context *h0){
  3402. MpegEncContext * const s = &h->s;
  3403. MpegEncContext * const s0 = &h0->s;
  3404. unsigned int first_mb_in_slice;
  3405. unsigned int pps_id;
  3406. int num_ref_idx_active_override_flag;
  3407. static const uint8_t slice_type_map[5]= {FF_P_TYPE, FF_B_TYPE, FF_I_TYPE, FF_SP_TYPE, FF_SI_TYPE};
  3408. unsigned int slice_type, tmp, i, j;
  3409. int default_ref_list_done = 0;
  3410. int last_pic_structure;
  3411. s->dropable= h->nal_ref_idc == 0;
  3412. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  3413. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  3414. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  3415. }else{
  3416. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  3417. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  3418. }
  3419. first_mb_in_slice= get_ue_golomb(&s->gb);
  3420. if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
  3421. h0->current_slice = 0;
  3422. if (!s0->first_field)
  3423. s->current_picture_ptr= NULL;
  3424. }
  3425. slice_type= get_ue_golomb(&s->gb);
  3426. if(slice_type > 9){
  3427. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  3428. return -1;
  3429. }
  3430. if(slice_type > 4){
  3431. slice_type -= 5;
  3432. h->slice_type_fixed=1;
  3433. }else
  3434. h->slice_type_fixed=0;
  3435. slice_type= slice_type_map[ slice_type ];
  3436. if (slice_type == FF_I_TYPE
  3437. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  3438. default_ref_list_done = 1;
  3439. }
  3440. h->slice_type= slice_type;
  3441. h->slice_type_nos= slice_type & 3;
  3442. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  3443. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  3444. av_log(h->s.avctx, AV_LOG_ERROR,
  3445. "B picture before any references, skipping\n");
  3446. return -1;
  3447. }
  3448. pps_id= get_ue_golomb(&s->gb);
  3449. if(pps_id>=MAX_PPS_COUNT){
  3450. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  3451. return -1;
  3452. }
  3453. if(!h0->pps_buffers[pps_id]) {
  3454. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS referenced\n");
  3455. return -1;
  3456. }
  3457. h->pps= *h0->pps_buffers[pps_id];
  3458. if(!h0->sps_buffers[h->pps.sps_id]) {
  3459. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS referenced\n");
  3460. return -1;
  3461. }
  3462. h->sps = *h0->sps_buffers[h->pps.sps_id];
  3463. if(h == h0 && h->dequant_coeff_pps != pps_id){
  3464. h->dequant_coeff_pps = pps_id;
  3465. init_dequant_tables(h);
  3466. }
  3467. s->mb_width= h->sps.mb_width;
  3468. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  3469. h->b_stride= s->mb_width*4;
  3470. h->b8_stride= s->mb_width*2;
  3471. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  3472. if(h->sps.frame_mbs_only_flag)
  3473. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  3474. else
  3475. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  3476. if (s->context_initialized
  3477. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  3478. if(h != h0)
  3479. return -1; // width / height changed during parallelized decoding
  3480. free_tables(h);
  3481. MPV_common_end(s);
  3482. }
  3483. if (!s->context_initialized) {
  3484. if(h != h0)
  3485. return -1; // we cant (re-)initialize context during parallel decoding
  3486. if (MPV_common_init(s) < 0)
  3487. return -1;
  3488. s->first_field = 0;
  3489. init_scan_tables(h);
  3490. alloc_tables(h);
  3491. for(i = 1; i < s->avctx->thread_count; i++) {
  3492. H264Context *c;
  3493. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  3494. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  3495. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  3496. c->sps = h->sps;
  3497. c->pps = h->pps;
  3498. init_scan_tables(c);
  3499. clone_tables(c, h);
  3500. }
  3501. for(i = 0; i < s->avctx->thread_count; i++)
  3502. if(context_init(h->thread_context[i]) < 0)
  3503. return -1;
  3504. s->avctx->width = s->width;
  3505. s->avctx->height = s->height;
  3506. s->avctx->sample_aspect_ratio= h->sps.sar;
  3507. if(!s->avctx->sample_aspect_ratio.den)
  3508. s->avctx->sample_aspect_ratio.den = 1;
  3509. if(h->sps.timing_info_present_flag){
  3510. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
  3511. if(h->x264_build > 0 && h->x264_build < 44)
  3512. s->avctx->time_base.den *= 2;
  3513. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  3514. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  3515. }
  3516. }
  3517. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  3518. h->mb_mbaff = 0;
  3519. h->mb_aff_frame = 0;
  3520. last_pic_structure = s0->picture_structure;
  3521. if(h->sps.frame_mbs_only_flag){
  3522. s->picture_structure= PICT_FRAME;
  3523. }else{
  3524. if(get_bits1(&s->gb)) { //field_pic_flag
  3525. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  3526. } else {
  3527. s->picture_structure= PICT_FRAME;
  3528. h->mb_aff_frame = h->sps.mb_aff;
  3529. }
  3530. }
  3531. if(h0->current_slice == 0){
  3532. while(h->frame_num != h->prev_frame_num &&
  3533. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  3534. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  3535. frame_start(h);
  3536. h->prev_frame_num++;
  3537. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  3538. s->current_picture_ptr->frame_num= h->prev_frame_num;
  3539. execute_ref_pic_marking(h, NULL, 0);
  3540. }
  3541. /* See if we have a decoded first field looking for a pair... */
  3542. if (s0->first_field) {
  3543. assert(s0->current_picture_ptr);
  3544. assert(s0->current_picture_ptr->data[0]);
  3545. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  3546. /* figure out if we have a complementary field pair */
  3547. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  3548. /*
  3549. * Previous field is unmatched. Don't display it, but let it
  3550. * remain for reference if marked as such.
  3551. */
  3552. s0->current_picture_ptr = NULL;
  3553. s0->first_field = FIELD_PICTURE;
  3554. } else {
  3555. if (h->nal_ref_idc &&
  3556. s0->current_picture_ptr->reference &&
  3557. s0->current_picture_ptr->frame_num != h->frame_num) {
  3558. /*
  3559. * This and previous field were reference, but had
  3560. * different frame_nums. Consider this field first in
  3561. * pair. Throw away previous field except for reference
  3562. * purposes.
  3563. */
  3564. s0->first_field = 1;
  3565. s0->current_picture_ptr = NULL;
  3566. } else {
  3567. /* Second field in complementary pair */
  3568. s0->first_field = 0;
  3569. }
  3570. }
  3571. } else {
  3572. /* Frame or first field in a potentially complementary pair */
  3573. assert(!s0->current_picture_ptr);
  3574. s0->first_field = FIELD_PICTURE;
  3575. }
  3576. if((!FIELD_PICTURE || s0->first_field) && frame_start(h) < 0) {
  3577. s0->first_field = 0;
  3578. return -1;
  3579. }
  3580. }
  3581. if(h != h0)
  3582. clone_slice(h, h0);
  3583. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  3584. assert(s->mb_num == s->mb_width * s->mb_height);
  3585. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  3586. first_mb_in_slice >= s->mb_num){
  3587. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  3588. return -1;
  3589. }
  3590. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  3591. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  3592. if (s->picture_structure == PICT_BOTTOM_FIELD)
  3593. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  3594. assert(s->mb_y < s->mb_height);
  3595. if(s->picture_structure==PICT_FRAME){
  3596. h->curr_pic_num= h->frame_num;
  3597. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  3598. }else{
  3599. h->curr_pic_num= 2*h->frame_num + 1;
  3600. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  3601. }
  3602. if(h->nal_unit_type == NAL_IDR_SLICE){
  3603. get_ue_golomb(&s->gb); /* idr_pic_id */
  3604. }
  3605. if(h->sps.poc_type==0){
  3606. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  3607. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  3608. h->delta_poc_bottom= get_se_golomb(&s->gb);
  3609. }
  3610. }
  3611. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  3612. h->delta_poc[0]= get_se_golomb(&s->gb);
  3613. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  3614. h->delta_poc[1]= get_se_golomb(&s->gb);
  3615. }
  3616. init_poc(h);
  3617. if(h->pps.redundant_pic_cnt_present){
  3618. h->redundant_pic_count= get_ue_golomb(&s->gb);
  3619. }
  3620. //set defaults, might be overridden a few lines later
  3621. h->ref_count[0]= h->pps.ref_count[0];
  3622. h->ref_count[1]= h->pps.ref_count[1];
  3623. if(h->slice_type_nos != FF_I_TYPE){
  3624. if(h->slice_type_nos == FF_B_TYPE){
  3625. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  3626. }
  3627. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  3628. if(num_ref_idx_active_override_flag){
  3629. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  3630. if(h->slice_type_nos==FF_B_TYPE)
  3631. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  3632. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  3633. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  3634. h->ref_count[0]= h->ref_count[1]= 1;
  3635. return -1;
  3636. }
  3637. }
  3638. if(h->slice_type_nos == FF_B_TYPE)
  3639. h->list_count= 2;
  3640. else
  3641. h->list_count= 1;
  3642. }else
  3643. h->list_count= 0;
  3644. if(!default_ref_list_done){
  3645. fill_default_ref_list(h);
  3646. }
  3647. if(decode_ref_pic_list_reordering(h) < 0)
  3648. return -1;
  3649. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  3650. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  3651. pred_weight_table(h);
  3652. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE)
  3653. implicit_weight_table(h);
  3654. else
  3655. h->use_weight = 0;
  3656. if(h->nal_ref_idc)
  3657. decode_ref_pic_marking(h0, &s->gb);
  3658. if(FRAME_MBAFF)
  3659. fill_mbaff_ref_list(h);
  3660. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  3661. tmp = get_ue_golomb(&s->gb);
  3662. if(tmp > 2){
  3663. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  3664. return -1;
  3665. }
  3666. h->cabac_init_idc= tmp;
  3667. }
  3668. h->last_qscale_diff = 0;
  3669. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  3670. if(tmp>51){
  3671. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  3672. return -1;
  3673. }
  3674. s->qscale= tmp;
  3675. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3676. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3677. //FIXME qscale / qp ... stuff
  3678. if(h->slice_type == FF_SP_TYPE){
  3679. get_bits1(&s->gb); /* sp_for_switch_flag */
  3680. }
  3681. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  3682. get_se_golomb(&s->gb); /* slice_qs_delta */
  3683. }
  3684. h->deblocking_filter = 1;
  3685. h->slice_alpha_c0_offset = 0;
  3686. h->slice_beta_offset = 0;
  3687. if( h->pps.deblocking_filter_parameters_present ) {
  3688. tmp= get_ue_golomb(&s->gb);
  3689. if(tmp > 2){
  3690. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  3691. return -1;
  3692. }
  3693. h->deblocking_filter= tmp;
  3694. if(h->deblocking_filter < 2)
  3695. h->deblocking_filter^= 1; // 1<->0
  3696. if( h->deblocking_filter ) {
  3697. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  3698. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  3699. }
  3700. }
  3701. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  3702. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  3703. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  3704. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3705. h->deblocking_filter= 0;
  3706. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  3707. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  3708. /* Cheat slightly for speed:
  3709. Do not bother to deblock across slices. */
  3710. h->deblocking_filter = 2;
  3711. } else {
  3712. h0->max_contexts = 1;
  3713. if(!h0->single_decode_warning) {
  3714. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  3715. h0->single_decode_warning = 1;
  3716. }
  3717. if(h != h0)
  3718. return 1; // deblocking switched inside frame
  3719. }
  3720. }
  3721. #if 0 //FMO
  3722. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  3723. slice_group_change_cycle= get_bits(&s->gb, ?);
  3724. #endif
  3725. h0->last_slice_type = slice_type;
  3726. h->slice_num = ++h0->current_slice;
  3727. for(j=0; j<2; j++){
  3728. int *ref2frm= h->ref2frm[h->slice_num&15][j];
  3729. ref2frm[0]=
  3730. ref2frm[1]= -1;
  3731. for(i=0; i<48; i++)
  3732. ref2frm[i+2]= 4*h->ref_list[j][i].frame_num
  3733. +(h->ref_list[j][i].reference&3);
  3734. }
  3735. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  3736. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  3737. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  3738. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  3739. h->slice_num,
  3740. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  3741. first_mb_in_slice,
  3742. av_get_pict_type_char(h->slice_type),
  3743. pps_id, h->frame_num,
  3744. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  3745. h->ref_count[0], h->ref_count[1],
  3746. s->qscale,
  3747. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  3748. h->use_weight,
  3749. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  3750. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  3751. );
  3752. }
  3753. return 0;
  3754. }
  3755. /**
  3756. *
  3757. */
  3758. static inline int get_level_prefix(GetBitContext *gb){
  3759. unsigned int buf;
  3760. int log;
  3761. OPEN_READER(re, gb);
  3762. UPDATE_CACHE(re, gb);
  3763. buf=GET_CACHE(re, gb);
  3764. log= 32 - av_log2(buf);
  3765. #ifdef TRACE
  3766. print_bin(buf>>(32-log), log);
  3767. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  3768. #endif
  3769. LAST_SKIP_BITS(re, gb, log);
  3770. CLOSE_READER(re, gb);
  3771. return log-1;
  3772. }
  3773. static inline int get_dct8x8_allowed(H264Context *h){
  3774. int i;
  3775. for(i=0; i<4; i++){
  3776. if(!IS_SUB_8X8(h->sub_mb_type[i])
  3777. || (!h->sps.direct_8x8_inference_flag && IS_DIRECT(h->sub_mb_type[i])))
  3778. return 0;
  3779. }
  3780. return 1;
  3781. }
  3782. /**
  3783. * decodes a residual block.
  3784. * @param n block index
  3785. * @param scantable scantable
  3786. * @param max_coeff number of coefficients in the block
  3787. * @return <0 if an error occurred
  3788. */
  3789. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  3790. MpegEncContext * const s = &h->s;
  3791. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  3792. int level[16];
  3793. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  3794. //FIXME put trailing_onex into the context
  3795. if(n == CHROMA_DC_BLOCK_INDEX){
  3796. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  3797. total_coeff= coeff_token>>2;
  3798. }else{
  3799. if(n == LUMA_DC_BLOCK_INDEX){
  3800. total_coeff= pred_non_zero_count(h, 0);
  3801. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3802. total_coeff= coeff_token>>2;
  3803. }else{
  3804. total_coeff= pred_non_zero_count(h, n);
  3805. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  3806. total_coeff= coeff_token>>2;
  3807. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  3808. }
  3809. }
  3810. //FIXME set last_non_zero?
  3811. if(total_coeff==0)
  3812. return 0;
  3813. if(total_coeff > (unsigned)max_coeff) {
  3814. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  3815. return -1;
  3816. }
  3817. trailing_ones= coeff_token&3;
  3818. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  3819. assert(total_coeff<=16);
  3820. for(i=0; i<trailing_ones; i++){
  3821. level[i]= 1 - 2*get_bits1(gb);
  3822. }
  3823. if(i<total_coeff) {
  3824. int level_code, mask;
  3825. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  3826. int prefix= get_level_prefix(gb);
  3827. //first coefficient has suffix_length equal to 0 or 1
  3828. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  3829. if(suffix_length)
  3830. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3831. else
  3832. level_code= (prefix<<suffix_length); //part
  3833. }else if(prefix==14){
  3834. if(suffix_length)
  3835. level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
  3836. else
  3837. level_code= prefix + get_bits(gb, 4); //part
  3838. }else{
  3839. level_code= (15<<suffix_length) + get_bits(gb, prefix-3); //part
  3840. if(suffix_length==0) level_code+=15; //FIXME doesn't make (much)sense
  3841. if(prefix>=16)
  3842. level_code += (1<<(prefix-3))-4096;
  3843. }
  3844. if(trailing_ones < 3) level_code += 2;
  3845. suffix_length = 1;
  3846. if(level_code > 5)
  3847. suffix_length++;
  3848. mask= -(level_code&1);
  3849. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3850. i++;
  3851. //remaining coefficients have suffix_length > 0
  3852. for(;i<total_coeff;i++) {
  3853. static const int suffix_limit[7] = {0,5,11,23,47,95,INT_MAX };
  3854. prefix = get_level_prefix(gb);
  3855. if(prefix<15){
  3856. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  3857. }else{
  3858. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  3859. if(prefix>=16)
  3860. level_code += (1<<(prefix-3))-4096;
  3861. }
  3862. mask= -(level_code&1);
  3863. level[i]= (((2+level_code)>>1) ^ mask) - mask;
  3864. if(level_code > suffix_limit[suffix_length])
  3865. suffix_length++;
  3866. }
  3867. }
  3868. if(total_coeff == max_coeff)
  3869. zeros_left=0;
  3870. else{
  3871. if(n == CHROMA_DC_BLOCK_INDEX)
  3872. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  3873. else
  3874. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  3875. }
  3876. coeff_num = zeros_left + total_coeff - 1;
  3877. j = scantable[coeff_num];
  3878. if(n > 24){
  3879. block[j] = level[0];
  3880. for(i=1;i<total_coeff;i++) {
  3881. if(zeros_left <= 0)
  3882. run_before = 0;
  3883. else if(zeros_left < 7){
  3884. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3885. }else{
  3886. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3887. }
  3888. zeros_left -= run_before;
  3889. coeff_num -= 1 + run_before;
  3890. j= scantable[ coeff_num ];
  3891. block[j]= level[i];
  3892. }
  3893. }else{
  3894. block[j] = (level[0] * qmul[j] + 32)>>6;
  3895. for(i=1;i<total_coeff;i++) {
  3896. if(zeros_left <= 0)
  3897. run_before = 0;
  3898. else if(zeros_left < 7){
  3899. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  3900. }else{
  3901. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  3902. }
  3903. zeros_left -= run_before;
  3904. coeff_num -= 1 + run_before;
  3905. j= scantable[ coeff_num ];
  3906. block[j]= (level[i] * qmul[j] + 32)>>6;
  3907. }
  3908. }
  3909. if(zeros_left<0){
  3910. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  3911. return -1;
  3912. }
  3913. return 0;
  3914. }
  3915. static void predict_field_decoding_flag(H264Context *h){
  3916. MpegEncContext * const s = &h->s;
  3917. const int mb_xy= h->mb_xy;
  3918. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3919. ? s->current_picture.mb_type[mb_xy-1]
  3920. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3921. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  3922. : 0;
  3923. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3924. }
  3925. /**
  3926. * decodes a P_SKIP or B_SKIP macroblock
  3927. */
  3928. static void decode_mb_skip(H264Context *h){
  3929. MpegEncContext * const s = &h->s;
  3930. const int mb_xy= h->mb_xy;
  3931. int mb_type=0;
  3932. memset(h->non_zero_count[mb_xy], 0, 16);
  3933. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  3934. if(MB_FIELD)
  3935. mb_type|= MB_TYPE_INTERLACED;
  3936. if( h->slice_type_nos == FF_B_TYPE )
  3937. {
  3938. // just for fill_caches. pred_direct_motion will set the real mb_type
  3939. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  3940. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3941. pred_direct_motion(h, &mb_type);
  3942. mb_type|= MB_TYPE_SKIP;
  3943. }
  3944. else
  3945. {
  3946. int mx, my;
  3947. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  3948. fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
  3949. pred_pskip_motion(h, &mx, &my);
  3950. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  3951. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  3952. }
  3953. write_back_motion(h, mb_type);
  3954. s->current_picture.mb_type[mb_xy]= mb_type;
  3955. s->current_picture.qscale_table[mb_xy]= s->qscale;
  3956. h->slice_table[ mb_xy ]= h->slice_num;
  3957. h->prev_mb_skipped= 1;
  3958. }
  3959. /**
  3960. * decodes a macroblock
  3961. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  3962. */
  3963. static int decode_mb_cavlc(H264Context *h){
  3964. MpegEncContext * const s = &h->s;
  3965. int mb_xy;
  3966. int partition_count;
  3967. unsigned int mb_type, cbp;
  3968. int dct8x8_allowed= h->pps.transform_8x8_mode;
  3969. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  3970. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?
  3971. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  3972. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  3973. down the code */
  3974. if(h->slice_type_nos != FF_I_TYPE){
  3975. if(s->mb_skip_run==-1)
  3976. s->mb_skip_run= get_ue_golomb(&s->gb);
  3977. if (s->mb_skip_run--) {
  3978. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  3979. if(s->mb_skip_run==0)
  3980. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3981. else
  3982. predict_field_decoding_flag(h);
  3983. }
  3984. decode_mb_skip(h);
  3985. return 0;
  3986. }
  3987. }
  3988. if(FRAME_MBAFF){
  3989. if( (s->mb_y&1) == 0 )
  3990. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  3991. }else
  3992. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  3993. h->prev_mb_skipped= 0;
  3994. mb_type= get_ue_golomb(&s->gb);
  3995. if(h->slice_type_nos == FF_B_TYPE){
  3996. if(mb_type < 23){
  3997. partition_count= b_mb_type_info[mb_type].partition_count;
  3998. mb_type= b_mb_type_info[mb_type].type;
  3999. }else{
  4000. mb_type -= 23;
  4001. goto decode_intra_mb;
  4002. }
  4003. }else if(h->slice_type_nos == FF_P_TYPE){
  4004. if(mb_type < 5){
  4005. partition_count= p_mb_type_info[mb_type].partition_count;
  4006. mb_type= p_mb_type_info[mb_type].type;
  4007. }else{
  4008. mb_type -= 5;
  4009. goto decode_intra_mb;
  4010. }
  4011. }else{
  4012. assert(h->slice_type_nos == FF_I_TYPE);
  4013. if(h->slice_type == FF_SI_TYPE && mb_type)
  4014. mb_type--;
  4015. decode_intra_mb:
  4016. if(mb_type > 25){
  4017. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  4018. return -1;
  4019. }
  4020. partition_count=0;
  4021. cbp= i_mb_type_info[mb_type].cbp;
  4022. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  4023. mb_type= i_mb_type_info[mb_type].type;
  4024. }
  4025. if(MB_FIELD)
  4026. mb_type |= MB_TYPE_INTERLACED;
  4027. h->slice_table[ mb_xy ]= h->slice_num;
  4028. if(IS_INTRA_PCM(mb_type)){
  4029. unsigned int x, y;
  4030. // We assume these blocks are very rare so we do not optimize it.
  4031. align_get_bits(&s->gb);
  4032. // The pixels are stored in the same order as levels in h->mb array.
  4033. for(y=0; y<16; y++){
  4034. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  4035. for(x=0; x<16; x++){
  4036. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4037. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= get_bits(&s->gb, 8);
  4038. }
  4039. }
  4040. for(y=0; y<8; y++){
  4041. const int index= 256 + 4*(y&3) + 32*(y>>2);
  4042. for(x=0; x<8; x++){
  4043. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4044. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4045. }
  4046. }
  4047. for(y=0; y<8; y++){
  4048. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  4049. for(x=0; x<8; x++){
  4050. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", show_bits(&s->gb, 8));
  4051. h->mb[index + (x&3) + 16*(x>>2)]= get_bits(&s->gb, 8);
  4052. }
  4053. }
  4054. // In deblocking, the quantizer is 0
  4055. s->current_picture.qscale_table[mb_xy]= 0;
  4056. // All coeffs are present
  4057. memset(h->non_zero_count[mb_xy], 16, 16);
  4058. s->current_picture.mb_type[mb_xy]= mb_type;
  4059. return 0;
  4060. }
  4061. if(MB_MBAFF){
  4062. h->ref_count[0] <<= 1;
  4063. h->ref_count[1] <<= 1;
  4064. }
  4065. fill_caches(h, mb_type, 0);
  4066. //mb_pred
  4067. if(IS_INTRA(mb_type)){
  4068. int pred_mode;
  4069. // init_top_left_availability(h);
  4070. if(IS_INTRA4x4(mb_type)){
  4071. int i;
  4072. int di = 1;
  4073. if(dct8x8_allowed && get_bits1(&s->gb)){
  4074. mb_type |= MB_TYPE_8x8DCT;
  4075. di = 4;
  4076. }
  4077. // fill_intra4x4_pred_table(h);
  4078. for(i=0; i<16; i+=di){
  4079. int mode= pred_intra_mode(h, i);
  4080. if(!get_bits1(&s->gb)){
  4081. const int rem_mode= get_bits(&s->gb, 3);
  4082. mode = rem_mode + (rem_mode >= mode);
  4083. }
  4084. if(di==4)
  4085. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  4086. else
  4087. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  4088. }
  4089. write_back_intra_pred_mode(h);
  4090. if( check_intra4x4_pred_mode(h) < 0)
  4091. return -1;
  4092. }else{
  4093. h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
  4094. if(h->intra16x16_pred_mode < 0)
  4095. return -1;
  4096. }
  4097. pred_mode= check_intra_pred_mode(h, get_ue_golomb(&s->gb));
  4098. if(pred_mode < 0)
  4099. return -1;
  4100. h->chroma_pred_mode= pred_mode;
  4101. }else if(partition_count==4){
  4102. int i, j, sub_partition_count[4], list, ref[2][4];
  4103. if(h->slice_type_nos == FF_B_TYPE){
  4104. for(i=0; i<4; i++){
  4105. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4106. if(h->sub_mb_type[i] >=13){
  4107. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4108. return -1;
  4109. }
  4110. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4111. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4112. }
  4113. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  4114. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  4115. pred_direct_motion(h, &mb_type);
  4116. h->ref_cache[0][scan8[4]] =
  4117. h->ref_cache[1][scan8[4]] =
  4118. h->ref_cache[0][scan8[12]] =
  4119. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  4120. }
  4121. }else{
  4122. assert(h->slice_type_nos == FF_P_TYPE); //FIXME SP correct ?
  4123. for(i=0; i<4; i++){
  4124. h->sub_mb_type[i]= get_ue_golomb(&s->gb);
  4125. if(h->sub_mb_type[i] >=4){
  4126. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  4127. return -1;
  4128. }
  4129. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  4130. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  4131. }
  4132. }
  4133. for(list=0; list<h->list_count; list++){
  4134. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  4135. for(i=0; i<4; i++){
  4136. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  4137. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4138. unsigned int tmp = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
  4139. if(tmp>=ref_count){
  4140. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  4141. return -1;
  4142. }
  4143. ref[list][i]= tmp;
  4144. }else{
  4145. //FIXME
  4146. ref[list][i] = -1;
  4147. }
  4148. }
  4149. }
  4150. if(dct8x8_allowed)
  4151. dct8x8_allowed = get_dct8x8_allowed(h);
  4152. for(list=0; list<h->list_count; list++){
  4153. for(i=0; i<4; i++){
  4154. if(IS_DIRECT(h->sub_mb_type[i])) {
  4155. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  4156. continue;
  4157. }
  4158. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  4159. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  4160. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  4161. const int sub_mb_type= h->sub_mb_type[i];
  4162. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  4163. for(j=0; j<sub_partition_count[i]; j++){
  4164. int mx, my;
  4165. const int index= 4*i + block_width*j;
  4166. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  4167. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  4168. mx += get_se_golomb(&s->gb);
  4169. my += get_se_golomb(&s->gb);
  4170. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4171. if(IS_SUB_8X8(sub_mb_type)){
  4172. mv_cache[ 1 ][0]=
  4173. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  4174. mv_cache[ 1 ][1]=
  4175. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  4176. }else if(IS_SUB_8X4(sub_mb_type)){
  4177. mv_cache[ 1 ][0]= mx;
  4178. mv_cache[ 1 ][1]= my;
  4179. }else if(IS_SUB_4X8(sub_mb_type)){
  4180. mv_cache[ 8 ][0]= mx;
  4181. mv_cache[ 8 ][1]= my;
  4182. }
  4183. mv_cache[ 0 ][0]= mx;
  4184. mv_cache[ 0 ][1]= my;
  4185. }
  4186. }else{
  4187. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  4188. p[0] = p[1]=
  4189. p[8] = p[9]= 0;
  4190. }
  4191. }
  4192. }
  4193. }else if(IS_DIRECT(mb_type)){
  4194. pred_direct_motion(h, &mb_type);
  4195. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  4196. }else{
  4197. int list, mx, my, i;
  4198. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  4199. if(IS_16X16(mb_type)){
  4200. for(list=0; list<h->list_count; list++){
  4201. unsigned int val;
  4202. if(IS_DIR(mb_type, 0, list)){
  4203. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4204. if(val >= h->ref_count[list]){
  4205. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4206. return -1;
  4207. }
  4208. }else
  4209. val= LIST_NOT_USED&0xFF;
  4210. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  4211. }
  4212. for(list=0; list<h->list_count; list++){
  4213. unsigned int val;
  4214. if(IS_DIR(mb_type, 0, list)){
  4215. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  4216. mx += get_se_golomb(&s->gb);
  4217. my += get_se_golomb(&s->gb);
  4218. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4219. val= pack16to32(mx,my);
  4220. }else
  4221. val=0;
  4222. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  4223. }
  4224. }
  4225. else if(IS_16X8(mb_type)){
  4226. for(list=0; list<h->list_count; list++){
  4227. for(i=0; i<2; i++){
  4228. unsigned int val;
  4229. if(IS_DIR(mb_type, i, list)){
  4230. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4231. if(val >= h->ref_count[list]){
  4232. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4233. return -1;
  4234. }
  4235. }else
  4236. val= LIST_NOT_USED&0xFF;
  4237. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  4238. }
  4239. }
  4240. for(list=0; list<h->list_count; list++){
  4241. for(i=0; i<2; i++){
  4242. unsigned int val;
  4243. if(IS_DIR(mb_type, i, list)){
  4244. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  4245. mx += get_se_golomb(&s->gb);
  4246. my += get_se_golomb(&s->gb);
  4247. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4248. val= pack16to32(mx,my);
  4249. }else
  4250. val=0;
  4251. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  4252. }
  4253. }
  4254. }else{
  4255. assert(IS_8X16(mb_type));
  4256. for(list=0; list<h->list_count; list++){
  4257. for(i=0; i<2; i++){
  4258. unsigned int val;
  4259. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  4260. val= get_te0_golomb(&s->gb, h->ref_count[list]);
  4261. if(val >= h->ref_count[list]){
  4262. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  4263. return -1;
  4264. }
  4265. }else
  4266. val= LIST_NOT_USED&0xFF;
  4267. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  4268. }
  4269. }
  4270. for(list=0; list<h->list_count; list++){
  4271. for(i=0; i<2; i++){
  4272. unsigned int val;
  4273. if(IS_DIR(mb_type, i, list)){
  4274. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  4275. mx += get_se_golomb(&s->gb);
  4276. my += get_se_golomb(&s->gb);
  4277. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  4278. val= pack16to32(mx,my);
  4279. }else
  4280. val=0;
  4281. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  4282. }
  4283. }
  4284. }
  4285. }
  4286. if(IS_INTER(mb_type))
  4287. write_back_motion(h, mb_type);
  4288. if(!IS_INTRA16x16(mb_type)){
  4289. cbp= get_ue_golomb(&s->gb);
  4290. if(cbp > 47){
  4291. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  4292. return -1;
  4293. }
  4294. if(IS_INTRA4x4(mb_type))
  4295. cbp= golomb_to_intra4x4_cbp[cbp];
  4296. else
  4297. cbp= golomb_to_inter_cbp[cbp];
  4298. }
  4299. h->cbp = cbp;
  4300. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  4301. if(get_bits1(&s->gb)){
  4302. mb_type |= MB_TYPE_8x8DCT;
  4303. h->cbp_table[mb_xy]= cbp;
  4304. }
  4305. }
  4306. s->current_picture.mb_type[mb_xy]= mb_type;
  4307. if(cbp || IS_INTRA16x16(mb_type)){
  4308. int i8x8, i4x4, chroma_idx;
  4309. int dquant;
  4310. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  4311. const uint8_t *scan, *scan8x8, *dc_scan;
  4312. // fill_non_zero_count_cache(h);
  4313. if(IS_INTERLACED(mb_type)){
  4314. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  4315. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  4316. dc_scan= luma_dc_field_scan;
  4317. }else{
  4318. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  4319. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  4320. dc_scan= luma_dc_zigzag_scan;
  4321. }
  4322. dquant= get_se_golomb(&s->gb);
  4323. if( dquant > 25 || dquant < -26 ){
  4324. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  4325. return -1;
  4326. }
  4327. s->qscale += dquant;
  4328. if(((unsigned)s->qscale) > 51){
  4329. if(s->qscale<0) s->qscale+= 52;
  4330. else s->qscale-= 52;
  4331. }
  4332. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  4333. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  4334. if(IS_INTRA16x16(mb_type)){
  4335. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  4336. return -1; //FIXME continue if partitioned and other return -1 too
  4337. }
  4338. assert((cbp&15) == 0 || (cbp&15) == 15);
  4339. if(cbp&15){
  4340. for(i8x8=0; i8x8<4; i8x8++){
  4341. for(i4x4=0; i4x4<4; i4x4++){
  4342. const int index= i4x4 + 4*i8x8;
  4343. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  4344. return -1;
  4345. }
  4346. }
  4347. }
  4348. }else{
  4349. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  4350. }
  4351. }else{
  4352. for(i8x8=0; i8x8<4; i8x8++){
  4353. if(cbp & (1<<i8x8)){
  4354. if(IS_8x8DCT(mb_type)){
  4355. DCTELEM *buf = &h->mb[64*i8x8];
  4356. uint8_t *nnz;
  4357. for(i4x4=0; i4x4<4; i4x4++){
  4358. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  4359. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  4360. return -1;
  4361. }
  4362. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4363. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  4364. }else{
  4365. for(i4x4=0; i4x4<4; i4x4++){
  4366. const int index= i4x4 + 4*i8x8;
  4367. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  4368. return -1;
  4369. }
  4370. }
  4371. }
  4372. }else{
  4373. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  4374. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  4375. }
  4376. }
  4377. }
  4378. if(cbp&0x30){
  4379. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  4380. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  4381. return -1;
  4382. }
  4383. }
  4384. if(cbp&0x20){
  4385. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  4386. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  4387. for(i4x4=0; i4x4<4; i4x4++){
  4388. const int index= 16 + 4*chroma_idx + i4x4;
  4389. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
  4390. return -1;
  4391. }
  4392. }
  4393. }
  4394. }else{
  4395. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4396. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4397. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4398. }
  4399. }else{
  4400. uint8_t * const nnz= &h->non_zero_count_cache[0];
  4401. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  4402. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  4403. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  4404. }
  4405. s->current_picture.qscale_table[mb_xy]= s->qscale;
  4406. write_back_non_zero_count(h);
  4407. if(MB_MBAFF){
  4408. h->ref_count[0] >>= 1;
  4409. h->ref_count[1] >>= 1;
  4410. }
  4411. return 0;
  4412. }
  4413. static int decode_cabac_field_decoding_flag(H264Context *h) {
  4414. MpegEncContext * const s = &h->s;
  4415. const int mb_x = s->mb_x;
  4416. const int mb_y = s->mb_y & ~1;
  4417. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  4418. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  4419. unsigned int ctx = 0;
  4420. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  4421. ctx += 1;
  4422. }
  4423. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  4424. ctx += 1;
  4425. }
  4426. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  4427. }
  4428. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  4429. uint8_t *state= &h->cabac_state[ctx_base];
  4430. int mb_type;
  4431. if(intra_slice){
  4432. MpegEncContext * const s = &h->s;
  4433. const int mba_xy = h->left_mb_xy[0];
  4434. const int mbb_xy = h->top_mb_xy;
  4435. int ctx=0;
  4436. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  4437. ctx++;
  4438. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  4439. ctx++;
  4440. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  4441. return 0; /* I4x4 */
  4442. state += 2;
  4443. }else{
  4444. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  4445. return 0; /* I4x4 */
  4446. }
  4447. if( get_cabac_terminate( &h->cabac ) )
  4448. return 25; /* PCM */
  4449. mb_type = 1; /* I16x16 */
  4450. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  4451. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  4452. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  4453. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  4454. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  4455. return mb_type;
  4456. }
  4457. static int decode_cabac_mb_type( H264Context *h ) {
  4458. MpegEncContext * const s = &h->s;
  4459. if( h->slice_type_nos == FF_I_TYPE ) {
  4460. return decode_cabac_intra_mb_type(h, 3, 1);
  4461. } else if( h->slice_type_nos == FF_P_TYPE ) {
  4462. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  4463. /* P-type */
  4464. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  4465. /* P_L0_D16x16, P_8x8 */
  4466. return 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  4467. } else {
  4468. /* P_L0_D8x16, P_L0_D16x8 */
  4469. return 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  4470. }
  4471. } else {
  4472. return decode_cabac_intra_mb_type(h, 17, 0) + 5;
  4473. }
  4474. } else if( h->slice_type_nos == FF_B_TYPE ) {
  4475. const int mba_xy = h->left_mb_xy[0];
  4476. const int mbb_xy = h->top_mb_xy;
  4477. int ctx = 0;
  4478. int bits;
  4479. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  4480. ctx++;
  4481. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  4482. ctx++;
  4483. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  4484. return 0; /* B_Direct_16x16 */
  4485. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  4486. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  4487. }
  4488. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  4489. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  4490. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  4491. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4492. if( bits < 8 )
  4493. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  4494. else if( bits == 13 ) {
  4495. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  4496. } else if( bits == 14 )
  4497. return 11; /* B_L1_L0_8x16 */
  4498. else if( bits == 15 )
  4499. return 22; /* B_8x8 */
  4500. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  4501. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  4502. } else {
  4503. /* TODO SI/SP frames? */
  4504. return -1;
  4505. }
  4506. }
  4507. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  4508. MpegEncContext * const s = &h->s;
  4509. int mba_xy, mbb_xy;
  4510. int ctx = 0;
  4511. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  4512. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  4513. mba_xy = mb_xy - 1;
  4514. if( (mb_y&1)
  4515. && h->slice_table[mba_xy] == h->slice_num
  4516. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  4517. mba_xy += s->mb_stride;
  4518. if( MB_FIELD ){
  4519. mbb_xy = mb_xy - s->mb_stride;
  4520. if( !(mb_y&1)
  4521. && h->slice_table[mbb_xy] == h->slice_num
  4522. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  4523. mbb_xy -= s->mb_stride;
  4524. }else
  4525. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  4526. }else{
  4527. int mb_xy = h->mb_xy;
  4528. mba_xy = mb_xy - 1;
  4529. mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  4530. }
  4531. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  4532. ctx++;
  4533. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  4534. ctx++;
  4535. if( h->slice_type_nos == FF_B_TYPE )
  4536. ctx += 13;
  4537. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  4538. }
  4539. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  4540. int mode = 0;
  4541. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  4542. return pred_mode;
  4543. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4544. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4545. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  4546. if( mode >= pred_mode )
  4547. return mode + 1;
  4548. else
  4549. return mode;
  4550. }
  4551. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  4552. const int mba_xy = h->left_mb_xy[0];
  4553. const int mbb_xy = h->top_mb_xy;
  4554. int ctx = 0;
  4555. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  4556. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  4557. ctx++;
  4558. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  4559. ctx++;
  4560. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  4561. return 0;
  4562. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4563. return 1;
  4564. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  4565. return 2;
  4566. else
  4567. return 3;
  4568. }
  4569. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  4570. int cbp_b, cbp_a, ctx, cbp = 0;
  4571. cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
  4572. cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
  4573. ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
  4574. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
  4575. ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
  4576. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
  4577. ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
  4578. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
  4579. ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
  4580. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
  4581. return cbp;
  4582. }
  4583. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  4584. int ctx;
  4585. int cbp_a, cbp_b;
  4586. cbp_a = (h->left_cbp>>4)&0x03;
  4587. cbp_b = (h-> top_cbp>>4)&0x03;
  4588. ctx = 0;
  4589. if( cbp_a > 0 ) ctx++;
  4590. if( cbp_b > 0 ) ctx += 2;
  4591. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  4592. return 0;
  4593. ctx = 4;
  4594. if( cbp_a == 2 ) ctx++;
  4595. if( cbp_b == 2 ) ctx += 2;
  4596. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  4597. }
  4598. static int decode_cabac_mb_dqp( H264Context *h) {
  4599. int ctx = 0;
  4600. int val = 0;
  4601. if( h->last_qscale_diff != 0 )
  4602. ctx++;
  4603. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  4604. if( ctx < 2 )
  4605. ctx = 2;
  4606. else
  4607. ctx = 3;
  4608. val++;
  4609. if(val > 102) //prevent infinite loop
  4610. return INT_MIN;
  4611. }
  4612. if( val&0x01 )
  4613. return (val + 1)/2;
  4614. else
  4615. return -(val + 1)/2;
  4616. }
  4617. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  4618. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  4619. return 0; /* 8x8 */
  4620. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  4621. return 1; /* 8x4 */
  4622. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  4623. return 2; /* 4x8 */
  4624. return 3; /* 4x4 */
  4625. }
  4626. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  4627. int type;
  4628. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  4629. return 0; /* B_Direct_8x8 */
  4630. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  4631. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  4632. type = 3;
  4633. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  4634. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  4635. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  4636. type += 4;
  4637. }
  4638. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  4639. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  4640. return type;
  4641. }
  4642. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  4643. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  4644. }
  4645. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  4646. int refa = h->ref_cache[list][scan8[n] - 1];
  4647. int refb = h->ref_cache[list][scan8[n] - 8];
  4648. int ref = 0;
  4649. int ctx = 0;
  4650. if( h->slice_type_nos == FF_B_TYPE) {
  4651. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  4652. ctx++;
  4653. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  4654. ctx += 2;
  4655. } else {
  4656. if( refa > 0 )
  4657. ctx++;
  4658. if( refb > 0 )
  4659. ctx += 2;
  4660. }
  4661. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  4662. ref++;
  4663. if( ctx < 4 )
  4664. ctx = 4;
  4665. else
  4666. ctx = 5;
  4667. if(ref >= 32 /*h->ref_list[list]*/){
  4668. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_ref\n");
  4669. return 0; //FIXME we should return -1 and check the return everywhere
  4670. }
  4671. }
  4672. return ref;
  4673. }
  4674. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  4675. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  4676. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  4677. int ctxbase = (l == 0) ? 40 : 47;
  4678. int ctx, mvd;
  4679. if( amvd < 3 )
  4680. ctx = 0;
  4681. else if( amvd > 32 )
  4682. ctx = 2;
  4683. else
  4684. ctx = 1;
  4685. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  4686. return 0;
  4687. mvd= 1;
  4688. ctx= 3;
  4689. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  4690. mvd++;
  4691. if( ctx < 6 )
  4692. ctx++;
  4693. }
  4694. if( mvd >= 9 ) {
  4695. int k = 3;
  4696. while( get_cabac_bypass( &h->cabac ) ) {
  4697. mvd += 1 << k;
  4698. k++;
  4699. if(k>24){
  4700. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  4701. return INT_MIN;
  4702. }
  4703. }
  4704. while( k-- ) {
  4705. if( get_cabac_bypass( &h->cabac ) )
  4706. mvd += 1 << k;
  4707. }
  4708. }
  4709. return get_cabac_bypass_sign( &h->cabac, -mvd );
  4710. }
  4711. static av_always_inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx, int is_dc ) {
  4712. int nza, nzb;
  4713. int ctx = 0;
  4714. if( is_dc ) {
  4715. if( cat == 0 ) {
  4716. nza = h->left_cbp&0x100;
  4717. nzb = h-> top_cbp&0x100;
  4718. } else {
  4719. nza = (h->left_cbp>>(6+idx))&0x01;
  4720. nzb = (h-> top_cbp>>(6+idx))&0x01;
  4721. }
  4722. } else {
  4723. if( cat == 4 ) {
  4724. nza = h->non_zero_count_cache[scan8[16+idx] - 1];
  4725. nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
  4726. } else {
  4727. assert(cat == 1 || cat == 2);
  4728. nza = h->non_zero_count_cache[scan8[idx] - 1];
  4729. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  4730. }
  4731. }
  4732. if( nza > 0 )
  4733. ctx++;
  4734. if( nzb > 0 )
  4735. ctx += 2;
  4736. return ctx + 4 * cat;
  4737. }
  4738. DECLARE_ASM_CONST(1, uint8_t, last_coeff_flag_offset_8x8[63]) = {
  4739. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  4740. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  4741. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  4742. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  4743. };
  4744. static av_always_inline void decode_cabac_residual_internal( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff, int is_dc ) {
  4745. static const int significant_coeff_flag_offset[2][6] = {
  4746. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  4747. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  4748. };
  4749. static const int last_coeff_flag_offset[2][6] = {
  4750. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  4751. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  4752. };
  4753. static const int coeff_abs_level_m1_offset[6] = {
  4754. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  4755. };
  4756. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  4757. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  4758. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  4759. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  4760. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  4761. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  4762. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  4763. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  4764. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  4765. };
  4766. /* node ctx: 0..3: abslevel1 (with abslevelgt1 == 0).
  4767. * 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter).
  4768. * map node ctx => cabac ctx for level=1 */
  4769. static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 };
  4770. /* map node ctx => cabac ctx for level>1 */
  4771. static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 };
  4772. static const uint8_t coeff_abs_level_transition[2][8] = {
  4773. /* update node ctx after decoding a level=1 */
  4774. { 1, 2, 3, 3, 4, 5, 6, 7 },
  4775. /* update node ctx after decoding a level>1 */
  4776. { 4, 4, 4, 4, 5, 6, 7, 7 }
  4777. };
  4778. int index[64];
  4779. int av_unused last;
  4780. int coeff_count = 0;
  4781. int node_ctx = 0;
  4782. uint8_t *significant_coeff_ctx_base;
  4783. uint8_t *last_coeff_ctx_base;
  4784. uint8_t *abs_level_m1_ctx_base;
  4785. #ifndef ARCH_X86
  4786. #define CABAC_ON_STACK
  4787. #endif
  4788. #ifdef CABAC_ON_STACK
  4789. #define CC &cc
  4790. CABACContext cc;
  4791. cc.range = h->cabac.range;
  4792. cc.low = h->cabac.low;
  4793. cc.bytestream= h->cabac.bytestream;
  4794. #else
  4795. #define CC &h->cabac
  4796. #endif
  4797. /* cat: 0-> DC 16x16 n = 0
  4798. * 1-> AC 16x16 n = luma4x4idx
  4799. * 2-> Luma4x4 n = luma4x4idx
  4800. * 3-> DC Chroma n = iCbCr
  4801. * 4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
  4802. * 5-> Luma8x8 n = 4 * luma8x8idx
  4803. */
  4804. /* read coded block flag */
  4805. if( is_dc || cat != 5 ) {
  4806. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n, is_dc ) ] ) == 0 ) {
  4807. if( !is_dc ) {
  4808. if( cat == 4 )
  4809. h->non_zero_count_cache[scan8[16+n]] = 0;
  4810. else
  4811. h->non_zero_count_cache[scan8[n]] = 0;
  4812. }
  4813. #ifdef CABAC_ON_STACK
  4814. h->cabac.range = cc.range ;
  4815. h->cabac.low = cc.low ;
  4816. h->cabac.bytestream= cc.bytestream;
  4817. #endif
  4818. return;
  4819. }
  4820. }
  4821. significant_coeff_ctx_base = h->cabac_state
  4822. + significant_coeff_flag_offset[MB_FIELD][cat];
  4823. last_coeff_ctx_base = h->cabac_state
  4824. + last_coeff_flag_offset[MB_FIELD][cat];
  4825. abs_level_m1_ctx_base = h->cabac_state
  4826. + coeff_abs_level_m1_offset[cat];
  4827. if( !is_dc && cat == 5 ) {
  4828. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  4829. for(last= 0; last < coefs; last++) { \
  4830. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  4831. if( get_cabac( CC, sig_ctx )) { \
  4832. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  4833. index[coeff_count++] = last; \
  4834. if( get_cabac( CC, last_ctx ) ) { \
  4835. last= max_coeff; \
  4836. break; \
  4837. } \
  4838. } \
  4839. }\
  4840. if( last == max_coeff -1 ) {\
  4841. index[coeff_count++] = last;\
  4842. }
  4843. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  4844. #if defined(ARCH_X86) && defined(HAVE_7REGS) && defined(HAVE_EBX_AVAILABLE) && !defined(BROKEN_RELOCATIONS)
  4845. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  4846. } else {
  4847. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  4848. #else
  4849. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  4850. } else {
  4851. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  4852. #endif
  4853. }
  4854. assert(coeff_count > 0);
  4855. if( is_dc ) {
  4856. if( cat == 0 )
  4857. h->cbp_table[h->mb_xy] |= 0x100;
  4858. else
  4859. h->cbp_table[h->mb_xy] |= 0x40 << n;
  4860. } else {
  4861. if( cat == 5 )
  4862. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  4863. else if( cat == 4 )
  4864. h->non_zero_count_cache[scan8[16+n]] = coeff_count;
  4865. else {
  4866. assert( cat == 1 || cat == 2 );
  4867. h->non_zero_count_cache[scan8[n]] = coeff_count;
  4868. }
  4869. }
  4870. while( coeff_count-- ) {
  4871. uint8_t *ctx = coeff_abs_level1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4872. int j= scantable[index[coeff_count]];
  4873. if( get_cabac( CC, ctx ) == 0 ) {
  4874. node_ctx = coeff_abs_level_transition[0][node_ctx];
  4875. if( is_dc ) {
  4876. block[j] = get_cabac_bypass_sign( CC, -1);
  4877. }else{
  4878. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
  4879. }
  4880. } else {
  4881. int coeff_abs = 2;
  4882. ctx = coeff_abs_levelgt1_ctx[node_ctx] + abs_level_m1_ctx_base;
  4883. node_ctx = coeff_abs_level_transition[1][node_ctx];
  4884. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  4885. coeff_abs++;
  4886. }
  4887. if( coeff_abs >= 15 ) {
  4888. int j = 0;
  4889. while( get_cabac_bypass( CC ) ) {
  4890. j++;
  4891. }
  4892. coeff_abs=1;
  4893. while( j-- ) {
  4894. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  4895. }
  4896. coeff_abs+= 14;
  4897. }
  4898. if( is_dc ) {
  4899. block[j] = get_cabac_bypass_sign( CC, -coeff_abs );
  4900. }else{
  4901. block[j] = (get_cabac_bypass_sign( CC, -coeff_abs ) * qmul[j] + 32) >> 6;
  4902. }
  4903. }
  4904. }
  4905. #ifdef CABAC_ON_STACK
  4906. h->cabac.range = cc.range ;
  4907. h->cabac.low = cc.low ;
  4908. h->cabac.bytestream= cc.bytestream;
  4909. #endif
  4910. }
  4911. #ifndef CONFIG_SMALL
  4912. static void decode_cabac_residual_dc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4913. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 1);
  4914. }
  4915. static void decode_cabac_residual_nondc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4916. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 0);
  4917. }
  4918. #endif
  4919. static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  4920. #ifdef CONFIG_SMALL
  4921. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, cat == 0 || cat == 3);
  4922. #else
  4923. if( cat == 0 || cat == 3 ) decode_cabac_residual_dc(h, block, cat, n, scantable, qmul, max_coeff);
  4924. else decode_cabac_residual_nondc(h, block, cat, n, scantable, qmul, max_coeff);
  4925. #endif
  4926. }
  4927. static inline void compute_mb_neighbors(H264Context *h)
  4928. {
  4929. MpegEncContext * const s = &h->s;
  4930. const int mb_xy = h->mb_xy;
  4931. h->top_mb_xy = mb_xy - s->mb_stride;
  4932. h->left_mb_xy[0] = mb_xy - 1;
  4933. if(FRAME_MBAFF){
  4934. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  4935. const int top_pair_xy = pair_xy - s->mb_stride;
  4936. const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  4937. const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  4938. const int curr_mb_frame_flag = !MB_FIELD;
  4939. const int bottom = (s->mb_y & 1);
  4940. if (bottom
  4941. ? !curr_mb_frame_flag // bottom macroblock
  4942. : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
  4943. ) {
  4944. h->top_mb_xy -= s->mb_stride;
  4945. }
  4946. if (left_mb_frame_flag != curr_mb_frame_flag) {
  4947. h->left_mb_xy[0] = pair_xy - 1;
  4948. }
  4949. } else if (FIELD_PICTURE) {
  4950. h->top_mb_xy -= s->mb_stride;
  4951. }
  4952. return;
  4953. }
  4954. /**
  4955. * decodes a macroblock
  4956. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  4957. */
  4958. static int decode_mb_cabac(H264Context *h) {
  4959. MpegEncContext * const s = &h->s;
  4960. int mb_xy;
  4961. int mb_type, partition_count, cbp = 0;
  4962. int dct8x8_allowed= h->pps.transform_8x8_mode;
  4963. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  4964. s->dsp.clear_blocks(h->mb); //FIXME avoid if already clear (move after skip handlong?)
  4965. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  4966. if( h->slice_type_nos != FF_I_TYPE ) {
  4967. int skip;
  4968. /* a skipped mb needs the aff flag from the following mb */
  4969. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  4970. predict_field_decoding_flag(h);
  4971. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  4972. skip = h->next_mb_skipped;
  4973. else
  4974. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  4975. /* read skip flags */
  4976. if( skip ) {
  4977. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  4978. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  4979. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  4980. if(h->next_mb_skipped)
  4981. predict_field_decoding_flag(h);
  4982. else
  4983. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4984. }
  4985. decode_mb_skip(h);
  4986. h->cbp_table[mb_xy] = 0;
  4987. h->chroma_pred_mode_table[mb_xy] = 0;
  4988. h->last_qscale_diff = 0;
  4989. return 0;
  4990. }
  4991. }
  4992. if(FRAME_MBAFF){
  4993. if( (s->mb_y&1) == 0 )
  4994. h->mb_mbaff =
  4995. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  4996. }else
  4997. h->mb_field_decoding_flag= (s->picture_structure!=PICT_FRAME);
  4998. h->prev_mb_skipped = 0;
  4999. compute_mb_neighbors(h);
  5000. if( ( mb_type = decode_cabac_mb_type( h ) ) < 0 ) {
  5001. av_log( h->s.avctx, AV_LOG_ERROR, "decode_cabac_mb_type failed\n" );
  5002. return -1;
  5003. }
  5004. if( h->slice_type_nos == FF_B_TYPE ) {
  5005. if( mb_type < 23 ){
  5006. partition_count= b_mb_type_info[mb_type].partition_count;
  5007. mb_type= b_mb_type_info[mb_type].type;
  5008. }else{
  5009. mb_type -= 23;
  5010. goto decode_intra_mb;
  5011. }
  5012. } else if( h->slice_type_nos == FF_P_TYPE ) {
  5013. if( mb_type < 5) {
  5014. partition_count= p_mb_type_info[mb_type].partition_count;
  5015. mb_type= p_mb_type_info[mb_type].type;
  5016. } else {
  5017. mb_type -= 5;
  5018. goto decode_intra_mb;
  5019. }
  5020. } else {
  5021. if(h->slice_type == FF_SI_TYPE && mb_type)
  5022. mb_type--;
  5023. assert(h->slice_type_nos == FF_I_TYPE);
  5024. decode_intra_mb:
  5025. partition_count = 0;
  5026. cbp= i_mb_type_info[mb_type].cbp;
  5027. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  5028. mb_type= i_mb_type_info[mb_type].type;
  5029. }
  5030. if(MB_FIELD)
  5031. mb_type |= MB_TYPE_INTERLACED;
  5032. h->slice_table[ mb_xy ]= h->slice_num;
  5033. if(IS_INTRA_PCM(mb_type)) {
  5034. const uint8_t *ptr;
  5035. unsigned int x, y;
  5036. // We assume these blocks are very rare so we do not optimize it.
  5037. // FIXME The two following lines get the bitstream position in the cabac
  5038. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  5039. ptr= h->cabac.bytestream;
  5040. if(h->cabac.low&0x1) ptr--;
  5041. if(CABAC_BITS==16){
  5042. if(h->cabac.low&0x1FF) ptr--;
  5043. }
  5044. // The pixels are stored in the same order as levels in h->mb array.
  5045. for(y=0; y<16; y++){
  5046. const int index= 4*(y&3) + 32*((y>>2)&1) + 128*(y>>3);
  5047. for(x=0; x<16; x++){
  5048. tprintf(s->avctx, "LUMA ICPM LEVEL (%3d)\n", *ptr);
  5049. h->mb[index + (x&3) + 16*((x>>2)&1) + 64*(x>>3)]= *ptr++;
  5050. }
  5051. }
  5052. for(y=0; y<8; y++){
  5053. const int index= 256 + 4*(y&3) + 32*(y>>2);
  5054. for(x=0; x<8; x++){
  5055. tprintf(s->avctx, "CHROMA U ICPM LEVEL (%3d)\n", *ptr);
  5056. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5057. }
  5058. }
  5059. for(y=0; y<8; y++){
  5060. const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
  5061. for(x=0; x<8; x++){
  5062. tprintf(s->avctx, "CHROMA V ICPM LEVEL (%3d)\n", *ptr);
  5063. h->mb[index + (x&3) + 16*(x>>2)]= *ptr++;
  5064. }
  5065. }
  5066. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  5067. // All blocks are present
  5068. h->cbp_table[mb_xy] = 0x1ef;
  5069. h->chroma_pred_mode_table[mb_xy] = 0;
  5070. // In deblocking, the quantizer is 0
  5071. s->current_picture.qscale_table[mb_xy]= 0;
  5072. // All coeffs are present
  5073. memset(h->non_zero_count[mb_xy], 16, 16);
  5074. s->current_picture.mb_type[mb_xy]= mb_type;
  5075. h->last_qscale_diff = 0;
  5076. return 0;
  5077. }
  5078. if(MB_MBAFF){
  5079. h->ref_count[0] <<= 1;
  5080. h->ref_count[1] <<= 1;
  5081. }
  5082. fill_caches(h, mb_type, 0);
  5083. if( IS_INTRA( mb_type ) ) {
  5084. int i, pred_mode;
  5085. if( IS_INTRA4x4( mb_type ) ) {
  5086. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  5087. mb_type |= MB_TYPE_8x8DCT;
  5088. for( i = 0; i < 16; i+=4 ) {
  5089. int pred = pred_intra_mode( h, i );
  5090. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5091. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  5092. }
  5093. } else {
  5094. for( i = 0; i < 16; i++ ) {
  5095. int pred = pred_intra_mode( h, i );
  5096. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  5097. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  5098. }
  5099. }
  5100. write_back_intra_pred_mode(h);
  5101. if( check_intra4x4_pred_mode(h) < 0 ) return -1;
  5102. } else {
  5103. h->intra16x16_pred_mode= check_intra_pred_mode( h, h->intra16x16_pred_mode );
  5104. if( h->intra16x16_pred_mode < 0 ) return -1;
  5105. }
  5106. h->chroma_pred_mode_table[mb_xy] =
  5107. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  5108. pred_mode= check_intra_pred_mode( h, pred_mode );
  5109. if( pred_mode < 0 ) return -1;
  5110. h->chroma_pred_mode= pred_mode;
  5111. } else if( partition_count == 4 ) {
  5112. int i, j, sub_partition_count[4], list, ref[2][4];
  5113. if( h->slice_type_nos == FF_B_TYPE ) {
  5114. for( i = 0; i < 4; i++ ) {
  5115. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  5116. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5117. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5118. }
  5119. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  5120. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  5121. pred_direct_motion(h, &mb_type);
  5122. h->ref_cache[0][scan8[4]] =
  5123. h->ref_cache[1][scan8[4]] =
  5124. h->ref_cache[0][scan8[12]] =
  5125. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  5126. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  5127. for( i = 0; i < 4; i++ )
  5128. if( IS_DIRECT(h->sub_mb_type[i]) )
  5129. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  5130. }
  5131. }
  5132. } else {
  5133. for( i = 0; i < 4; i++ ) {
  5134. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  5135. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  5136. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  5137. }
  5138. }
  5139. for( list = 0; list < h->list_count; list++ ) {
  5140. for( i = 0; i < 4; i++ ) {
  5141. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  5142. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  5143. if( h->ref_count[list] > 1 )
  5144. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  5145. else
  5146. ref[list][i] = 0;
  5147. } else {
  5148. ref[list][i] = -1;
  5149. }
  5150. h->ref_cache[list][ scan8[4*i]+1 ]=
  5151. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  5152. }
  5153. }
  5154. if(dct8x8_allowed)
  5155. dct8x8_allowed = get_dct8x8_allowed(h);
  5156. for(list=0; list<h->list_count; list++){
  5157. for(i=0; i<4; i++){
  5158. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  5159. if(IS_DIRECT(h->sub_mb_type[i])){
  5160. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  5161. continue;
  5162. }
  5163. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  5164. const int sub_mb_type= h->sub_mb_type[i];
  5165. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  5166. for(j=0; j<sub_partition_count[i]; j++){
  5167. int mpx, mpy;
  5168. int mx, my;
  5169. const int index= 4*i + block_width*j;
  5170. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  5171. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  5172. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  5173. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  5174. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  5175. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5176. if(IS_SUB_8X8(sub_mb_type)){
  5177. mv_cache[ 1 ][0]=
  5178. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  5179. mv_cache[ 1 ][1]=
  5180. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  5181. mvd_cache[ 1 ][0]=
  5182. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  5183. mvd_cache[ 1 ][1]=
  5184. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  5185. }else if(IS_SUB_8X4(sub_mb_type)){
  5186. mv_cache[ 1 ][0]= mx;
  5187. mv_cache[ 1 ][1]= my;
  5188. mvd_cache[ 1 ][0]= mx - mpx;
  5189. mvd_cache[ 1 ][1]= my - mpy;
  5190. }else if(IS_SUB_4X8(sub_mb_type)){
  5191. mv_cache[ 8 ][0]= mx;
  5192. mv_cache[ 8 ][1]= my;
  5193. mvd_cache[ 8 ][0]= mx - mpx;
  5194. mvd_cache[ 8 ][1]= my - mpy;
  5195. }
  5196. mv_cache[ 0 ][0]= mx;
  5197. mv_cache[ 0 ][1]= my;
  5198. mvd_cache[ 0 ][0]= mx - mpx;
  5199. mvd_cache[ 0 ][1]= my - mpy;
  5200. }
  5201. }else{
  5202. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  5203. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  5204. p[0] = p[1] = p[8] = p[9] = 0;
  5205. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  5206. }
  5207. }
  5208. }
  5209. } else if( IS_DIRECT(mb_type) ) {
  5210. pred_direct_motion(h, &mb_type);
  5211. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  5212. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  5213. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  5214. } else {
  5215. int list, mx, my, i, mpx, mpy;
  5216. if(IS_16X16(mb_type)){
  5217. for(list=0; list<h->list_count; list++){
  5218. if(IS_DIR(mb_type, 0, list)){
  5219. const int ref = h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 0 ) : 0;
  5220. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  5221. }else
  5222. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  5223. }
  5224. for(list=0; list<h->list_count; list++){
  5225. if(IS_DIR(mb_type, 0, list)){
  5226. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  5227. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  5228. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  5229. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5230. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5231. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  5232. }else
  5233. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  5234. }
  5235. }
  5236. else if(IS_16X8(mb_type)){
  5237. for(list=0; list<h->list_count; list++){
  5238. for(i=0; i<2; i++){
  5239. if(IS_DIR(mb_type, i, list)){
  5240. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 8*i ) : 0;
  5241. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  5242. }else
  5243. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  5244. }
  5245. }
  5246. for(list=0; list<h->list_count; list++){
  5247. for(i=0; i<2; i++){
  5248. if(IS_DIR(mb_type, i, list)){
  5249. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  5250. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  5251. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  5252. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5253. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  5254. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  5255. }else{
  5256. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5257. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  5258. }
  5259. }
  5260. }
  5261. }else{
  5262. assert(IS_8X16(mb_type));
  5263. for(list=0; list<h->list_count; list++){
  5264. for(i=0; i<2; i++){
  5265. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  5266. const int ref= h->ref_count[list] > 1 ? decode_cabac_mb_ref( h, list, 4*i ) : 0;
  5267. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  5268. }else
  5269. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  5270. }
  5271. }
  5272. for(list=0; list<h->list_count; list++){
  5273. for(i=0; i<2; i++){
  5274. if(IS_DIR(mb_type, i, list)){
  5275. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  5276. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  5277. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  5278. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  5279. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  5280. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  5281. }else{
  5282. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5283. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  5284. }
  5285. }
  5286. }
  5287. }
  5288. }
  5289. if( IS_INTER( mb_type ) ) {
  5290. h->chroma_pred_mode_table[mb_xy] = 0;
  5291. write_back_motion( h, mb_type );
  5292. }
  5293. if( !IS_INTRA16x16( mb_type ) ) {
  5294. cbp = decode_cabac_mb_cbp_luma( h );
  5295. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  5296. }
  5297. h->cbp_table[mb_xy] = h->cbp = cbp;
  5298. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  5299. if( decode_cabac_mb_transform_size( h ) )
  5300. mb_type |= MB_TYPE_8x8DCT;
  5301. }
  5302. s->current_picture.mb_type[mb_xy]= mb_type;
  5303. if( cbp || IS_INTRA16x16( mb_type ) ) {
  5304. const uint8_t *scan, *scan8x8, *dc_scan;
  5305. const uint32_t *qmul;
  5306. int dqp;
  5307. if(IS_INTERLACED(mb_type)){
  5308. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  5309. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  5310. dc_scan= luma_dc_field_scan;
  5311. }else{
  5312. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  5313. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  5314. dc_scan= luma_dc_zigzag_scan;
  5315. }
  5316. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  5317. if( dqp == INT_MIN ){
  5318. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  5319. return -1;
  5320. }
  5321. s->qscale += dqp;
  5322. if(((unsigned)s->qscale) > 51){
  5323. if(s->qscale<0) s->qscale+= 52;
  5324. else s->qscale-= 52;
  5325. }
  5326. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  5327. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  5328. if( IS_INTRA16x16( mb_type ) ) {
  5329. int i;
  5330. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  5331. decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
  5332. if( cbp&15 ) {
  5333. qmul = h->dequant4_coeff[0][s->qscale];
  5334. for( i = 0; i < 16; i++ ) {
  5335. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  5336. decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
  5337. }
  5338. } else {
  5339. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  5340. }
  5341. } else {
  5342. int i8x8, i4x4;
  5343. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  5344. if( cbp & (1<<i8x8) ) {
  5345. if( IS_8x8DCT(mb_type) ) {
  5346. decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  5347. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
  5348. } else {
  5349. qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
  5350. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  5351. const int index = 4*i8x8 + i4x4;
  5352. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  5353. //START_TIMER
  5354. decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
  5355. //STOP_TIMER("decode_residual")
  5356. }
  5357. }
  5358. } else {
  5359. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  5360. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  5361. }
  5362. }
  5363. }
  5364. if( cbp&0x30 ){
  5365. int c;
  5366. for( c = 0; c < 2; c++ ) {
  5367. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  5368. decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
  5369. }
  5370. }
  5371. if( cbp&0x20 ) {
  5372. int c, i;
  5373. for( c = 0; c < 2; c++ ) {
  5374. qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
  5375. for( i = 0; i < 4; i++ ) {
  5376. const int index = 16 + 4 * c + i;
  5377. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  5378. decode_cabac_residual(h, h->mb + 16*index, 4, index - 16, scan + 1, qmul, 15);
  5379. }
  5380. }
  5381. } else {
  5382. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5383. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5384. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5385. }
  5386. } else {
  5387. uint8_t * const nnz= &h->non_zero_count_cache[0];
  5388. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  5389. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  5390. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  5391. h->last_qscale_diff = 0;
  5392. }
  5393. s->current_picture.qscale_table[mb_xy]= s->qscale;
  5394. write_back_non_zero_count(h);
  5395. if(MB_MBAFF){
  5396. h->ref_count[0] >>= 1;
  5397. h->ref_count[1] >>= 1;
  5398. }
  5399. return 0;
  5400. }
  5401. static void filter_mb_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5402. int i, d;
  5403. const int index_a = qp + h->slice_alpha_c0_offset;
  5404. const int alpha = (alpha_table+52)[index_a];
  5405. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5406. if( bS[0] < 4 ) {
  5407. int8_t tc[4];
  5408. for(i=0; i<4; i++)
  5409. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5410. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  5411. } else {
  5412. /* 16px edge length, because bS=4 is triggered by being at
  5413. * the edge of an intra MB, so all 4 bS are the same */
  5414. for( d = 0; d < 16; d++ ) {
  5415. const int p0 = pix[-1];
  5416. const int p1 = pix[-2];
  5417. const int p2 = pix[-3];
  5418. const int q0 = pix[0];
  5419. const int q1 = pix[1];
  5420. const int q2 = pix[2];
  5421. if( FFABS( p0 - q0 ) < alpha &&
  5422. FFABS( p1 - p0 ) < beta &&
  5423. FFABS( q1 - q0 ) < beta ) {
  5424. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5425. if( FFABS( p2 - p0 ) < beta)
  5426. {
  5427. const int p3 = pix[-4];
  5428. /* p0', p1', p2' */
  5429. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5430. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5431. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5432. } else {
  5433. /* p0' */
  5434. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5435. }
  5436. if( FFABS( q2 - q0 ) < beta)
  5437. {
  5438. const int q3 = pix[3];
  5439. /* q0', q1', q2' */
  5440. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5441. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5442. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5443. } else {
  5444. /* q0' */
  5445. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5446. }
  5447. }else{
  5448. /* p0', q0' */
  5449. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5450. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5451. }
  5452. tprintf(h->s.avctx, "filter_mb_edgev i:%d d:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, p2, p1, p0, q0, q1, q2, pix[-2], pix[-1], pix[0], pix[1]);
  5453. }
  5454. pix += stride;
  5455. }
  5456. }
  5457. }
  5458. static void filter_mb_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5459. int i;
  5460. const int index_a = qp + h->slice_alpha_c0_offset;
  5461. const int alpha = (alpha_table+52)[index_a];
  5462. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5463. if( bS[0] < 4 ) {
  5464. int8_t tc[4];
  5465. for(i=0; i<4; i++)
  5466. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5467. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5468. } else {
  5469. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5470. }
  5471. }
  5472. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5473. int i;
  5474. for( i = 0; i < 16; i++, pix += stride) {
  5475. int index_a;
  5476. int alpha;
  5477. int beta;
  5478. int qp_index;
  5479. int bS_index = (i >> 1);
  5480. if (!MB_FIELD) {
  5481. bS_index &= ~1;
  5482. bS_index |= (i & 1);
  5483. }
  5484. if( bS[bS_index] == 0 ) {
  5485. continue;
  5486. }
  5487. qp_index = MB_FIELD ? (i >> 3) : (i & 1);
  5488. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5489. alpha = (alpha_table+52)[index_a];
  5490. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5491. if( bS[bS_index] < 4 ) {
  5492. const int tc0 = (tc0_table+52)[index_a][bS[bS_index] - 1];
  5493. const int p0 = pix[-1];
  5494. const int p1 = pix[-2];
  5495. const int p2 = pix[-3];
  5496. const int q0 = pix[0];
  5497. const int q1 = pix[1];
  5498. const int q2 = pix[2];
  5499. if( FFABS( p0 - q0 ) < alpha &&
  5500. FFABS( p1 - p0 ) < beta &&
  5501. FFABS( q1 - q0 ) < beta ) {
  5502. int tc = tc0;
  5503. int i_delta;
  5504. if( FFABS( p2 - p0 ) < beta ) {
  5505. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  5506. tc++;
  5507. }
  5508. if( FFABS( q2 - q0 ) < beta ) {
  5509. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  5510. tc++;
  5511. }
  5512. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5513. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5514. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5515. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5516. }
  5517. }else{
  5518. const int p0 = pix[-1];
  5519. const int p1 = pix[-2];
  5520. const int p2 = pix[-3];
  5521. const int q0 = pix[0];
  5522. const int q1 = pix[1];
  5523. const int q2 = pix[2];
  5524. if( FFABS( p0 - q0 ) < alpha &&
  5525. FFABS( p1 - p0 ) < beta &&
  5526. FFABS( q1 - q0 ) < beta ) {
  5527. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5528. if( FFABS( p2 - p0 ) < beta)
  5529. {
  5530. const int p3 = pix[-4];
  5531. /* p0', p1', p2' */
  5532. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5533. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5534. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5535. } else {
  5536. /* p0' */
  5537. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5538. }
  5539. if( FFABS( q2 - q0 ) < beta)
  5540. {
  5541. const int q3 = pix[3];
  5542. /* q0', q1', q2' */
  5543. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5544. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5545. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5546. } else {
  5547. /* q0' */
  5548. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5549. }
  5550. }else{
  5551. /* p0', q0' */
  5552. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5553. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5554. }
  5555. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5556. }
  5557. }
  5558. }
  5559. }
  5560. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[8], int qp[2] ) {
  5561. int i;
  5562. for( i = 0; i < 8; i++, pix += stride) {
  5563. int index_a;
  5564. int alpha;
  5565. int beta;
  5566. int qp_index;
  5567. int bS_index = i;
  5568. if( bS[bS_index] == 0 ) {
  5569. continue;
  5570. }
  5571. qp_index = MB_FIELD ? (i >> 2) : (i & 1);
  5572. index_a = qp[qp_index] + h->slice_alpha_c0_offset;
  5573. alpha = (alpha_table+52)[index_a];
  5574. beta = (beta_table+52)[qp[qp_index] + h->slice_beta_offset];
  5575. if( bS[bS_index] < 4 ) {
  5576. const int tc = (tc0_table+52)[index_a][bS[bS_index] - 1] + 1;
  5577. const int p0 = pix[-1];
  5578. const int p1 = pix[-2];
  5579. const int q0 = pix[0];
  5580. const int q1 = pix[1];
  5581. if( FFABS( p0 - q0 ) < alpha &&
  5582. FFABS( p1 - p0 ) < beta &&
  5583. FFABS( q1 - q0 ) < beta ) {
  5584. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  5585. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  5586. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  5587. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  5588. }
  5589. }else{
  5590. const int p0 = pix[-1];
  5591. const int p1 = pix[-2];
  5592. const int q0 = pix[0];
  5593. const int q1 = pix[1];
  5594. if( FFABS( p0 - q0 ) < alpha &&
  5595. FFABS( p1 - p0 ) < beta &&
  5596. FFABS( q1 - q0 ) < beta ) {
  5597. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  5598. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  5599. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  5600. }
  5601. }
  5602. }
  5603. }
  5604. static void filter_mb_edgeh( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5605. int i, d;
  5606. const int index_a = qp + h->slice_alpha_c0_offset;
  5607. const int alpha = (alpha_table+52)[index_a];
  5608. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5609. const int pix_next = stride;
  5610. if( bS[0] < 4 ) {
  5611. int8_t tc[4];
  5612. for(i=0; i<4; i++)
  5613. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] : -1;
  5614. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  5615. } else {
  5616. /* 16px edge length, see filter_mb_edgev */
  5617. for( d = 0; d < 16; d++ ) {
  5618. const int p0 = pix[-1*pix_next];
  5619. const int p1 = pix[-2*pix_next];
  5620. const int p2 = pix[-3*pix_next];
  5621. const int q0 = pix[0];
  5622. const int q1 = pix[1*pix_next];
  5623. const int q2 = pix[2*pix_next];
  5624. if( FFABS( p0 - q0 ) < alpha &&
  5625. FFABS( p1 - p0 ) < beta &&
  5626. FFABS( q1 - q0 ) < beta ) {
  5627. const int p3 = pix[-4*pix_next];
  5628. const int q3 = pix[ 3*pix_next];
  5629. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  5630. if( FFABS( p2 - p0 ) < beta) {
  5631. /* p0', p1', p2' */
  5632. pix[-1*pix_next] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  5633. pix[-2*pix_next] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  5634. pix[-3*pix_next] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  5635. } else {
  5636. /* p0' */
  5637. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5638. }
  5639. if( FFABS( q2 - q0 ) < beta) {
  5640. /* q0', q1', q2' */
  5641. pix[0*pix_next] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  5642. pix[1*pix_next] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  5643. pix[2*pix_next] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  5644. } else {
  5645. /* q0' */
  5646. pix[0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5647. }
  5648. }else{
  5649. /* p0', q0' */
  5650. pix[-1*pix_next] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  5651. pix[ 0*pix_next] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  5652. }
  5653. tprintf(h->s.avctx, "filter_mb_edgeh i:%d d:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, d, qp, index_a, alpha, beta, bS[i], p2, p1, p0, q0, q1, q2, pix[-2*pix_next], pix[-pix_next], pix[0], pix[pix_next]);
  5654. }
  5655. pix++;
  5656. }
  5657. }
  5658. }
  5659. static void filter_mb_edgech( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int qp ) {
  5660. int i;
  5661. const int index_a = qp + h->slice_alpha_c0_offset;
  5662. const int alpha = (alpha_table+52)[index_a];
  5663. const int beta = (beta_table+52)[qp + h->slice_beta_offset];
  5664. if( bS[0] < 4 ) {
  5665. int8_t tc[4];
  5666. for(i=0; i<4; i++)
  5667. tc[i] = bS[i] ? (tc0_table+52)[index_a][bS[i] - 1] + 1 : 0;
  5668. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  5669. } else {
  5670. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  5671. }
  5672. }
  5673. static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5674. MpegEncContext * const s = &h->s;
  5675. int mb_y_firstrow = s->picture_structure == PICT_BOTTOM_FIELD;
  5676. int mb_xy, mb_type;
  5677. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  5678. mb_xy = h->mb_xy;
  5679. if(mb_x==0 || mb_y==mb_y_firstrow || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff ||
  5680. 1 ||
  5681. (h->deblocking_filter == 2 && (h->slice_table[mb_xy] != h->slice_table[h->top_mb_xy] ||
  5682. h->slice_table[mb_xy] != h->slice_table[mb_xy - 1]))) {
  5683. filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  5684. return;
  5685. }
  5686. assert(!FRAME_MBAFF);
  5687. mb_type = s->current_picture.mb_type[mb_xy];
  5688. qp = s->current_picture.qscale_table[mb_xy];
  5689. qp0 = s->current_picture.qscale_table[mb_xy-1];
  5690. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  5691. qpc = get_chroma_qp( h, 0, qp );
  5692. qpc0 = get_chroma_qp( h, 0, qp0 );
  5693. qpc1 = get_chroma_qp( h, 0, qp1 );
  5694. qp0 = (qp + qp0 + 1) >> 1;
  5695. qp1 = (qp + qp1 + 1) >> 1;
  5696. qpc0 = (qpc + qpc0 + 1) >> 1;
  5697. qpc1 = (qpc + qpc1 + 1) >> 1;
  5698. qp_thresh = 15 - h->slice_alpha_c0_offset;
  5699. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  5700. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  5701. return;
  5702. if( IS_INTRA(mb_type) ) {
  5703. int16_t bS4[4] = {4,4,4,4};
  5704. int16_t bS3[4] = {3,3,3,3};
  5705. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  5706. if( IS_8x8DCT(mb_type) ) {
  5707. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5708. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5709. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5710. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5711. } else {
  5712. filter_mb_edgev( h, &img_y[4*0], linesize, bS4, qp0 );
  5713. filter_mb_edgev( h, &img_y[4*1], linesize, bS3, qp );
  5714. filter_mb_edgev( h, &img_y[4*2], linesize, bS3, qp );
  5715. filter_mb_edgev( h, &img_y[4*3], linesize, bS3, qp );
  5716. filter_mb_edgeh( h, &img_y[4*0*linesize], linesize, bSH, qp1 );
  5717. filter_mb_edgeh( h, &img_y[4*1*linesize], linesize, bS3, qp );
  5718. filter_mb_edgeh( h, &img_y[4*2*linesize], linesize, bS3, qp );
  5719. filter_mb_edgeh( h, &img_y[4*3*linesize], linesize, bS3, qp );
  5720. }
  5721. filter_mb_edgecv( h, &img_cb[2*0], uvlinesize, bS4, qpc0 );
  5722. filter_mb_edgecv( h, &img_cb[2*2], uvlinesize, bS3, qpc );
  5723. filter_mb_edgecv( h, &img_cr[2*0], uvlinesize, bS4, qpc0 );
  5724. filter_mb_edgecv( h, &img_cr[2*2], uvlinesize, bS3, qpc );
  5725. filter_mb_edgech( h, &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5726. filter_mb_edgech( h, &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5727. filter_mb_edgech( h, &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1 );
  5728. filter_mb_edgech( h, &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc );
  5729. return;
  5730. } else {
  5731. DECLARE_ALIGNED_8(int16_t, bS[2][4][4]);
  5732. uint64_t (*bSv)[4] = (uint64_t(*)[4])bS;
  5733. int edges;
  5734. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  5735. edges = 4;
  5736. bSv[0][0] = bSv[0][2] = bSv[1][0] = bSv[1][2] = 0x0002000200020002ULL;
  5737. } else {
  5738. int mask_edge1 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 :
  5739. (mb_type & MB_TYPE_16x8) ? 1 : 0;
  5740. int mask_edge0 = (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5741. && (s->current_picture.mb_type[mb_xy-1] & (MB_TYPE_16x16 | MB_TYPE_8x16))
  5742. ? 3 : 0;
  5743. int step = IS_8x8DCT(mb_type) ? 2 : 1;
  5744. edges = (mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  5745. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  5746. (h->slice_type_nos == FF_B_TYPE), edges, step, mask_edge0, mask_edge1, FIELD_PICTURE);
  5747. }
  5748. if( IS_INTRA(s->current_picture.mb_type[mb_xy-1]) )
  5749. bSv[0][0] = 0x0004000400040004ULL;
  5750. if( IS_INTRA(s->current_picture.mb_type[h->top_mb_xy]) )
  5751. bSv[1][0] = FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL;
  5752. #define FILTER(hv,dir,edge)\
  5753. if(bSv[dir][edge]) {\
  5754. filter_mb_edge##hv( h, &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir );\
  5755. if(!(edge&1)) {\
  5756. filter_mb_edgec##hv( h, &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5757. filter_mb_edgec##hv( h, &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir );\
  5758. }\
  5759. }
  5760. if( edges == 1 ) {
  5761. FILTER(v,0,0);
  5762. FILTER(h,1,0);
  5763. } else if( IS_8x8DCT(mb_type) ) {
  5764. FILTER(v,0,0);
  5765. FILTER(v,0,2);
  5766. FILTER(h,1,0);
  5767. FILTER(h,1,2);
  5768. } else {
  5769. FILTER(v,0,0);
  5770. FILTER(v,0,1);
  5771. FILTER(v,0,2);
  5772. FILTER(v,0,3);
  5773. FILTER(h,1,0);
  5774. FILTER(h,1,1);
  5775. FILTER(h,1,2);
  5776. FILTER(h,1,3);
  5777. }
  5778. #undef FILTER
  5779. }
  5780. }
  5781. static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  5782. MpegEncContext * const s = &h->s;
  5783. const int mb_xy= mb_x + mb_y*s->mb_stride;
  5784. const int mb_type = s->current_picture.mb_type[mb_xy];
  5785. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  5786. int first_vertical_edge_done = 0;
  5787. int dir;
  5788. //for sufficiently low qp, filtering wouldn't do anything
  5789. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  5790. if(!FRAME_MBAFF){
  5791. int qp_thresh = 15 - h->slice_alpha_c0_offset - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  5792. int qp = s->current_picture.qscale_table[mb_xy];
  5793. if(qp <= qp_thresh
  5794. && (mb_x == 0 || ((qp + s->current_picture.qscale_table[mb_xy-1] + 1)>>1) <= qp_thresh)
  5795. && (mb_y == 0 || ((qp + s->current_picture.qscale_table[h->top_mb_xy] + 1)>>1) <= qp_thresh)){
  5796. return;
  5797. }
  5798. }
  5799. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  5800. if(!h->pps.cabac && h->pps.transform_8x8_mode){
  5801. int top_type, left_type[2];
  5802. top_type = s->current_picture.mb_type[h->top_mb_xy] ;
  5803. left_type[0] = s->current_picture.mb_type[h->left_mb_xy[0]];
  5804. left_type[1] = s->current_picture.mb_type[h->left_mb_xy[1]];
  5805. if(IS_8x8DCT(top_type)){
  5806. h->non_zero_count_cache[4+8*0]=
  5807. h->non_zero_count_cache[5+8*0]= h->cbp_table[h->top_mb_xy] & 4;
  5808. h->non_zero_count_cache[6+8*0]=
  5809. h->non_zero_count_cache[7+8*0]= h->cbp_table[h->top_mb_xy] & 8;
  5810. }
  5811. if(IS_8x8DCT(left_type[0])){
  5812. h->non_zero_count_cache[3+8*1]=
  5813. h->non_zero_count_cache[3+8*2]= h->cbp_table[h->left_mb_xy[0]]&2; //FIXME check MBAFF
  5814. }
  5815. if(IS_8x8DCT(left_type[1])){
  5816. h->non_zero_count_cache[3+8*3]=
  5817. h->non_zero_count_cache[3+8*4]= h->cbp_table[h->left_mb_xy[1]]&8; //FIXME check MBAFF
  5818. }
  5819. if(IS_8x8DCT(mb_type)){
  5820. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  5821. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp_table[mb_xy] & 1;
  5822. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  5823. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp_table[mb_xy] & 2;
  5824. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  5825. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp_table[mb_xy] & 4;
  5826. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  5827. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp_table[mb_xy] & 8;
  5828. }
  5829. }
  5830. if (FRAME_MBAFF
  5831. // left mb is in picture
  5832. && h->slice_table[mb_xy-1] != 255
  5833. // and current and left pair do not have the same interlaced type
  5834. && (IS_INTERLACED(mb_type) != IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]))
  5835. // and left mb is in the same slice if deblocking_filter == 2
  5836. && (h->deblocking_filter!=2 || h->slice_table[mb_xy-1] == h->slice_table[mb_xy])) {
  5837. /* First vertical edge is different in MBAFF frames
  5838. * There are 8 different bS to compute and 2 different Qp
  5839. */
  5840. const int pair_xy = mb_x + (mb_y&~1)*s->mb_stride;
  5841. const int left_mb_xy[2] = { pair_xy-1, pair_xy-1+s->mb_stride };
  5842. int16_t bS[8];
  5843. int qp[2];
  5844. int bqp[2];
  5845. int rqp[2];
  5846. int mb_qp, mbn0_qp, mbn1_qp;
  5847. int i;
  5848. first_vertical_edge_done = 1;
  5849. if( IS_INTRA(mb_type) )
  5850. bS[0] = bS[1] = bS[2] = bS[3] = bS[4] = bS[5] = bS[6] = bS[7] = 4;
  5851. else {
  5852. for( i = 0; i < 8; i++ ) {
  5853. int mbn_xy = MB_FIELD ? left_mb_xy[i>>2] : left_mb_xy[i&1];
  5854. if( IS_INTRA( s->current_picture.mb_type[mbn_xy] ) )
  5855. bS[i] = 4;
  5856. else if( h->non_zero_count_cache[12+8*(i>>1)] != 0 ||
  5857. /* FIXME: with 8x8dct + cavlc, should check cbp instead of nnz */
  5858. h->non_zero_count[mbn_xy][MB_FIELD ? i&3 : (i>>2)+(mb_y&1)*2] )
  5859. bS[i] = 2;
  5860. else
  5861. bS[i] = 1;
  5862. }
  5863. }
  5864. mb_qp = s->current_picture.qscale_table[mb_xy];
  5865. mbn0_qp = s->current_picture.qscale_table[left_mb_xy[0]];
  5866. mbn1_qp = s->current_picture.qscale_table[left_mb_xy[1]];
  5867. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  5868. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  5869. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  5870. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  5871. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  5872. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  5873. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  5874. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  5875. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  5876. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  5877. /* Filter edge */
  5878. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  5879. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5880. filter_mb_mbaff_edgev ( h, &img_y [0], linesize, bS, qp );
  5881. filter_mb_mbaff_edgecv( h, &img_cb[0], uvlinesize, bS, bqp );
  5882. filter_mb_mbaff_edgecv( h, &img_cr[0], uvlinesize, bS, rqp );
  5883. }
  5884. /* dir : 0 -> vertical edge, 1 -> horizontal edge */
  5885. for( dir = 0; dir < 2; dir++ )
  5886. {
  5887. int edge;
  5888. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  5889. const int mbm_type = s->current_picture.mb_type[mbm_xy];
  5890. int (*ref2frm) [48+2] = h->ref2frm[ h->slice_num &15 ];
  5891. int (*ref2frmm)[48+2] = h->ref2frm[ h->slice_table[mbm_xy]&15 ];
  5892. int start = h->slice_table[mbm_xy] == 255 ? 1 : 0;
  5893. const int edges = (mb_type & (MB_TYPE_16x16|MB_TYPE_SKIP))
  5894. == (MB_TYPE_16x16|MB_TYPE_SKIP) ? 1 : 4;
  5895. // how often to recheck mv-based bS when iterating between edges
  5896. const int mask_edge = (mb_type & (MB_TYPE_16x16 | (MB_TYPE_16x8 << dir))) ? 3 :
  5897. (mb_type & (MB_TYPE_8x16 >> dir)) ? 1 : 0;
  5898. // how often to recheck mv-based bS when iterating along each edge
  5899. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  5900. if (first_vertical_edge_done) {
  5901. start = 1;
  5902. first_vertical_edge_done = 0;
  5903. }
  5904. if (h->deblocking_filter==2 && h->slice_table[mbm_xy] != h->slice_table[mb_xy])
  5905. start = 1;
  5906. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && start == 0
  5907. && !IS_INTERLACED(mb_type)
  5908. && IS_INTERLACED(mbm_type)
  5909. ) {
  5910. // This is a special case in the norm where the filtering must
  5911. // be done twice (one each of the field) even if we are in a
  5912. // frame macroblock.
  5913. //
  5914. static const int nnz_idx[4] = {4,5,6,3};
  5915. unsigned int tmp_linesize = 2 * linesize;
  5916. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  5917. int mbn_xy = mb_xy - 2 * s->mb_stride;
  5918. int qp;
  5919. int i, j;
  5920. int16_t bS[4];
  5921. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  5922. if( IS_INTRA(mb_type) ||
  5923. IS_INTRA(s->current_picture.mb_type[mbn_xy]) ) {
  5924. bS[0] = bS[1] = bS[2] = bS[3] = 3;
  5925. } else {
  5926. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy];
  5927. for( i = 0; i < 4; i++ ) {
  5928. if( h->non_zero_count_cache[scan8[0]+i] != 0 ||
  5929. mbn_nnz[nnz_idx[i]] != 0 )
  5930. bS[i] = 2;
  5931. else
  5932. bS[i] = 1;
  5933. }
  5934. }
  5935. // Do not use s->qscale as luma quantizer because it has not the same
  5936. // value in IPCM macroblocks.
  5937. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  5938. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  5939. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  5940. filter_mb_edgeh( h, &img_y[j*linesize], tmp_linesize, bS, qp );
  5941. filter_mb_edgech( h, &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  5942. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5943. filter_mb_edgech( h, &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  5944. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  5945. }
  5946. start = 1;
  5947. }
  5948. /* Calculate bS */
  5949. for( edge = start; edge < edges; edge++ ) {
  5950. /* mbn_xy: neighbor macroblock */
  5951. const int mbn_xy = edge > 0 ? mb_xy : mbm_xy;
  5952. const int mbn_type = s->current_picture.mb_type[mbn_xy];
  5953. int (*ref2frmn)[48+2] = edge > 0 ? ref2frm : ref2frmm;
  5954. int16_t bS[4];
  5955. int qp;
  5956. if( (edge&1) && IS_8x8DCT(mb_type) )
  5957. continue;
  5958. if( IS_INTRA(mb_type) ||
  5959. IS_INTRA(mbn_type) ) {
  5960. int value;
  5961. if (edge == 0) {
  5962. if ( (!IS_INTERLACED(mb_type) && !IS_INTERLACED(mbm_type))
  5963. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  5964. ) {
  5965. value = 4;
  5966. } else {
  5967. value = 3;
  5968. }
  5969. } else {
  5970. value = 3;
  5971. }
  5972. bS[0] = bS[1] = bS[2] = bS[3] = value;
  5973. } else {
  5974. int i, l;
  5975. int mv_done;
  5976. if( edge & mask_edge ) {
  5977. bS[0] = bS[1] = bS[2] = bS[3] = 0;
  5978. mv_done = 1;
  5979. }
  5980. else if( FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbn_type)) {
  5981. bS[0] = bS[1] = bS[2] = bS[3] = 1;
  5982. mv_done = 1;
  5983. }
  5984. else if( mask_par0 && (edge || (mbn_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  5985. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  5986. int bn_idx= b_idx - (dir ? 8:1);
  5987. int v = 0;
  5988. for( l = 0; !v && l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  5989. v |= ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[l][h->ref_cache[l][bn_idx]+2] ||
  5990. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  5991. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit;
  5992. }
  5993. if(h->slice_type_nos == FF_B_TYPE && v){
  5994. v=0;
  5995. for( l = 0; !v && l < 2; l++ ) {
  5996. int ln= 1-l;
  5997. v |= ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[ln][h->ref_cache[ln][bn_idx]+2] ||
  5998. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  5999. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit;
  6000. }
  6001. }
  6002. bS[0] = bS[1] = bS[2] = bS[3] = v;
  6003. mv_done = 1;
  6004. }
  6005. else
  6006. mv_done = 0;
  6007. for( i = 0; i < 4; i++ ) {
  6008. int x = dir == 0 ? edge : i;
  6009. int y = dir == 0 ? i : edge;
  6010. int b_idx= 8 + 4 + x + 8*y;
  6011. int bn_idx= b_idx - (dir ? 8:1);
  6012. if( h->non_zero_count_cache[b_idx] != 0 ||
  6013. h->non_zero_count_cache[bn_idx] != 0 ) {
  6014. bS[i] = 2;
  6015. }
  6016. else if(!mv_done)
  6017. {
  6018. bS[i] = 0;
  6019. for( l = 0; l < 1 + (h->slice_type_nos == FF_B_TYPE); l++ ) {
  6020. if( ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[l][h->ref_cache[l][bn_idx]+2] ||
  6021. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[l][bn_idx][0] ) >= 4 ||
  6022. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[l][bn_idx][1] ) >= mvy_limit ) {
  6023. bS[i] = 1;
  6024. break;
  6025. }
  6026. }
  6027. if(h->slice_type_nos == FF_B_TYPE && bS[i]){
  6028. bS[i] = 0;
  6029. for( l = 0; l < 2; l++ ) {
  6030. int ln= 1-l;
  6031. if( ref2frm[l][h->ref_cache[l][b_idx]+2] != ref2frmn[ln][h->ref_cache[ln][bn_idx]+2] ||
  6032. FFABS( h->mv_cache[l][b_idx][0] - h->mv_cache[ln][bn_idx][0] ) >= 4 ||
  6033. FFABS( h->mv_cache[l][b_idx][1] - h->mv_cache[ln][bn_idx][1] ) >= mvy_limit ) {
  6034. bS[i] = 1;
  6035. break;
  6036. }
  6037. }
  6038. }
  6039. }
  6040. }
  6041. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  6042. continue;
  6043. }
  6044. /* Filter edge */
  6045. // Do not use s->qscale as luma quantizer because it has not the same
  6046. // value in IPCM macroblocks.
  6047. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  6048. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp, s->current_picture.qscale_table[mbn_xy]);
  6049. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  6050. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  6051. if( dir == 0 ) {
  6052. filter_mb_edgev( h, &img_y[4*edge], linesize, bS, qp );
  6053. if( (edge&1) == 0 ) {
  6054. filter_mb_edgecv( h, &img_cb[2*edge], uvlinesize, bS,
  6055. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6056. filter_mb_edgecv( h, &img_cr[2*edge], uvlinesize, bS,
  6057. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6058. }
  6059. } else {
  6060. filter_mb_edgeh( h, &img_y[4*edge*linesize], linesize, bS, qp );
  6061. if( (edge&1) == 0 ) {
  6062. filter_mb_edgech( h, &img_cb[2*edge*uvlinesize], uvlinesize, bS,
  6063. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6064. filter_mb_edgech( h, &img_cr[2*edge*uvlinesize], uvlinesize, bS,
  6065. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1);
  6066. }
  6067. }
  6068. }
  6069. }
  6070. }
  6071. static int decode_slice(struct AVCodecContext *avctx, H264Context *h){
  6072. MpegEncContext * const s = &h->s;
  6073. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  6074. s->mb_skip_run= -1;
  6075. if( h->pps.cabac ) {
  6076. int i;
  6077. /* realign */
  6078. align_get_bits( &s->gb );
  6079. /* init cabac */
  6080. ff_init_cabac_states( &h->cabac);
  6081. ff_init_cabac_decoder( &h->cabac,
  6082. s->gb.buffer + get_bits_count(&s->gb)/8,
  6083. ( s->gb.size_in_bits - get_bits_count(&s->gb) + 7)/8);
  6084. /* calculate pre-state */
  6085. for( i= 0; i < 460; i++ ) {
  6086. int pre;
  6087. if( h->slice_type_nos == FF_I_TYPE )
  6088. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  6089. else
  6090. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  6091. if( pre <= 63 )
  6092. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  6093. else
  6094. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  6095. }
  6096. for(;;){
  6097. //START_TIMER
  6098. int ret = decode_mb_cabac(h);
  6099. int eos;
  6100. //STOP_TIMER("decode_mb_cabac")
  6101. if(ret>=0) hl_decode_mb(h);
  6102. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  6103. s->mb_y++;
  6104. if(ret>=0) ret = decode_mb_cabac(h);
  6105. if(ret>=0) hl_decode_mb(h);
  6106. s->mb_y--;
  6107. }
  6108. eos = get_cabac_terminate( &h->cabac );
  6109. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  6110. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  6111. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6112. return -1;
  6113. }
  6114. if( ++s->mb_x >= s->mb_width ) {
  6115. s->mb_x = 0;
  6116. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6117. ++s->mb_y;
  6118. if(FIELD_OR_MBAFF_PICTURE) {
  6119. ++s->mb_y;
  6120. }
  6121. }
  6122. if( eos || s->mb_y >= s->mb_height ) {
  6123. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6124. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6125. return 0;
  6126. }
  6127. }
  6128. } else {
  6129. for(;;){
  6130. int ret = decode_mb_cavlc(h);
  6131. if(ret>=0) hl_decode_mb(h);
  6132. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  6133. s->mb_y++;
  6134. ret = decode_mb_cavlc(h);
  6135. if(ret>=0) hl_decode_mb(h);
  6136. s->mb_y--;
  6137. }
  6138. if(ret<0){
  6139. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6140. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6141. return -1;
  6142. }
  6143. if(++s->mb_x >= s->mb_width){
  6144. s->mb_x=0;
  6145. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6146. ++s->mb_y;
  6147. if(FIELD_OR_MBAFF_PICTURE) {
  6148. ++s->mb_y;
  6149. }
  6150. if(s->mb_y >= s->mb_height){
  6151. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6152. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  6153. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6154. return 0;
  6155. }else{
  6156. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6157. return -1;
  6158. }
  6159. }
  6160. }
  6161. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  6162. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  6163. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  6164. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6165. return 0;
  6166. }else{
  6167. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6168. return -1;
  6169. }
  6170. }
  6171. }
  6172. }
  6173. #if 0
  6174. for(;s->mb_y < s->mb_height; s->mb_y++){
  6175. for(;s->mb_x < s->mb_width; s->mb_x++){
  6176. int ret= decode_mb(h);
  6177. hl_decode_mb(h);
  6178. if(ret<0){
  6179. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  6180. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6181. return -1;
  6182. }
  6183. if(++s->mb_x >= s->mb_width){
  6184. s->mb_x=0;
  6185. if(++s->mb_y >= s->mb_height){
  6186. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6187. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6188. return 0;
  6189. }else{
  6190. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6191. return -1;
  6192. }
  6193. }
  6194. }
  6195. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  6196. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  6197. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  6198. return 0;
  6199. }else{
  6200. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  6201. return -1;
  6202. }
  6203. }
  6204. }
  6205. s->mb_x=0;
  6206. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  6207. }
  6208. #endif
  6209. return -1; //not reached
  6210. }
  6211. static int decode_unregistered_user_data(H264Context *h, int size){
  6212. MpegEncContext * const s = &h->s;
  6213. uint8_t user_data[16+256];
  6214. int e, build, i;
  6215. if(size<16)
  6216. return -1;
  6217. for(i=0; i<sizeof(user_data)-1 && i<size; i++){
  6218. user_data[i]= get_bits(&s->gb, 8);
  6219. }
  6220. user_data[i]= 0;
  6221. e= sscanf(user_data+16, "x264 - core %d"/*%s - H.264/MPEG-4 AVC codec - Copyleft 2005 - http://www.videolan.org/x264.html*/, &build);
  6222. if(e==1 && build>=0)
  6223. h->x264_build= build;
  6224. if(s->avctx->debug & FF_DEBUG_BUGS)
  6225. av_log(s->avctx, AV_LOG_DEBUG, "user data:\"%s\"\n", user_data+16);
  6226. for(; i<size; i++)
  6227. skip_bits(&s->gb, 8);
  6228. return 0;
  6229. }
  6230. static int decode_sei(H264Context *h){
  6231. MpegEncContext * const s = &h->s;
  6232. while(get_bits_count(&s->gb) + 16 < s->gb.size_in_bits){
  6233. int size, type;
  6234. type=0;
  6235. do{
  6236. type+= show_bits(&s->gb, 8);
  6237. }while(get_bits(&s->gb, 8) == 255);
  6238. size=0;
  6239. do{
  6240. size+= show_bits(&s->gb, 8);
  6241. }while(get_bits(&s->gb, 8) == 255);
  6242. switch(type){
  6243. case 5:
  6244. if(decode_unregistered_user_data(h, size) < 0)
  6245. return -1;
  6246. break;
  6247. default:
  6248. skip_bits(&s->gb, 8*size);
  6249. }
  6250. //FIXME check bits here
  6251. align_get_bits(&s->gb);
  6252. }
  6253. return 0;
  6254. }
  6255. static inline void decode_hrd_parameters(H264Context *h, SPS *sps){
  6256. MpegEncContext * const s = &h->s;
  6257. int cpb_count, i;
  6258. cpb_count = get_ue_golomb(&s->gb) + 1;
  6259. get_bits(&s->gb, 4); /* bit_rate_scale */
  6260. get_bits(&s->gb, 4); /* cpb_size_scale */
  6261. for(i=0; i<cpb_count; i++){
  6262. get_ue_golomb(&s->gb); /* bit_rate_value_minus1 */
  6263. get_ue_golomb(&s->gb); /* cpb_size_value_minus1 */
  6264. get_bits1(&s->gb); /* cbr_flag */
  6265. }
  6266. get_bits(&s->gb, 5); /* initial_cpb_removal_delay_length_minus1 */
  6267. get_bits(&s->gb, 5); /* cpb_removal_delay_length_minus1 */
  6268. get_bits(&s->gb, 5); /* dpb_output_delay_length_minus1 */
  6269. get_bits(&s->gb, 5); /* time_offset_length */
  6270. }
  6271. static inline int decode_vui_parameters(H264Context *h, SPS *sps){
  6272. MpegEncContext * const s = &h->s;
  6273. int aspect_ratio_info_present_flag;
  6274. unsigned int aspect_ratio_idc;
  6275. int nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag;
  6276. aspect_ratio_info_present_flag= get_bits1(&s->gb);
  6277. if( aspect_ratio_info_present_flag ) {
  6278. aspect_ratio_idc= get_bits(&s->gb, 8);
  6279. if( aspect_ratio_idc == EXTENDED_SAR ) {
  6280. sps->sar.num= get_bits(&s->gb, 16);
  6281. sps->sar.den= get_bits(&s->gb, 16);
  6282. }else if(aspect_ratio_idc < sizeof(pixel_aspect)/sizeof(*pixel_aspect)){
  6283. sps->sar= pixel_aspect[aspect_ratio_idc];
  6284. }else{
  6285. av_log(h->s.avctx, AV_LOG_ERROR, "illegal aspect ratio\n");
  6286. return -1;
  6287. }
  6288. }else{
  6289. sps->sar.num=
  6290. sps->sar.den= 0;
  6291. }
  6292. // s->avctx->aspect_ratio= sar_width*s->width / (float)(s->height*sar_height);
  6293. if(get_bits1(&s->gb)){ /* overscan_info_present_flag */
  6294. get_bits1(&s->gb); /* overscan_appropriate_flag */
  6295. }
  6296. if(get_bits1(&s->gb)){ /* video_signal_type_present_flag */
  6297. get_bits(&s->gb, 3); /* video_format */
  6298. get_bits1(&s->gb); /* video_full_range_flag */
  6299. if(get_bits1(&s->gb)){ /* colour_description_present_flag */
  6300. get_bits(&s->gb, 8); /* colour_primaries */
  6301. get_bits(&s->gb, 8); /* transfer_characteristics */
  6302. get_bits(&s->gb, 8); /* matrix_coefficients */
  6303. }
  6304. }
  6305. if(get_bits1(&s->gb)){ /* chroma_location_info_present_flag */
  6306. get_ue_golomb(&s->gb); /* chroma_sample_location_type_top_field */
  6307. get_ue_golomb(&s->gb); /* chroma_sample_location_type_bottom_field */
  6308. }
  6309. sps->timing_info_present_flag = get_bits1(&s->gb);
  6310. if(sps->timing_info_present_flag){
  6311. sps->num_units_in_tick = get_bits_long(&s->gb, 32);
  6312. sps->time_scale = get_bits_long(&s->gb, 32);
  6313. sps->fixed_frame_rate_flag = get_bits1(&s->gb);
  6314. }
  6315. nal_hrd_parameters_present_flag = get_bits1(&s->gb);
  6316. if(nal_hrd_parameters_present_flag)
  6317. decode_hrd_parameters(h, sps);
  6318. vcl_hrd_parameters_present_flag = get_bits1(&s->gb);
  6319. if(vcl_hrd_parameters_present_flag)
  6320. decode_hrd_parameters(h, sps);
  6321. if(nal_hrd_parameters_present_flag || vcl_hrd_parameters_present_flag)
  6322. get_bits1(&s->gb); /* low_delay_hrd_flag */
  6323. get_bits1(&s->gb); /* pic_struct_present_flag */
  6324. sps->bitstream_restriction_flag = get_bits1(&s->gb);
  6325. if(sps->bitstream_restriction_flag){
  6326. unsigned int num_reorder_frames;
  6327. get_bits1(&s->gb); /* motion_vectors_over_pic_boundaries_flag */
  6328. get_ue_golomb(&s->gb); /* max_bytes_per_pic_denom */
  6329. get_ue_golomb(&s->gb); /* max_bits_per_mb_denom */
  6330. get_ue_golomb(&s->gb); /* log2_max_mv_length_horizontal */
  6331. get_ue_golomb(&s->gb); /* log2_max_mv_length_vertical */
  6332. num_reorder_frames= get_ue_golomb(&s->gb);
  6333. get_ue_golomb(&s->gb); /*max_dec_frame_buffering*/
  6334. if(num_reorder_frames > 16 /*max_dec_frame_buffering || max_dec_frame_buffering > 16*/){
  6335. av_log(h->s.avctx, AV_LOG_ERROR, "illegal num_reorder_frames %d\n", num_reorder_frames);
  6336. return -1;
  6337. }
  6338. sps->num_reorder_frames= num_reorder_frames;
  6339. }
  6340. return 0;
  6341. }
  6342. static void decode_scaling_list(H264Context *h, uint8_t *factors, int size,
  6343. const uint8_t *jvt_list, const uint8_t *fallback_list){
  6344. MpegEncContext * const s = &h->s;
  6345. int i, last = 8, next = 8;
  6346. const uint8_t *scan = size == 16 ? zigzag_scan : zigzag_scan8x8;
  6347. if(!get_bits1(&s->gb)) /* matrix not written, we use the predicted one */
  6348. memcpy(factors, fallback_list, size*sizeof(uint8_t));
  6349. else
  6350. for(i=0;i<size;i++){
  6351. if(next)
  6352. next = (last + get_se_golomb(&s->gb)) & 0xff;
  6353. if(!i && !next){ /* matrix not written, we use the preset one */
  6354. memcpy(factors, jvt_list, size*sizeof(uint8_t));
  6355. break;
  6356. }
  6357. last = factors[scan[i]] = next ? next : last;
  6358. }
  6359. }
  6360. static void decode_scaling_matrices(H264Context *h, SPS *sps, PPS *pps, int is_sps,
  6361. uint8_t (*scaling_matrix4)[16], uint8_t (*scaling_matrix8)[64]){
  6362. MpegEncContext * const s = &h->s;
  6363. int fallback_sps = !is_sps && sps->scaling_matrix_present;
  6364. const uint8_t *fallback[4] = {
  6365. fallback_sps ? sps->scaling_matrix4[0] : default_scaling4[0],
  6366. fallback_sps ? sps->scaling_matrix4[3] : default_scaling4[1],
  6367. fallback_sps ? sps->scaling_matrix8[0] : default_scaling8[0],
  6368. fallback_sps ? sps->scaling_matrix8[1] : default_scaling8[1]
  6369. };
  6370. if(get_bits1(&s->gb)){
  6371. sps->scaling_matrix_present |= is_sps;
  6372. decode_scaling_list(h,scaling_matrix4[0],16,default_scaling4[0],fallback[0]); // Intra, Y
  6373. decode_scaling_list(h,scaling_matrix4[1],16,default_scaling4[0],scaling_matrix4[0]); // Intra, Cr
  6374. decode_scaling_list(h,scaling_matrix4[2],16,default_scaling4[0],scaling_matrix4[1]); // Intra, Cb
  6375. decode_scaling_list(h,scaling_matrix4[3],16,default_scaling4[1],fallback[1]); // Inter, Y
  6376. decode_scaling_list(h,scaling_matrix4[4],16,default_scaling4[1],scaling_matrix4[3]); // Inter, Cr
  6377. decode_scaling_list(h,scaling_matrix4[5],16,default_scaling4[1],scaling_matrix4[4]); // Inter, Cb
  6378. if(is_sps || pps->transform_8x8_mode){
  6379. decode_scaling_list(h,scaling_matrix8[0],64,default_scaling8[0],fallback[2]); // Intra, Y
  6380. decode_scaling_list(h,scaling_matrix8[1],64,default_scaling8[1],fallback[3]); // Inter, Y
  6381. }
  6382. } else if(fallback_sps) {
  6383. memcpy(scaling_matrix4, sps->scaling_matrix4, 6*16*sizeof(uint8_t));
  6384. memcpy(scaling_matrix8, sps->scaling_matrix8, 2*64*sizeof(uint8_t));
  6385. }
  6386. }
  6387. /**
  6388. * Returns and optionally allocates SPS / PPS structures in the supplied array 'vec'
  6389. */
  6390. static void *
  6391. alloc_parameter_set(H264Context *h, void **vec, const unsigned int id, const unsigned int max,
  6392. const size_t size, const char *name)
  6393. {
  6394. if(id>=max) {
  6395. av_log(h->s.avctx, AV_LOG_ERROR, "%s_id (%d) out of range\n", name, id);
  6396. return NULL;
  6397. }
  6398. if(!vec[id]) {
  6399. vec[id] = av_mallocz(size);
  6400. if(vec[id] == NULL)
  6401. av_log(h->s.avctx, AV_LOG_ERROR, "cannot allocate memory for %s\n", name);
  6402. }
  6403. return vec[id];
  6404. }
  6405. static inline int decode_seq_parameter_set(H264Context *h){
  6406. MpegEncContext * const s = &h->s;
  6407. int profile_idc, level_idc;
  6408. unsigned int sps_id, tmp, mb_width, mb_height;
  6409. int i;
  6410. SPS *sps;
  6411. profile_idc= get_bits(&s->gb, 8);
  6412. get_bits1(&s->gb); //constraint_set0_flag
  6413. get_bits1(&s->gb); //constraint_set1_flag
  6414. get_bits1(&s->gb); //constraint_set2_flag
  6415. get_bits1(&s->gb); //constraint_set3_flag
  6416. get_bits(&s->gb, 4); // reserved
  6417. level_idc= get_bits(&s->gb, 8);
  6418. sps_id= get_ue_golomb(&s->gb);
  6419. sps = alloc_parameter_set(h, (void **)h->sps_buffers, sps_id, MAX_SPS_COUNT, sizeof(SPS), "sps");
  6420. if(sps == NULL)
  6421. return -1;
  6422. sps->profile_idc= profile_idc;
  6423. sps->level_idc= level_idc;
  6424. if(sps->profile_idc >= 100){ //high profile
  6425. if(get_ue_golomb(&s->gb) == 3) //chroma_format_idc
  6426. get_bits1(&s->gb); //residual_color_transform_flag
  6427. get_ue_golomb(&s->gb); //bit_depth_luma_minus8
  6428. get_ue_golomb(&s->gb); //bit_depth_chroma_minus8
  6429. sps->transform_bypass = get_bits1(&s->gb);
  6430. decode_scaling_matrices(h, sps, NULL, 1, sps->scaling_matrix4, sps->scaling_matrix8);
  6431. }else
  6432. sps->scaling_matrix_present = 0;
  6433. sps->log2_max_frame_num= get_ue_golomb(&s->gb) + 4;
  6434. sps->poc_type= get_ue_golomb(&s->gb);
  6435. if(sps->poc_type == 0){ //FIXME #define
  6436. sps->log2_max_poc_lsb= get_ue_golomb(&s->gb) + 4;
  6437. } else if(sps->poc_type == 1){//FIXME #define
  6438. sps->delta_pic_order_always_zero_flag= get_bits1(&s->gb);
  6439. sps->offset_for_non_ref_pic= get_se_golomb(&s->gb);
  6440. sps->offset_for_top_to_bottom_field= get_se_golomb(&s->gb);
  6441. tmp= get_ue_golomb(&s->gb);
  6442. if(tmp >= sizeof(sps->offset_for_ref_frame) / sizeof(sps->offset_for_ref_frame[0])){
  6443. av_log(h->s.avctx, AV_LOG_ERROR, "poc_cycle_length overflow %u\n", tmp);
  6444. return -1;
  6445. }
  6446. sps->poc_cycle_length= tmp;
  6447. for(i=0; i<sps->poc_cycle_length; i++)
  6448. sps->offset_for_ref_frame[i]= get_se_golomb(&s->gb);
  6449. }else if(sps->poc_type != 2){
  6450. av_log(h->s.avctx, AV_LOG_ERROR, "illegal POC type %d\n", sps->poc_type);
  6451. return -1;
  6452. }
  6453. tmp= get_ue_golomb(&s->gb);
  6454. if(tmp > MAX_PICTURE_COUNT-2 || tmp >= 32){
  6455. av_log(h->s.avctx, AV_LOG_ERROR, "too many reference frames\n");
  6456. return -1;
  6457. }
  6458. sps->ref_frame_count= tmp;
  6459. sps->gaps_in_frame_num_allowed_flag= get_bits1(&s->gb);
  6460. mb_width= get_ue_golomb(&s->gb) + 1;
  6461. mb_height= get_ue_golomb(&s->gb) + 1;
  6462. if(mb_width >= INT_MAX/16 || mb_height >= INT_MAX/16 ||
  6463. avcodec_check_dimensions(NULL, 16*mb_width, 16*mb_height)){
  6464. av_log(h->s.avctx, AV_LOG_ERROR, "mb_width/height overflow\n");
  6465. return -1;
  6466. }
  6467. sps->mb_width = mb_width;
  6468. sps->mb_height= mb_height;
  6469. sps->frame_mbs_only_flag= get_bits1(&s->gb);
  6470. if(!sps->frame_mbs_only_flag)
  6471. sps->mb_aff= get_bits1(&s->gb);
  6472. else
  6473. sps->mb_aff= 0;
  6474. sps->direct_8x8_inference_flag= get_bits1(&s->gb);
  6475. #ifndef ALLOW_INTERLACE
  6476. if(sps->mb_aff)
  6477. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF support not included; enable it at compile-time.\n");
  6478. #endif
  6479. if(!sps->direct_8x8_inference_flag && sps->mb_aff)
  6480. av_log(h->s.avctx, AV_LOG_ERROR, "MBAFF + !direct_8x8_inference is not implemented\n");
  6481. sps->crop= get_bits1(&s->gb);
  6482. if(sps->crop){
  6483. sps->crop_left = get_ue_golomb(&s->gb);
  6484. sps->crop_right = get_ue_golomb(&s->gb);
  6485. sps->crop_top = get_ue_golomb(&s->gb);
  6486. sps->crop_bottom= get_ue_golomb(&s->gb);
  6487. if(sps->crop_left || sps->crop_top){
  6488. av_log(h->s.avctx, AV_LOG_ERROR, "insane cropping not completely supported, this could look slightly wrong ...\n");
  6489. }
  6490. if(sps->crop_right >= 8 || sps->crop_bottom >= (8>> !h->sps.frame_mbs_only_flag)){
  6491. av_log(h->s.avctx, AV_LOG_ERROR, "brainfart cropping not supported, this could look slightly wrong ...\n");
  6492. }
  6493. }else{
  6494. sps->crop_left =
  6495. sps->crop_right =
  6496. sps->crop_top =
  6497. sps->crop_bottom= 0;
  6498. }
  6499. sps->vui_parameters_present_flag= get_bits1(&s->gb);
  6500. if( sps->vui_parameters_present_flag )
  6501. decode_vui_parameters(h, sps);
  6502. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6503. av_log(h->s.avctx, AV_LOG_DEBUG, "sps:%u profile:%d/%d poc:%d ref:%d %dx%d %s %s crop:%d/%d/%d/%d %s\n",
  6504. sps_id, sps->profile_idc, sps->level_idc,
  6505. sps->poc_type,
  6506. sps->ref_frame_count,
  6507. sps->mb_width, sps->mb_height,
  6508. sps->frame_mbs_only_flag ? "FRM" : (sps->mb_aff ? "MB-AFF" : "PIC-AFF"),
  6509. sps->direct_8x8_inference_flag ? "8B8" : "",
  6510. sps->crop_left, sps->crop_right,
  6511. sps->crop_top, sps->crop_bottom,
  6512. sps->vui_parameters_present_flag ? "VUI" : ""
  6513. );
  6514. }
  6515. return 0;
  6516. }
  6517. static void
  6518. build_qp_table(PPS *pps, int t, int index)
  6519. {
  6520. int i;
  6521. for(i = 0; i < 52; i++)
  6522. pps->chroma_qp_table[t][i] = chroma_qp[av_clip(i + index, 0, 51)];
  6523. }
  6524. static inline int decode_picture_parameter_set(H264Context *h, int bit_length){
  6525. MpegEncContext * const s = &h->s;
  6526. unsigned int tmp, pps_id= get_ue_golomb(&s->gb);
  6527. PPS *pps;
  6528. pps = alloc_parameter_set(h, (void **)h->pps_buffers, pps_id, MAX_PPS_COUNT, sizeof(PPS), "pps");
  6529. if(pps == NULL)
  6530. return -1;
  6531. tmp= get_ue_golomb(&s->gb);
  6532. if(tmp>=MAX_SPS_COUNT || h->sps_buffers[tmp] == NULL){
  6533. av_log(h->s.avctx, AV_LOG_ERROR, "sps_id out of range\n");
  6534. return -1;
  6535. }
  6536. pps->sps_id= tmp;
  6537. pps->cabac= get_bits1(&s->gb);
  6538. pps->pic_order_present= get_bits1(&s->gb);
  6539. pps->slice_group_count= get_ue_golomb(&s->gb) + 1;
  6540. if(pps->slice_group_count > 1 ){
  6541. pps->mb_slice_group_map_type= get_ue_golomb(&s->gb);
  6542. av_log(h->s.avctx, AV_LOG_ERROR, "FMO not supported\n");
  6543. switch(pps->mb_slice_group_map_type){
  6544. case 0:
  6545. #if 0
  6546. | for( i = 0; i <= num_slice_groups_minus1; i++ ) | | |
  6547. | run_length[ i ] |1 |ue(v) |
  6548. #endif
  6549. break;
  6550. case 2:
  6551. #if 0
  6552. | for( i = 0; i < num_slice_groups_minus1; i++ ) | | |
  6553. |{ | | |
  6554. | top_left_mb[ i ] |1 |ue(v) |
  6555. | bottom_right_mb[ i ] |1 |ue(v) |
  6556. | } | | |
  6557. #endif
  6558. break;
  6559. case 3:
  6560. case 4:
  6561. case 5:
  6562. #if 0
  6563. | slice_group_change_direction_flag |1 |u(1) |
  6564. | slice_group_change_rate_minus1 |1 |ue(v) |
  6565. #endif
  6566. break;
  6567. case 6:
  6568. #if 0
  6569. | slice_group_id_cnt_minus1 |1 |ue(v) |
  6570. | for( i = 0; i <= slice_group_id_cnt_minus1; i++ | | |
  6571. |) | | |
  6572. | slice_group_id[ i ] |1 |u(v) |
  6573. #endif
  6574. break;
  6575. }
  6576. }
  6577. pps->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  6578. pps->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  6579. if(pps->ref_count[0]-1 > 32-1 || pps->ref_count[1]-1 > 32-1){
  6580. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow (pps)\n");
  6581. pps->ref_count[0]= pps->ref_count[1]= 1;
  6582. return -1;
  6583. }
  6584. pps->weighted_pred= get_bits1(&s->gb);
  6585. pps->weighted_bipred_idc= get_bits(&s->gb, 2);
  6586. pps->init_qp= get_se_golomb(&s->gb) + 26;
  6587. pps->init_qs= get_se_golomb(&s->gb) + 26;
  6588. pps->chroma_qp_index_offset[0]= get_se_golomb(&s->gb);
  6589. pps->deblocking_filter_parameters_present= get_bits1(&s->gb);
  6590. pps->constrained_intra_pred= get_bits1(&s->gb);
  6591. pps->redundant_pic_cnt_present = get_bits1(&s->gb);
  6592. pps->transform_8x8_mode= 0;
  6593. h->dequant_coeff_pps= -1; //contents of sps/pps can change even if id doesn't, so reinit
  6594. memset(pps->scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  6595. memset(pps->scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  6596. if(get_bits_count(&s->gb) < bit_length){
  6597. pps->transform_8x8_mode= get_bits1(&s->gb);
  6598. decode_scaling_matrices(h, h->sps_buffers[pps->sps_id], pps, 0, pps->scaling_matrix4, pps->scaling_matrix8);
  6599. pps->chroma_qp_index_offset[1]= get_se_golomb(&s->gb); //second_chroma_qp_index_offset
  6600. } else {
  6601. pps->chroma_qp_index_offset[1]= pps->chroma_qp_index_offset[0];
  6602. }
  6603. build_qp_table(pps, 0, pps->chroma_qp_index_offset[0]);
  6604. build_qp_table(pps, 1, pps->chroma_qp_index_offset[1]);
  6605. if(pps->chroma_qp_index_offset[0] != pps->chroma_qp_index_offset[1])
  6606. h->pps.chroma_qp_diff= 1;
  6607. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  6608. av_log(h->s.avctx, AV_LOG_DEBUG, "pps:%u sps:%u %s slice_groups:%d ref:%d/%d %s qp:%d/%d/%d/%d %s %s %s %s\n",
  6609. pps_id, pps->sps_id,
  6610. pps->cabac ? "CABAC" : "CAVLC",
  6611. pps->slice_group_count,
  6612. pps->ref_count[0], pps->ref_count[1],
  6613. pps->weighted_pred ? "weighted" : "",
  6614. pps->init_qp, pps->init_qs, pps->chroma_qp_index_offset[0], pps->chroma_qp_index_offset[1],
  6615. pps->deblocking_filter_parameters_present ? "LPAR" : "",
  6616. pps->constrained_intra_pred ? "CONSTR" : "",
  6617. pps->redundant_pic_cnt_present ? "REDU" : "",
  6618. pps->transform_8x8_mode ? "8x8DCT" : ""
  6619. );
  6620. }
  6621. return 0;
  6622. }
  6623. /**
  6624. * Call decode_slice() for each context.
  6625. *
  6626. * @param h h264 master context
  6627. * @param context_count number of contexts to execute
  6628. */
  6629. static void execute_decode_slices(H264Context *h, int context_count){
  6630. MpegEncContext * const s = &h->s;
  6631. AVCodecContext * const avctx= s->avctx;
  6632. H264Context *hx;
  6633. int i;
  6634. if(context_count == 1) {
  6635. decode_slice(avctx, h);
  6636. } else {
  6637. for(i = 1; i < context_count; i++) {
  6638. hx = h->thread_context[i];
  6639. hx->s.error_resilience = avctx->error_resilience;
  6640. hx->s.error_count = 0;
  6641. }
  6642. avctx->execute(avctx, (void *)decode_slice,
  6643. (void **)h->thread_context, NULL, context_count);
  6644. /* pull back stuff from slices to master context */
  6645. hx = h->thread_context[context_count - 1];
  6646. s->mb_x = hx->s.mb_x;
  6647. s->mb_y = hx->s.mb_y;
  6648. s->dropable = hx->s.dropable;
  6649. s->picture_structure = hx->s.picture_structure;
  6650. for(i = 1; i < context_count; i++)
  6651. h->s.error_count += h->thread_context[i]->s.error_count;
  6652. }
  6653. }
  6654. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  6655. MpegEncContext * const s = &h->s;
  6656. AVCodecContext * const avctx= s->avctx;
  6657. int buf_index=0;
  6658. H264Context *hx; ///< thread context
  6659. int context_count = 0;
  6660. h->max_contexts = avctx->thread_count;
  6661. #if 0
  6662. int i;
  6663. for(i=0; i<50; i++){
  6664. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  6665. }
  6666. #endif
  6667. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  6668. h->current_slice = 0;
  6669. if (!s->first_field)
  6670. s->current_picture_ptr= NULL;
  6671. }
  6672. for(;;){
  6673. int consumed;
  6674. int dst_length;
  6675. int bit_length;
  6676. const uint8_t *ptr;
  6677. int i, nalsize = 0;
  6678. int err;
  6679. if(h->is_avc) {
  6680. if(buf_index >= buf_size) break;
  6681. nalsize = 0;
  6682. for(i = 0; i < h->nal_length_size; i++)
  6683. nalsize = (nalsize << 8) | buf[buf_index++];
  6684. if(nalsize <= 1 || (nalsize+buf_index > buf_size)){
  6685. if(nalsize == 1){
  6686. buf_index++;
  6687. continue;
  6688. }else{
  6689. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  6690. break;
  6691. }
  6692. }
  6693. } else {
  6694. // start code prefix search
  6695. for(; buf_index + 3 < buf_size; buf_index++){
  6696. // This should always succeed in the first iteration.
  6697. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  6698. break;
  6699. }
  6700. if(buf_index+3 >= buf_size) break;
  6701. buf_index+=3;
  6702. }
  6703. hx = h->thread_context[context_count];
  6704. ptr= decode_nal(hx, buf + buf_index, &dst_length, &consumed, h->is_avc ? nalsize : buf_size - buf_index);
  6705. if (ptr==NULL || dst_length < 0){
  6706. return -1;
  6707. }
  6708. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  6709. dst_length--;
  6710. bit_length= !dst_length ? 0 : (8*dst_length - decode_rbsp_trailing(h, ptr + dst_length - 1));
  6711. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  6712. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  6713. }
  6714. if (h->is_avc && (nalsize != consumed)){
  6715. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  6716. consumed= nalsize;
  6717. }
  6718. buf_index += consumed;
  6719. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  6720. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  6721. continue;
  6722. again:
  6723. err = 0;
  6724. switch(hx->nal_unit_type){
  6725. case NAL_IDR_SLICE:
  6726. if (h->nal_unit_type != NAL_IDR_SLICE) {
  6727. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  6728. return -1;
  6729. }
  6730. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  6731. case NAL_SLICE:
  6732. init_get_bits(&hx->s.gb, ptr, bit_length);
  6733. hx->intra_gb_ptr=
  6734. hx->inter_gb_ptr= &hx->s.gb;
  6735. hx->s.data_partitioning = 0;
  6736. if((err = decode_slice_header(hx, h)))
  6737. break;
  6738. s->current_picture_ptr->key_frame|= (hx->nal_unit_type == NAL_IDR_SLICE);
  6739. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  6740. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6741. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6742. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6743. && avctx->skip_frame < AVDISCARD_ALL)
  6744. context_count++;
  6745. break;
  6746. case NAL_DPA:
  6747. init_get_bits(&hx->s.gb, ptr, bit_length);
  6748. hx->intra_gb_ptr=
  6749. hx->inter_gb_ptr= NULL;
  6750. hx->s.data_partitioning = 1;
  6751. err = decode_slice_header(hx, h);
  6752. break;
  6753. case NAL_DPB:
  6754. init_get_bits(&hx->intra_gb, ptr, bit_length);
  6755. hx->intra_gb_ptr= &hx->intra_gb;
  6756. break;
  6757. case NAL_DPC:
  6758. init_get_bits(&hx->inter_gb, ptr, bit_length);
  6759. hx->inter_gb_ptr= &hx->inter_gb;
  6760. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  6761. && s->context_initialized
  6762. && s->hurry_up < 5
  6763. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  6764. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  6765. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  6766. && avctx->skip_frame < AVDISCARD_ALL)
  6767. context_count++;
  6768. break;
  6769. case NAL_SEI:
  6770. init_get_bits(&s->gb, ptr, bit_length);
  6771. decode_sei(h);
  6772. break;
  6773. case NAL_SPS:
  6774. init_get_bits(&s->gb, ptr, bit_length);
  6775. decode_seq_parameter_set(h);
  6776. if(s->flags& CODEC_FLAG_LOW_DELAY)
  6777. s->low_delay=1;
  6778. if(avctx->has_b_frames < 2)
  6779. avctx->has_b_frames= !s->low_delay;
  6780. break;
  6781. case NAL_PPS:
  6782. init_get_bits(&s->gb, ptr, bit_length);
  6783. decode_picture_parameter_set(h, bit_length);
  6784. break;
  6785. case NAL_AUD:
  6786. case NAL_END_SEQUENCE:
  6787. case NAL_END_STREAM:
  6788. case NAL_FILLER_DATA:
  6789. case NAL_SPS_EXT:
  6790. case NAL_AUXILIARY_SLICE:
  6791. break;
  6792. default:
  6793. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", h->nal_unit_type, bit_length);
  6794. }
  6795. if(context_count == h->max_contexts) {
  6796. execute_decode_slices(h, context_count);
  6797. context_count = 0;
  6798. }
  6799. if (err < 0)
  6800. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  6801. else if(err == 1) {
  6802. /* Slice could not be decoded in parallel mode, copy down
  6803. * NAL unit stuff to context 0 and restart. Note that
  6804. * rbsp_buffer is not transferred, but since we no longer
  6805. * run in parallel mode this should not be an issue. */
  6806. h->nal_unit_type = hx->nal_unit_type;
  6807. h->nal_ref_idc = hx->nal_ref_idc;
  6808. hx = h;
  6809. goto again;
  6810. }
  6811. }
  6812. if(context_count)
  6813. execute_decode_slices(h, context_count);
  6814. return buf_index;
  6815. }
  6816. /**
  6817. * returns the number of bytes consumed for building the current frame
  6818. */
  6819. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  6820. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  6821. if(pos+10>buf_size) pos=buf_size; // oops ;)
  6822. return pos;
  6823. }
  6824. static int decode_frame(AVCodecContext *avctx,
  6825. void *data, int *data_size,
  6826. const uint8_t *buf, int buf_size)
  6827. {
  6828. H264Context *h = avctx->priv_data;
  6829. MpegEncContext *s = &h->s;
  6830. AVFrame *pict = data;
  6831. int buf_index;
  6832. s->flags= avctx->flags;
  6833. s->flags2= avctx->flags2;
  6834. /* end of stream, output what is still in the buffers */
  6835. if (buf_size == 0) {
  6836. Picture *out;
  6837. int i, out_idx;
  6838. //FIXME factorize this with the output code below
  6839. out = h->delayed_pic[0];
  6840. out_idx = 0;
  6841. for(i=1; h->delayed_pic[i] && h->delayed_pic[i]->poc; i++)
  6842. if(h->delayed_pic[i]->poc < out->poc){
  6843. out = h->delayed_pic[i];
  6844. out_idx = i;
  6845. }
  6846. for(i=out_idx; h->delayed_pic[i]; i++)
  6847. h->delayed_pic[i] = h->delayed_pic[i+1];
  6848. if(out){
  6849. *data_size = sizeof(AVFrame);
  6850. *pict= *(AVFrame*)out;
  6851. }
  6852. return 0;
  6853. }
  6854. if(h->is_avc && !h->got_avcC) {
  6855. int i, cnt, nalsize;
  6856. unsigned char *p = avctx->extradata;
  6857. if(avctx->extradata_size < 7) {
  6858. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  6859. return -1;
  6860. }
  6861. if(*p != 1) {
  6862. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  6863. return -1;
  6864. }
  6865. /* sps and pps in the avcC always have length coded with 2 bytes,
  6866. so put a fake nal_length_size = 2 while parsing them */
  6867. h->nal_length_size = 2;
  6868. // Decode sps from avcC
  6869. cnt = *(p+5) & 0x1f; // Number of sps
  6870. p += 6;
  6871. for (i = 0; i < cnt; i++) {
  6872. nalsize = AV_RB16(p) + 2;
  6873. if(decode_nal_units(h, p, nalsize) < 0) {
  6874. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  6875. return -1;
  6876. }
  6877. p += nalsize;
  6878. }
  6879. // Decode pps from avcC
  6880. cnt = *(p++); // Number of pps
  6881. for (i = 0; i < cnt; i++) {
  6882. nalsize = AV_RB16(p) + 2;
  6883. if(decode_nal_units(h, p, nalsize) != nalsize) {
  6884. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  6885. return -1;
  6886. }
  6887. p += nalsize;
  6888. }
  6889. // Now store right nal length size, that will be use to parse all other nals
  6890. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  6891. // Do not reparse avcC
  6892. h->got_avcC = 1;
  6893. }
  6894. if(avctx->frame_number==0 && !h->is_avc && s->avctx->extradata_size){
  6895. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  6896. return -1;
  6897. }
  6898. buf_index=decode_nal_units(h, buf, buf_size);
  6899. if(buf_index < 0)
  6900. return -1;
  6901. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  6902. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  6903. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  6904. return -1;
  6905. }
  6906. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  6907. Picture *out = s->current_picture_ptr;
  6908. Picture *cur = s->current_picture_ptr;
  6909. int i, pics, cross_idr, out_of_order, out_idx;
  6910. s->mb_y= 0;
  6911. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  6912. s->current_picture_ptr->pict_type= s->pict_type;
  6913. if(!s->dropable) {
  6914. execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  6915. h->prev_poc_msb= h->poc_msb;
  6916. h->prev_poc_lsb= h->poc_lsb;
  6917. }
  6918. h->prev_frame_num_offset= h->frame_num_offset;
  6919. h->prev_frame_num= h->frame_num;
  6920. /*
  6921. * FIXME: Error handling code does not seem to support interlaced
  6922. * when slices span multiple rows
  6923. * The ff_er_add_slice calls don't work right for bottom
  6924. * fields; they cause massive erroneous error concealing
  6925. * Error marking covers both fields (top and bottom).
  6926. * This causes a mismatched s->error_count
  6927. * and a bad error table. Further, the error count goes to
  6928. * INT_MAX when called for bottom field, because mb_y is
  6929. * past end by one (callers fault) and resync_mb_y != 0
  6930. * causes problems for the first MB line, too.
  6931. */
  6932. if (!FIELD_PICTURE)
  6933. ff_er_frame_end(s);
  6934. MPV_frame_end(s);
  6935. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  6936. /* Wait for second field. */
  6937. *data_size = 0;
  6938. } else {
  6939. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  6940. /* Derive top_field_first from field pocs. */
  6941. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  6942. //FIXME do something with unavailable reference frames
  6943. /* Sort B-frames into display order */
  6944. if(h->sps.bitstream_restriction_flag
  6945. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  6946. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  6947. s->low_delay = 0;
  6948. }
  6949. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  6950. && !h->sps.bitstream_restriction_flag){
  6951. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  6952. s->low_delay= 0;
  6953. }
  6954. pics = 0;
  6955. while(h->delayed_pic[pics]) pics++;
  6956. assert(pics <= MAX_DELAYED_PIC_COUNT);
  6957. h->delayed_pic[pics++] = cur;
  6958. if(cur->reference == 0)
  6959. cur->reference = DELAYED_PIC_REF;
  6960. out = h->delayed_pic[0];
  6961. out_idx = 0;
  6962. for(i=1; h->delayed_pic[i] && h->delayed_pic[i]->poc; i++)
  6963. if(h->delayed_pic[i]->poc < out->poc){
  6964. out = h->delayed_pic[i];
  6965. out_idx = i;
  6966. }
  6967. cross_idr = !h->delayed_pic[0]->poc || !!h->delayed_pic[i];
  6968. out_of_order = !cross_idr && out->poc < h->outputed_poc;
  6969. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  6970. { }
  6971. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  6972. || (s->low_delay &&
  6973. ((!cross_idr && out->poc > h->outputed_poc + 2)
  6974. || cur->pict_type == FF_B_TYPE)))
  6975. {
  6976. s->low_delay = 0;
  6977. s->avctx->has_b_frames++;
  6978. }
  6979. if(out_of_order || pics > s->avctx->has_b_frames){
  6980. out->reference &= ~DELAYED_PIC_REF;
  6981. for(i=out_idx; h->delayed_pic[i]; i++)
  6982. h->delayed_pic[i] = h->delayed_pic[i+1];
  6983. }
  6984. if(!out_of_order && pics > s->avctx->has_b_frames){
  6985. *data_size = sizeof(AVFrame);
  6986. h->outputed_poc = out->poc;
  6987. *pict= *(AVFrame*)out;
  6988. }else{
  6989. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  6990. }
  6991. }
  6992. }
  6993. assert(pict->data[0] || !*data_size);
  6994. ff_print_debug_info(s, pict);
  6995. //printf("out %d\n", (int)pict->data[0]);
  6996. #if 0 //?
  6997. /* Return the Picture timestamp as the frame number */
  6998. /* we subtract 1 because it is added on utils.c */
  6999. avctx->frame_number = s->picture_number - 1;
  7000. #endif
  7001. return get_consumed_bytes(s, buf_index, buf_size);
  7002. }
  7003. #if 0
  7004. static inline void fill_mb_avail(H264Context *h){
  7005. MpegEncContext * const s = &h->s;
  7006. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  7007. if(s->mb_y){
  7008. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  7009. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  7010. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  7011. }else{
  7012. h->mb_avail[0]=
  7013. h->mb_avail[1]=
  7014. h->mb_avail[2]= 0;
  7015. }
  7016. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  7017. h->mb_avail[4]= 1; //FIXME move out
  7018. h->mb_avail[5]= 0; //FIXME move out
  7019. }
  7020. #endif
  7021. #ifdef TEST
  7022. #undef printf
  7023. #undef random
  7024. #define COUNT 8000
  7025. #define SIZE (COUNT*40)
  7026. int main(void){
  7027. int i;
  7028. uint8_t temp[SIZE];
  7029. PutBitContext pb;
  7030. GetBitContext gb;
  7031. // int int_temp[10000];
  7032. DSPContext dsp;
  7033. AVCodecContext avctx;
  7034. dsputil_init(&dsp, &avctx);
  7035. init_put_bits(&pb, temp, SIZE);
  7036. printf("testing unsigned exp golomb\n");
  7037. for(i=0; i<COUNT; i++){
  7038. START_TIMER
  7039. set_ue_golomb(&pb, i);
  7040. STOP_TIMER("set_ue_golomb");
  7041. }
  7042. flush_put_bits(&pb);
  7043. init_get_bits(&gb, temp, 8*SIZE);
  7044. for(i=0; i<COUNT; i++){
  7045. int j, s;
  7046. s= show_bits(&gb, 24);
  7047. START_TIMER
  7048. j= get_ue_golomb(&gb);
  7049. if(j != i){
  7050. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7051. // return -1;
  7052. }
  7053. STOP_TIMER("get_ue_golomb");
  7054. }
  7055. init_put_bits(&pb, temp, SIZE);
  7056. printf("testing signed exp golomb\n");
  7057. for(i=0; i<COUNT; i++){
  7058. START_TIMER
  7059. set_se_golomb(&pb, i - COUNT/2);
  7060. STOP_TIMER("set_se_golomb");
  7061. }
  7062. flush_put_bits(&pb);
  7063. init_get_bits(&gb, temp, 8*SIZE);
  7064. for(i=0; i<COUNT; i++){
  7065. int j, s;
  7066. s= show_bits(&gb, 24);
  7067. START_TIMER
  7068. j= get_se_golomb(&gb);
  7069. if(j != i - COUNT/2){
  7070. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  7071. // return -1;
  7072. }
  7073. STOP_TIMER("get_se_golomb");
  7074. }
  7075. #if 0
  7076. printf("testing 4x4 (I)DCT\n");
  7077. DCTELEM block[16];
  7078. uint8_t src[16], ref[16];
  7079. uint64_t error= 0, max_error=0;
  7080. for(i=0; i<COUNT; i++){
  7081. int j;
  7082. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  7083. for(j=0; j<16; j++){
  7084. ref[j]= random()%255;
  7085. src[j]= random()%255;
  7086. }
  7087. h264_diff_dct_c(block, src, ref, 4);
  7088. //normalize
  7089. for(j=0; j<16; j++){
  7090. // printf("%d ", block[j]);
  7091. block[j]= block[j]*4;
  7092. if(j&1) block[j]= (block[j]*4 + 2)/5;
  7093. if(j&4) block[j]= (block[j]*4 + 2)/5;
  7094. }
  7095. // printf("\n");
  7096. s->dsp.h264_idct_add(ref, block, 4);
  7097. /* for(j=0; j<16; j++){
  7098. printf("%d ", ref[j]);
  7099. }
  7100. printf("\n");*/
  7101. for(j=0; j<16; j++){
  7102. int diff= FFABS(src[j] - ref[j]);
  7103. error+= diff*diff;
  7104. max_error= FFMAX(max_error, diff);
  7105. }
  7106. }
  7107. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  7108. printf("testing quantizer\n");
  7109. for(qp=0; qp<52; qp++){
  7110. for(i=0; i<16; i++)
  7111. src1_block[i]= src2_block[i]= random()%255;
  7112. }
  7113. printf("Testing NAL layer\n");
  7114. uint8_t bitstream[COUNT];
  7115. uint8_t nal[COUNT*2];
  7116. H264Context h;
  7117. memset(&h, 0, sizeof(H264Context));
  7118. for(i=0; i<COUNT; i++){
  7119. int zeros= i;
  7120. int nal_length;
  7121. int consumed;
  7122. int out_length;
  7123. uint8_t *out;
  7124. int j;
  7125. for(j=0; j<COUNT; j++){
  7126. bitstream[j]= (random() % 255) + 1;
  7127. }
  7128. for(j=0; j<zeros; j++){
  7129. int pos= random() % COUNT;
  7130. while(bitstream[pos] == 0){
  7131. pos++;
  7132. pos %= COUNT;
  7133. }
  7134. bitstream[pos]=0;
  7135. }
  7136. START_TIMER
  7137. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  7138. if(nal_length<0){
  7139. printf("encoding failed\n");
  7140. return -1;
  7141. }
  7142. out= decode_nal(&h, nal, &out_length, &consumed, nal_length);
  7143. STOP_TIMER("NAL")
  7144. if(out_length != COUNT){
  7145. printf("incorrect length %d %d\n", out_length, COUNT);
  7146. return -1;
  7147. }
  7148. if(consumed != nal_length){
  7149. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  7150. return -1;
  7151. }
  7152. if(memcmp(bitstream, out, COUNT)){
  7153. printf("mismatch\n");
  7154. return -1;
  7155. }
  7156. }
  7157. #endif
  7158. printf("Testing RBSP\n");
  7159. return 0;
  7160. }
  7161. #endif /* TEST */
  7162. static av_cold int decode_end(AVCodecContext *avctx)
  7163. {
  7164. H264Context *h = avctx->priv_data;
  7165. MpegEncContext *s = &h->s;
  7166. av_freep(&h->rbsp_buffer[0]);
  7167. av_freep(&h->rbsp_buffer[1]);
  7168. free_tables(h); //FIXME cleanup init stuff perhaps
  7169. MPV_common_end(s);
  7170. // memset(h, 0, sizeof(H264Context));
  7171. return 0;
  7172. }
  7173. AVCodec h264_decoder = {
  7174. "h264",
  7175. CODEC_TYPE_VIDEO,
  7176. CODEC_ID_H264,
  7177. sizeof(H264Context),
  7178. decode_init,
  7179. NULL,
  7180. decode_end,
  7181. decode_frame,
  7182. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  7183. .flush= flush_dpb,
  7184. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  7185. };
  7186. #include "svq3.c"