You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1517 lines
51KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "internal.h"
  31. #include "get_bits.h"
  32. #include "put_bits.h"
  33. #include "dsputil.h"
  34. #include "thread.h"
  35. #include "huffman.h"
  36. #define VLC_BITS 11
  37. #if HAVE_BIGENDIAN
  38. #define B 3
  39. #define G 2
  40. #define R 1
  41. #define A 0
  42. #else
  43. #define B 0
  44. #define G 1
  45. #define R 2
  46. #define A 3
  47. #endif
  48. typedef enum Predictor{
  49. LEFT= 0,
  50. PLANE,
  51. MEDIAN,
  52. } Predictor;
  53. typedef struct HYuvContext{
  54. AVCodecContext *avctx;
  55. Predictor predictor;
  56. GetBitContext gb;
  57. PutBitContext pb;
  58. int interlaced;
  59. int decorrelate;
  60. int bitstream_bpp;
  61. int version;
  62. int yuy2; //use yuy2 instead of 422P
  63. int bgr32; //use bgr32 instead of bgr24
  64. int width, height;
  65. int flags;
  66. int context;
  67. int picture_number;
  68. int last_slice_end;
  69. uint8_t *temp[3];
  70. uint64_t stats[3][256];
  71. uint8_t len[3][256];
  72. uint32_t bits[3][256];
  73. uint32_t pix_bgr_map[1<<VLC_BITS];
  74. VLC vlc[6]; //Y,U,V,YY,YU,YV
  75. AVFrame picture;
  76. uint8_t *bitstream_buffer;
  77. unsigned int bitstream_buffer_size;
  78. DSPContext dsp;
  79. }HYuvContext;
  80. #define classic_shift_luma_table_size 42
  81. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  82. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  83. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  84. 69,68, 0,
  85. 0,0,0,0,0,0,0,0,
  86. };
  87. #define classic_shift_chroma_table_size 59
  88. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  89. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  90. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  91. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0,
  92. 0,0,0,0,0,0,0,0,
  93. };
  94. static const unsigned char classic_add_luma[256] = {
  95. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  96. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  97. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  98. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  99. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  100. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  101. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  102. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  103. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  104. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  105. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  106. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  107. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  108. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  109. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  110. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  111. };
  112. static const unsigned char classic_add_chroma[256] = {
  113. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  114. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  115. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  116. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  117. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  118. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  119. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  120. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  121. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  122. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  123. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  124. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  125. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  126. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  127. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  128. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  129. };
  130. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int left){
  131. int i;
  132. if(w<32){
  133. for(i=0; i<w; i++){
  134. const int temp= src[i];
  135. dst[i]= temp - left;
  136. left= temp;
  137. }
  138. return left;
  139. }else{
  140. for(i=0; i<16; i++){
  141. const int temp= src[i];
  142. dst[i]= temp - left;
  143. left= temp;
  144. }
  145. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  146. return src[w-1];
  147. }
  148. }
  149. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue, int *alpha){
  150. int i;
  151. int r,g,b,a;
  152. r= *red;
  153. g= *green;
  154. b= *blue;
  155. a= *alpha;
  156. for(i=0; i<FFMIN(w,4); i++){
  157. const int rt= src[i*4+R];
  158. const int gt= src[i*4+G];
  159. const int bt= src[i*4+B];
  160. const int at= src[i*4+A];
  161. dst[i*4+R]= rt - r;
  162. dst[i*4+G]= gt - g;
  163. dst[i*4+B]= bt - b;
  164. dst[i*4+A]= at - a;
  165. r = rt;
  166. g = gt;
  167. b = bt;
  168. a = at;
  169. }
  170. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  171. *red= src[(w-1)*4+R];
  172. *green= src[(w-1)*4+G];
  173. *blue= src[(w-1)*4+B];
  174. *alpha= src[(w-1)*4+A];
  175. }
  176. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue){
  177. int i;
  178. int r,g,b;
  179. r= *red;
  180. g= *green;
  181. b= *blue;
  182. for(i=0; i<FFMIN(w,16); i++){
  183. const int rt= src[i*3+0];
  184. const int gt= src[i*3+1];
  185. const int bt= src[i*3+2];
  186. dst[i*3+0]= rt - r;
  187. dst[i*3+1]= gt - g;
  188. dst[i*3+2]= bt - b;
  189. r = rt;
  190. g = gt;
  191. b = bt;
  192. }
  193. s->dsp.diff_bytes(dst+48, src+48, src+48-3, w*3-48);
  194. *red= src[(w-1)*3+0];
  195. *green= src[(w-1)*3+1];
  196. *blue= src[(w-1)*3+2];
  197. }
  198. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  199. int i, val, repeat;
  200. for(i=0; i<256;){
  201. repeat= get_bits(gb, 3);
  202. val = get_bits(gb, 5);
  203. if(repeat==0)
  204. repeat= get_bits(gb, 8);
  205. //printf("%d %d\n", val, repeat);
  206. if(i+repeat > 256 || get_bits_left(gb) < 0) {
  207. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  208. return -1;
  209. }
  210. while (repeat--)
  211. dst[i++] = val;
  212. }
  213. return 0;
  214. }
  215. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  216. int len, index;
  217. uint32_t bits=0;
  218. for(len=32; len>0; len--){
  219. for(index=0; index<256; index++){
  220. if(len_table[index]==len)
  221. dst[index]= bits++;
  222. }
  223. if(bits & 1){
  224. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  225. return -1;
  226. }
  227. bits >>= 1;
  228. }
  229. return 0;
  230. }
  231. static void generate_joint_tables(HYuvContext *s){
  232. uint16_t symbols[1<<VLC_BITS];
  233. uint16_t bits[1<<VLC_BITS];
  234. uint8_t len[1<<VLC_BITS];
  235. if(s->bitstream_bpp < 24){
  236. int p, i, y, u;
  237. for(p=0; p<3; p++){
  238. for(i=y=0; y<256; y++){
  239. int len0 = s->len[0][y];
  240. int limit = VLC_BITS - len0;
  241. if(limit <= 0)
  242. continue;
  243. for(u=0; u<256; u++){
  244. int len1 = s->len[p][u];
  245. if(len1 > limit)
  246. continue;
  247. len[i] = len0 + len1;
  248. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  249. symbols[i] = (y<<8) + u;
  250. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  251. i++;
  252. }
  253. }
  254. ff_free_vlc(&s->vlc[3+p]);
  255. ff_init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  256. }
  257. }else{
  258. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  259. int i, b, g, r, code;
  260. int p0 = s->decorrelate;
  261. int p1 = !s->decorrelate;
  262. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  263. // cover all the combinations that fit in 11 bits total, and it doesn't
  264. // matter if we miss a few rare codes.
  265. for(i=0, g=-16; g<16; g++){
  266. int len0 = s->len[p0][g&255];
  267. int limit0 = VLC_BITS - len0;
  268. if(limit0 < 2)
  269. continue;
  270. for(b=-16; b<16; b++){
  271. int len1 = s->len[p1][b&255];
  272. int limit1 = limit0 - len1;
  273. if(limit1 < 1)
  274. continue;
  275. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  276. for(r=-16; r<16; r++){
  277. int len2 = s->len[2][r&255];
  278. if(len2 > limit1)
  279. continue;
  280. len[i] = len0 + len1 + len2;
  281. bits[i] = (code << len2) + s->bits[2][r&255];
  282. if(s->decorrelate){
  283. map[i][G] = g;
  284. map[i][B] = g+b;
  285. map[i][R] = g+r;
  286. }else{
  287. map[i][B] = g;
  288. map[i][G] = b;
  289. map[i][R] = r;
  290. }
  291. i++;
  292. }
  293. }
  294. }
  295. ff_free_vlc(&s->vlc[3]);
  296. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  297. }
  298. }
  299. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  300. GetBitContext gb;
  301. int i;
  302. init_get_bits(&gb, src, length*8);
  303. for(i=0; i<3; i++){
  304. if(read_len_table(s->len[i], &gb)<0)
  305. return -1;
  306. if(generate_bits_table(s->bits[i], s->len[i])<0){
  307. return -1;
  308. }
  309. ff_free_vlc(&s->vlc[i]);
  310. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  311. }
  312. generate_joint_tables(s);
  313. return (get_bits_count(&gb)+7)/8;
  314. }
  315. static int read_old_huffman_tables(HYuvContext *s){
  316. GetBitContext gb;
  317. int i;
  318. init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size*8);
  319. if(read_len_table(s->len[0], &gb)<0)
  320. return -1;
  321. init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size*8);
  322. if(read_len_table(s->len[1], &gb)<0)
  323. return -1;
  324. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  325. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  326. if(s->bitstream_bpp >= 24){
  327. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  328. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  329. }
  330. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  331. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  332. for(i=0; i<3; i++){
  333. ff_free_vlc(&s->vlc[i]);
  334. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  335. }
  336. generate_joint_tables(s);
  337. return 0;
  338. }
  339. static av_cold void alloc_temp(HYuvContext *s){
  340. int i;
  341. if(s->bitstream_bpp<24){
  342. for(i=0; i<3; i++){
  343. s->temp[i]= av_malloc(s->width + 16);
  344. }
  345. }else{
  346. s->temp[0]= av_mallocz(4*s->width + 16);
  347. }
  348. }
  349. static av_cold int common_init(AVCodecContext *avctx){
  350. HYuvContext *s = avctx->priv_data;
  351. s->avctx= avctx;
  352. s->flags= avctx->flags;
  353. ff_dsputil_init(&s->dsp, avctx);
  354. s->width= avctx->width;
  355. s->height= avctx->height;
  356. av_assert1(s->width>0 && s->height>0);
  357. return 0;
  358. }
  359. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  360. static av_cold int decode_init(AVCodecContext *avctx)
  361. {
  362. HYuvContext *s = avctx->priv_data;
  363. common_init(avctx);
  364. memset(s->vlc, 0, 3*sizeof(VLC));
  365. avctx->coded_frame= &s->picture;
  366. avcodec_get_frame_defaults(&s->picture);
  367. s->interlaced= s->height > 288;
  368. s->bgr32=1;
  369. //if(avctx->extradata)
  370. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  371. if(avctx->extradata_size){
  372. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  373. s->version=1; // do such files exist at all?
  374. else
  375. s->version=2;
  376. }else
  377. s->version=0;
  378. if(s->version==2){
  379. int method, interlace;
  380. if (avctx->extradata_size < 4)
  381. return -1;
  382. method= ((uint8_t*)avctx->extradata)[0];
  383. s->decorrelate= method&64 ? 1 : 0;
  384. s->predictor= method&63;
  385. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  386. if(s->bitstream_bpp==0)
  387. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  388. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  389. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  390. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  391. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  392. return -1;
  393. }else{
  394. switch(avctx->bits_per_coded_sample&7){
  395. case 1:
  396. s->predictor= LEFT;
  397. s->decorrelate= 0;
  398. break;
  399. case 2:
  400. s->predictor= LEFT;
  401. s->decorrelate= 1;
  402. break;
  403. case 3:
  404. s->predictor= PLANE;
  405. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  406. break;
  407. case 4:
  408. s->predictor= MEDIAN;
  409. s->decorrelate= 0;
  410. break;
  411. default:
  412. s->predictor= LEFT; //OLD
  413. s->decorrelate= 0;
  414. break;
  415. }
  416. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  417. s->context= 0;
  418. if(read_old_huffman_tables(s) < 0)
  419. return -1;
  420. }
  421. switch(s->bitstream_bpp){
  422. case 12:
  423. avctx->pix_fmt = PIX_FMT_YUV420P;
  424. break;
  425. case 16:
  426. if(s->yuy2){
  427. avctx->pix_fmt = PIX_FMT_YUYV422;
  428. }else{
  429. avctx->pix_fmt = PIX_FMT_YUV422P;
  430. }
  431. break;
  432. case 24:
  433. case 32:
  434. if(s->bgr32){
  435. avctx->pix_fmt = PIX_FMT_RGB32;
  436. }else{
  437. avctx->pix_fmt = PIX_FMT_BGR24;
  438. }
  439. break;
  440. default:
  441. return AVERROR_INVALIDDATA;
  442. }
  443. if ((avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P) && avctx->width & 1) {
  444. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  445. return AVERROR_INVALIDDATA;
  446. }
  447. alloc_temp(s);
  448. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  449. return 0;
  450. }
  451. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  452. {
  453. HYuvContext *s = avctx->priv_data;
  454. int i;
  455. avctx->coded_frame= &s->picture;
  456. alloc_temp(s);
  457. for (i = 0; i < 6; i++)
  458. s->vlc[i].table = NULL;
  459. if(s->version==2){
  460. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  461. return -1;
  462. }else{
  463. if(read_old_huffman_tables(s) < 0)
  464. return -1;
  465. }
  466. return 0;
  467. }
  468. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  469. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  470. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  471. int i;
  472. int index= 0;
  473. for(i=0; i<256;){
  474. int val= len[i];
  475. int repeat=0;
  476. for(; i<256 && len[i]==val && repeat<255; i++)
  477. repeat++;
  478. av_assert0(val < 32 && val >0 && repeat<256 && repeat>0);
  479. if(repeat>7){
  480. buf[index++]= val;
  481. buf[index++]= repeat;
  482. }else{
  483. buf[index++]= val | (repeat<<5);
  484. }
  485. }
  486. return index;
  487. }
  488. static av_cold int encode_init(AVCodecContext *avctx)
  489. {
  490. HYuvContext *s = avctx->priv_data;
  491. int i, j;
  492. common_init(avctx);
  493. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  494. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  495. s->version=2;
  496. avctx->coded_frame= &s->picture;
  497. switch(avctx->pix_fmt){
  498. case PIX_FMT_YUV420P:
  499. case PIX_FMT_YUV422P:
  500. if (s->width & 1) {
  501. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  502. return AVERROR(EINVAL);
  503. }
  504. s->bitstream_bpp = avctx->pix_fmt == PIX_FMT_YUV420P ? 12 : 16;
  505. break;
  506. case PIX_FMT_RGB32:
  507. s->bitstream_bpp= 32;
  508. break;
  509. case PIX_FMT_RGB24:
  510. s->bitstream_bpp= 24;
  511. break;
  512. default:
  513. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  514. return -1;
  515. }
  516. avctx->bits_per_coded_sample= s->bitstream_bpp;
  517. s->decorrelate= s->bitstream_bpp >= 24;
  518. s->predictor= avctx->prediction_method;
  519. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  520. if(avctx->context_model==1){
  521. s->context= avctx->context_model;
  522. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  523. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  524. return -1;
  525. }
  526. }else s->context= 0;
  527. if(avctx->codec->id==AV_CODEC_ID_HUFFYUV){
  528. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  529. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  530. return -1;
  531. }
  532. if(avctx->context_model){
  533. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  534. return -1;
  535. }
  536. if(s->interlaced != ( s->height > 288 ))
  537. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  538. }
  539. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  540. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  541. return -1;
  542. }
  543. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  544. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  545. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  546. if(s->context)
  547. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  548. ((uint8_t*)avctx->extradata)[3]= 0;
  549. s->avctx->extradata_size= 4;
  550. if(avctx->stats_in){
  551. char *p= avctx->stats_in;
  552. for(i=0; i<3; i++)
  553. for(j=0; j<256; j++)
  554. s->stats[i][j]= 1;
  555. for(;;){
  556. for(i=0; i<3; i++){
  557. char *next;
  558. for(j=0; j<256; j++){
  559. s->stats[i][j]+= strtol(p, &next, 0);
  560. if(next==p) return -1;
  561. p=next;
  562. }
  563. }
  564. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  565. }
  566. }else{
  567. for(i=0; i<3; i++)
  568. for(j=0; j<256; j++){
  569. int d= FFMIN(j, 256-j);
  570. s->stats[i][j]= 100000000/(d+1);
  571. }
  572. }
  573. for(i=0; i<3; i++){
  574. ff_generate_len_table(s->len[i], s->stats[i]);
  575. if(generate_bits_table(s->bits[i], s->len[i])<0){
  576. return -1;
  577. }
  578. s->avctx->extradata_size+=
  579. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  580. }
  581. if(s->context){
  582. for(i=0; i<3; i++){
  583. int pels = s->width*s->height / (i?40:10);
  584. for(j=0; j<256; j++){
  585. int d= FFMIN(j, 256-j);
  586. s->stats[i][j]= pels/(d+1);
  587. }
  588. }
  589. }else{
  590. for(i=0; i<3; i++)
  591. for(j=0; j<256; j++)
  592. s->stats[i][j]= 0;
  593. }
  594. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  595. alloc_temp(s);
  596. s->picture_number=0;
  597. return 0;
  598. }
  599. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  600. /* TODO instead of restarting the read when the code isn't in the first level
  601. * of the joint table, jump into the 2nd level of the individual table. */
  602. #define READ_2PIX(dst0, dst1, plane1){\
  603. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  604. if(code != 0xffff){\
  605. dst0 = code>>8;\
  606. dst1 = code;\
  607. }else{\
  608. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  609. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  610. }\
  611. }
  612. static void decode_422_bitstream(HYuvContext *s, int count){
  613. int i;
  614. count/=2;
  615. if(count >= (get_bits_left(&s->gb))/(31*4)){
  616. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  617. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  618. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  619. }
  620. }else{
  621. for(i=0; i<count; i++){
  622. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  623. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  624. }
  625. }
  626. }
  627. static void decode_gray_bitstream(HYuvContext *s, int count){
  628. int i;
  629. count/=2;
  630. if(count >= (get_bits_left(&s->gb))/(31*2)){
  631. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  632. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  633. }
  634. }else{
  635. for(i=0; i<count; i++){
  636. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  637. }
  638. }
  639. }
  640. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  641. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  642. int i;
  643. const uint8_t *y = s->temp[0] + offset;
  644. const uint8_t *u = s->temp[1] + offset/2;
  645. const uint8_t *v = s->temp[2] + offset/2;
  646. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  647. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  648. return -1;
  649. }
  650. #define LOAD4\
  651. int y0 = y[2*i];\
  652. int y1 = y[2*i+1];\
  653. int u0 = u[i];\
  654. int v0 = v[i];
  655. count/=2;
  656. if(s->flags&CODEC_FLAG_PASS1){
  657. for(i=0; i<count; i++){
  658. LOAD4;
  659. s->stats[0][y0]++;
  660. s->stats[1][u0]++;
  661. s->stats[0][y1]++;
  662. s->stats[2][v0]++;
  663. }
  664. }
  665. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  666. return 0;
  667. if(s->context){
  668. for(i=0; i<count; i++){
  669. LOAD4;
  670. s->stats[0][y0]++;
  671. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  672. s->stats[1][u0]++;
  673. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  674. s->stats[0][y1]++;
  675. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  676. s->stats[2][v0]++;
  677. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  678. }
  679. }else{
  680. for(i=0; i<count; i++){
  681. LOAD4;
  682. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  683. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  684. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  685. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  686. }
  687. }
  688. return 0;
  689. }
  690. static int encode_gray_bitstream(HYuvContext *s, int count){
  691. int i;
  692. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  693. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  694. return -1;
  695. }
  696. #define LOAD2\
  697. int y0 = s->temp[0][2*i];\
  698. int y1 = s->temp[0][2*i+1];
  699. #define STAT2\
  700. s->stats[0][y0]++;\
  701. s->stats[0][y1]++;
  702. #define WRITE2\
  703. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  704. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  705. count/=2;
  706. if(s->flags&CODEC_FLAG_PASS1){
  707. for(i=0; i<count; i++){
  708. LOAD2;
  709. STAT2;
  710. }
  711. }
  712. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  713. return 0;
  714. if(s->context){
  715. for(i=0; i<count; i++){
  716. LOAD2;
  717. STAT2;
  718. WRITE2;
  719. }
  720. }else{
  721. for(i=0; i<count; i++){
  722. LOAD2;
  723. WRITE2;
  724. }
  725. }
  726. return 0;
  727. }
  728. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  729. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  730. int i;
  731. for(i=0; i<count; i++){
  732. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  733. if(code != -1){
  734. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  735. }else if(decorrelate){
  736. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  737. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  738. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  739. }else{
  740. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  741. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  742. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  743. }
  744. if(alpha)
  745. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  746. }
  747. }
  748. static void decode_bgr_bitstream(HYuvContext *s, int count){
  749. if(s->decorrelate){
  750. if(s->bitstream_bpp==24)
  751. decode_bgr_1(s, count, 1, 0);
  752. else
  753. decode_bgr_1(s, count, 1, 1);
  754. }else{
  755. if(s->bitstream_bpp==24)
  756. decode_bgr_1(s, count, 0, 0);
  757. else
  758. decode_bgr_1(s, count, 0, 1);
  759. }
  760. }
  761. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes){
  762. int i;
  763. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count){
  764. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  765. return -1;
  766. }
  767. #define LOAD3\
  768. int g= s->temp[0][planes==3 ? 3*i+1 : 4*i+G];\
  769. int b= (s->temp[0][planes==3 ? 3*i+2 : 4*i+B] - g) & 0xff;\
  770. int r= (s->temp[0][planes==3 ? 3*i+0 : 4*i+R] - g) & 0xff;\
  771. int a= s->temp[0][planes*i+A];
  772. #define STAT3\
  773. s->stats[0][b]++;\
  774. s->stats[1][g]++;\
  775. s->stats[2][r]++;\
  776. if(planes==4) s->stats[2][a]++;
  777. #define WRITE3\
  778. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  779. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  780. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  781. if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  782. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  783. for(i=0; i<count; i++){
  784. LOAD3;
  785. STAT3;
  786. }
  787. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  788. for(i=0; i<count; i++){
  789. LOAD3;
  790. STAT3;
  791. WRITE3;
  792. }
  793. }else{
  794. for(i=0; i<count; i++){
  795. LOAD3;
  796. WRITE3;
  797. }
  798. }
  799. return 0;
  800. }
  801. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  802. static void draw_slice(HYuvContext *s, int y){
  803. int h, cy, i;
  804. int offset[AV_NUM_DATA_POINTERS];
  805. if(s->avctx->draw_horiz_band==NULL)
  806. return;
  807. h= y - s->last_slice_end;
  808. y -= h;
  809. if(s->bitstream_bpp==12){
  810. cy= y>>1;
  811. }else{
  812. cy= y;
  813. }
  814. offset[0] = s->picture.linesize[0]*y;
  815. offset[1] = s->picture.linesize[1]*cy;
  816. offset[2] = s->picture.linesize[2]*cy;
  817. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  818. offset[i] = 0;
  819. emms_c();
  820. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  821. s->last_slice_end= y + h;
  822. }
  823. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  824. const uint8_t *buf = avpkt->data;
  825. int buf_size = avpkt->size;
  826. HYuvContext *s = avctx->priv_data;
  827. const int width= s->width;
  828. const int width2= s->width>>1;
  829. const int height= s->height;
  830. int fake_ystride, fake_ustride, fake_vstride;
  831. AVFrame * const p= &s->picture;
  832. int table_size= 0;
  833. AVFrame *picture = data;
  834. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  835. if (!s->bitstream_buffer)
  836. return AVERROR(ENOMEM);
  837. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  838. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  839. if(p->data[0])
  840. ff_thread_release_buffer(avctx, p);
  841. p->reference= 0;
  842. if(ff_thread_get_buffer(avctx, p) < 0){
  843. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  844. return -1;
  845. }
  846. if(s->context){
  847. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  848. if(table_size < 0)
  849. return -1;
  850. }
  851. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  852. return -1;
  853. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  854. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  855. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  856. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  857. s->last_slice_end= 0;
  858. if(s->bitstream_bpp<24){
  859. int y, cy;
  860. int lefty, leftu, leftv;
  861. int lefttopy, lefttopu, lefttopv;
  862. if(s->yuy2){
  863. p->data[0][3]= get_bits(&s->gb, 8);
  864. p->data[0][2]= get_bits(&s->gb, 8);
  865. p->data[0][1]= get_bits(&s->gb, 8);
  866. p->data[0][0]= get_bits(&s->gb, 8);
  867. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  868. return -1;
  869. }else{
  870. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  871. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  872. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  873. p->data[0][0]= get_bits(&s->gb, 8);
  874. switch(s->predictor){
  875. case LEFT:
  876. case PLANE:
  877. decode_422_bitstream(s, width-2);
  878. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  879. if(!(s->flags&CODEC_FLAG_GRAY)){
  880. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  881. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  882. }
  883. for(cy=y=1; y<s->height; y++,cy++){
  884. uint8_t *ydst, *udst, *vdst;
  885. if(s->bitstream_bpp==12){
  886. decode_gray_bitstream(s, width);
  887. ydst= p->data[0] + p->linesize[0]*y;
  888. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  889. if(s->predictor == PLANE){
  890. if(y>s->interlaced)
  891. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  892. }
  893. y++;
  894. if(y>=s->height) break;
  895. }
  896. draw_slice(s, y);
  897. ydst= p->data[0] + p->linesize[0]*y;
  898. udst= p->data[1] + p->linesize[1]*cy;
  899. vdst= p->data[2] + p->linesize[2]*cy;
  900. decode_422_bitstream(s, width);
  901. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  902. if(!(s->flags&CODEC_FLAG_GRAY)){
  903. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  904. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  905. }
  906. if(s->predictor == PLANE){
  907. if(cy>s->interlaced){
  908. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  909. if(!(s->flags&CODEC_FLAG_GRAY)){
  910. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  911. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  912. }
  913. }
  914. }
  915. }
  916. draw_slice(s, height);
  917. break;
  918. case MEDIAN:
  919. /* first line except first 2 pixels is left predicted */
  920. decode_422_bitstream(s, width-2);
  921. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  922. if(!(s->flags&CODEC_FLAG_GRAY)){
  923. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  924. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  925. }
  926. cy=y=1;
  927. /* second line is left predicted for interlaced case */
  928. if(s->interlaced){
  929. decode_422_bitstream(s, width);
  930. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  931. if(!(s->flags&CODEC_FLAG_GRAY)){
  932. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  933. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  934. }
  935. y++; cy++;
  936. }
  937. /* next 4 pixels are left predicted too */
  938. decode_422_bitstream(s, 4);
  939. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  940. if(!(s->flags&CODEC_FLAG_GRAY)){
  941. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  942. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  943. }
  944. /* next line except the first 4 pixels is median predicted */
  945. lefttopy= p->data[0][3];
  946. decode_422_bitstream(s, width-4);
  947. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  948. if(!(s->flags&CODEC_FLAG_GRAY)){
  949. lefttopu= p->data[1][1];
  950. lefttopv= p->data[2][1];
  951. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  952. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  953. }
  954. y++; cy++;
  955. for(; y<height; y++,cy++){
  956. uint8_t *ydst, *udst, *vdst;
  957. if(s->bitstream_bpp==12){
  958. while(2*cy > y){
  959. decode_gray_bitstream(s, width);
  960. ydst= p->data[0] + p->linesize[0]*y;
  961. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  962. y++;
  963. }
  964. if(y>=height) break;
  965. }
  966. draw_slice(s, y);
  967. decode_422_bitstream(s, width);
  968. ydst= p->data[0] + p->linesize[0]*y;
  969. udst= p->data[1] + p->linesize[1]*cy;
  970. vdst= p->data[2] + p->linesize[2]*cy;
  971. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  972. if(!(s->flags&CODEC_FLAG_GRAY)){
  973. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  974. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  975. }
  976. }
  977. draw_slice(s, height);
  978. break;
  979. }
  980. }
  981. }else{
  982. int y;
  983. int leftr, leftg, leftb, lefta;
  984. const int last_line= (height-1)*p->linesize[0];
  985. if(s->bitstream_bpp==32){
  986. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  987. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  988. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  989. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  990. }else{
  991. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  992. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  993. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  994. lefta= p->data[0][last_line+A]= 255;
  995. skip_bits(&s->gb, 8);
  996. }
  997. if(s->bgr32){
  998. switch(s->predictor){
  999. case LEFT:
  1000. case PLANE:
  1001. decode_bgr_bitstream(s, width-1);
  1002. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1003. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1004. decode_bgr_bitstream(s, width);
  1005. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1006. if(s->predictor == PLANE){
  1007. if(s->bitstream_bpp!=32) lefta=0;
  1008. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1009. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1010. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1011. }
  1012. }
  1013. }
  1014. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1015. break;
  1016. default:
  1017. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1018. }
  1019. }else{
  1020. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1021. return -1;
  1022. }
  1023. }
  1024. emms_c();
  1025. *picture= *p;
  1026. *data_size = sizeof(AVFrame);
  1027. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1028. }
  1029. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1030. static int common_end(HYuvContext *s){
  1031. int i;
  1032. for(i=0; i<3; i++){
  1033. av_freep(&s->temp[i]);
  1034. }
  1035. return 0;
  1036. }
  1037. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1038. static av_cold int decode_end(AVCodecContext *avctx)
  1039. {
  1040. HYuvContext *s = avctx->priv_data;
  1041. int i;
  1042. if (s->picture.data[0])
  1043. avctx->release_buffer(avctx, &s->picture);
  1044. common_end(s);
  1045. av_freep(&s->bitstream_buffer);
  1046. for(i=0; i<6; i++){
  1047. ff_free_vlc(&s->vlc[i]);
  1048. }
  1049. return 0;
  1050. }
  1051. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1052. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1053. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1054. const AVFrame *pict, int *got_packet)
  1055. {
  1056. HYuvContext *s = avctx->priv_data;
  1057. const int width= s->width;
  1058. const int width2= s->width>>1;
  1059. const int height= s->height;
  1060. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1061. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1062. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1063. AVFrame * const p= &s->picture;
  1064. int i, j, size = 0, ret;
  1065. if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
  1066. return ret;
  1067. *p = *pict;
  1068. p->pict_type= AV_PICTURE_TYPE_I;
  1069. p->key_frame= 1;
  1070. if(s->context){
  1071. for(i=0; i<3; i++){
  1072. ff_generate_len_table(s->len[i], s->stats[i]);
  1073. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1074. return -1;
  1075. size += store_table(s, s->len[i], &pkt->data[size]);
  1076. }
  1077. for(i=0; i<3; i++)
  1078. for(j=0; j<256; j++)
  1079. s->stats[i][j] >>= 1;
  1080. }
  1081. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1082. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1083. int lefty, leftu, leftv, y, cy;
  1084. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1085. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1086. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1087. put_bits(&s->pb, 8, p->data[0][0]);
  1088. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1089. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1090. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1091. encode_422_bitstream(s, 2, width-2);
  1092. if(s->predictor==MEDIAN){
  1093. int lefttopy, lefttopu, lefttopv;
  1094. cy=y=1;
  1095. if(s->interlaced){
  1096. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1097. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1098. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1099. encode_422_bitstream(s, 0, width);
  1100. y++; cy++;
  1101. }
  1102. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1103. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1104. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1105. encode_422_bitstream(s, 0, 4);
  1106. lefttopy= p->data[0][3];
  1107. lefttopu= p->data[1][1];
  1108. lefttopv= p->data[2][1];
  1109. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1110. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1111. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1112. encode_422_bitstream(s, 0, width-4);
  1113. y++; cy++;
  1114. for(; y<height; y++,cy++){
  1115. uint8_t *ydst, *udst, *vdst;
  1116. if(s->bitstream_bpp==12){
  1117. while(2*cy > y){
  1118. ydst= p->data[0] + p->linesize[0]*y;
  1119. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1120. encode_gray_bitstream(s, width);
  1121. y++;
  1122. }
  1123. if(y>=height) break;
  1124. }
  1125. ydst= p->data[0] + p->linesize[0]*y;
  1126. udst= p->data[1] + p->linesize[1]*cy;
  1127. vdst= p->data[2] + p->linesize[2]*cy;
  1128. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1129. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1130. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1131. encode_422_bitstream(s, 0, width);
  1132. }
  1133. }else{
  1134. for(cy=y=1; y<height; y++,cy++){
  1135. uint8_t *ydst, *udst, *vdst;
  1136. /* encode a luma only line & y++ */
  1137. if(s->bitstream_bpp==12){
  1138. ydst= p->data[0] + p->linesize[0]*y;
  1139. if(s->predictor == PLANE && s->interlaced < y){
  1140. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1141. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1142. }else{
  1143. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1144. }
  1145. encode_gray_bitstream(s, width);
  1146. y++;
  1147. if(y>=height) break;
  1148. }
  1149. ydst= p->data[0] + p->linesize[0]*y;
  1150. udst= p->data[1] + p->linesize[1]*cy;
  1151. vdst= p->data[2] + p->linesize[2]*cy;
  1152. if(s->predictor == PLANE && s->interlaced < cy){
  1153. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1154. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1155. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1156. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1157. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1158. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1159. }else{
  1160. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1161. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1162. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1163. }
  1164. encode_422_bitstream(s, 0, width);
  1165. }
  1166. }
  1167. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1168. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1169. const int stride = -p->linesize[0];
  1170. const int fake_stride = -fake_ystride;
  1171. int y;
  1172. int leftr, leftg, leftb, lefta;
  1173. put_bits(&s->pb, 8, lefta= data[A]);
  1174. put_bits(&s->pb, 8, leftr= data[R]);
  1175. put_bits(&s->pb, 8, leftg= data[G]);
  1176. put_bits(&s->pb, 8, leftb= data[B]);
  1177. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb, &lefta);
  1178. encode_bgra_bitstream(s, width-1, 4);
  1179. for(y=1; y<s->height; y++){
  1180. uint8_t *dst = data + y*stride;
  1181. if(s->predictor == PLANE && s->interlaced < y){
  1182. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1183. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1184. }else{
  1185. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1186. }
  1187. encode_bgra_bitstream(s, width, 4);
  1188. }
  1189. }else if(avctx->pix_fmt == PIX_FMT_RGB24){
  1190. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1191. const int stride = -p->linesize[0];
  1192. const int fake_stride = -fake_ystride;
  1193. int y;
  1194. int leftr, leftg, leftb;
  1195. put_bits(&s->pb, 8, leftr= data[0]);
  1196. put_bits(&s->pb, 8, leftg= data[1]);
  1197. put_bits(&s->pb, 8, leftb= data[2]);
  1198. put_bits(&s->pb, 8, 0);
  1199. sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
  1200. encode_bgra_bitstream(s, width-1, 3);
  1201. for(y=1; y<s->height; y++){
  1202. uint8_t *dst = data + y*stride;
  1203. if(s->predictor == PLANE && s->interlaced < y){
  1204. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
  1205. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1206. }else{
  1207. sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1208. }
  1209. encode_bgra_bitstream(s, width, 3);
  1210. }
  1211. }else{
  1212. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1213. }
  1214. emms_c();
  1215. size+= (put_bits_count(&s->pb)+31)/8;
  1216. put_bits(&s->pb, 16, 0);
  1217. put_bits(&s->pb, 15, 0);
  1218. size/= 4;
  1219. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1220. int j;
  1221. char *p= avctx->stats_out;
  1222. char *end= p + 1024*30;
  1223. for(i=0; i<3; i++){
  1224. for(j=0; j<256; j++){
  1225. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1226. p+= strlen(p);
  1227. s->stats[i][j]= 0;
  1228. }
  1229. snprintf(p, end-p, "\n");
  1230. p++;
  1231. }
  1232. } else
  1233. avctx->stats_out[0] = '\0';
  1234. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1235. flush_put_bits(&s->pb);
  1236. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1237. }
  1238. s->picture_number++;
  1239. pkt->size = size*4;
  1240. pkt->flags |= AV_PKT_FLAG_KEY;
  1241. *got_packet = 1;
  1242. return 0;
  1243. }
  1244. static av_cold int encode_end(AVCodecContext *avctx)
  1245. {
  1246. HYuvContext *s = avctx->priv_data;
  1247. common_end(s);
  1248. av_freep(&avctx->extradata);
  1249. av_freep(&avctx->stats_out);
  1250. return 0;
  1251. }
  1252. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1253. #if CONFIG_HUFFYUV_DECODER
  1254. AVCodec ff_huffyuv_decoder = {
  1255. .name = "huffyuv",
  1256. .type = AVMEDIA_TYPE_VIDEO,
  1257. .id = AV_CODEC_ID_HUFFYUV,
  1258. .priv_data_size = sizeof(HYuvContext),
  1259. .init = decode_init,
  1260. .close = decode_end,
  1261. .decode = decode_frame,
  1262. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1263. CODEC_CAP_FRAME_THREADS,
  1264. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1265. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1266. };
  1267. #endif
  1268. #if CONFIG_FFVHUFF_DECODER
  1269. AVCodec ff_ffvhuff_decoder = {
  1270. .name = "ffvhuff",
  1271. .type = AVMEDIA_TYPE_VIDEO,
  1272. .id = AV_CODEC_ID_FFVHUFF,
  1273. .priv_data_size = sizeof(HYuvContext),
  1274. .init = decode_init,
  1275. .close = decode_end,
  1276. .decode = decode_frame,
  1277. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1278. CODEC_CAP_FRAME_THREADS,
  1279. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1280. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1281. };
  1282. #endif
  1283. #if CONFIG_HUFFYUV_ENCODER
  1284. AVCodec ff_huffyuv_encoder = {
  1285. .name = "huffyuv",
  1286. .type = AVMEDIA_TYPE_VIDEO,
  1287. .id = AV_CODEC_ID_HUFFYUV,
  1288. .priv_data_size = sizeof(HYuvContext),
  1289. .init = encode_init,
  1290. .encode2 = encode_frame,
  1291. .close = encode_end,
  1292. .pix_fmts = (const enum PixelFormat[]){
  1293. PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE
  1294. },
  1295. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1296. };
  1297. #endif
  1298. #if CONFIG_FFVHUFF_ENCODER
  1299. AVCodec ff_ffvhuff_encoder = {
  1300. .name = "ffvhuff",
  1301. .type = AVMEDIA_TYPE_VIDEO,
  1302. .id = AV_CODEC_ID_FFVHUFF,
  1303. .priv_data_size = sizeof(HYuvContext),
  1304. .init = encode_init,
  1305. .encode2 = encode_frame,
  1306. .close = encode_end,
  1307. .pix_fmts = (const enum PixelFormat[]){
  1308. PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB24, PIX_FMT_RGB32, PIX_FMT_NONE
  1309. },
  1310. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1311. };
  1312. #endif