You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3695 lines
104KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @anchor{Filtergraph syntax}
  14. @section Filtergraph syntax
  15. A filtergraph can be represented using a textual representation, which is
  16. recognized by the @option{-filter}/@option{-vf} and @option{-filter_complex}
  17. options in @command{ffmpeg} and @option{-vf} in @command{ffplay}, and by the
  18. @code{avfilter_graph_parse()}/@code{avfilter_graph_parse2()} function defined in
  19. @file{libavfilter/avfiltergraph.h}.
  20. A filterchain consists of a sequence of connected filters, each one
  21. connected to the previous one in the sequence. A filterchain is
  22. represented by a list of ","-separated filter descriptions.
  23. A filtergraph consists of a sequence of filterchains. A sequence of
  24. filterchains is represented by a list of ";"-separated filterchain
  25. descriptions.
  26. A filter is represented by a string of the form:
  27. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  28. @var{filter_name} is the name of the filter class of which the
  29. described filter is an instance of, and has to be the name of one of
  30. the filter classes registered in the program.
  31. The name of the filter class is optionally followed by a string
  32. "=@var{arguments}".
  33. @var{arguments} is a string which contains the parameters used to
  34. initialize the filter instance, and are described in the filter
  35. descriptions below.
  36. The list of arguments can be quoted using the character "'" as initial
  37. and ending mark, and the character '\' for escaping the characters
  38. within the quoted text; otherwise the argument string is considered
  39. terminated when the next special character (belonging to the set
  40. "[]=;,") is encountered.
  41. The name and arguments of the filter are optionally preceded and
  42. followed by a list of link labels.
  43. A link label allows to name a link and associate it to a filter output
  44. or input pad. The preceding labels @var{in_link_1}
  45. ... @var{in_link_N}, are associated to the filter input pads,
  46. the following labels @var{out_link_1} ... @var{out_link_M}, are
  47. associated to the output pads.
  48. When two link labels with the same name are found in the
  49. filtergraph, a link between the corresponding input and output pad is
  50. created.
  51. If an output pad is not labelled, it is linked by default to the first
  52. unlabelled input pad of the next filter in the filterchain.
  53. For example in the filterchain:
  54. @example
  55. nullsrc, split[L1], [L2]overlay, nullsink
  56. @end example
  57. the split filter instance has two output pads, and the overlay filter
  58. instance two input pads. The first output pad of split is labelled
  59. "L1", the first input pad of overlay is labelled "L2", and the second
  60. output pad of split is linked to the second input pad of overlay,
  61. which are both unlabelled.
  62. In a complete filterchain all the unlabelled filter input and output
  63. pads must be connected. A filtergraph is considered valid if all the
  64. filter input and output pads of all the filterchains are connected.
  65. Libavfilter will automatically insert scale filters where format
  66. conversion is required. It is possible to specify swscale flags
  67. for those automatically inserted scalers by prepending
  68. @code{sws_flags=@var{flags};}
  69. to the filtergraph description.
  70. Follows a BNF description for the filtergraph syntax:
  71. @example
  72. @var{NAME} ::= sequence of alphanumeric characters and '_'
  73. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  74. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  75. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  76. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  77. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  78. @var{FILTERGRAPH} ::= [sws_flags=@var{flags};] @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  79. @end example
  80. @c man end FILTERGRAPH DESCRIPTION
  81. @chapter Audio Filters
  82. @c man begin AUDIO FILTERS
  83. When you configure your FFmpeg build, you can disable any of the
  84. existing filters using @code{--disable-filters}.
  85. The configure output will show the audio filters included in your
  86. build.
  87. Below is a description of the currently available audio filters.
  88. @section aconvert
  89. Convert the input audio format to the specified formats.
  90. The filter accepts a string of the form:
  91. "@var{sample_format}:@var{channel_layout}".
  92. @var{sample_format} specifies the sample format, and can be a string or the
  93. corresponding numeric value defined in @file{libavutil/samplefmt.h}. Use 'p'
  94. suffix for a planar sample format.
  95. @var{channel_layout} specifies the channel layout, and can be a string
  96. or the corresponding number value defined in @file{libavutil/audioconvert.h}.
  97. The special parameter "auto", signifies that the filter will
  98. automatically select the output format depending on the output filter.
  99. Some examples follow.
  100. @itemize
  101. @item
  102. Convert input to float, planar, stereo:
  103. @example
  104. aconvert=fltp:stereo
  105. @end example
  106. @item
  107. Convert input to unsigned 8-bit, automatically select out channel layout:
  108. @example
  109. aconvert=u8:auto
  110. @end example
  111. @end itemize
  112. @section aformat
  113. Convert the input audio to one of the specified formats. The framework will
  114. negotiate the most appropriate format to minimize conversions.
  115. The filter accepts three lists of formats, separated by ":", in the form:
  116. "@var{sample_formats}:@var{channel_layouts}".
  117. Elements in each list are separated by "," which has to be escaped in the
  118. filtergraph specification.
  119. The special parameter "all", in place of a list of elements, signifies all
  120. supported formats.
  121. Some examples follow:
  122. @example
  123. aformat=u8\\,s16:mono
  124. aformat=s16:mono\\,stereo
  125. @end example
  126. @section amerge
  127. Merge two audio streams into a single multi-channel stream.
  128. This filter does not need any argument.
  129. If the channel layouts of the inputs are disjoint, and therefore compatible,
  130. the channel layout of the output will be set accordingly and the channels
  131. will be reordered as necessary. If the channel layouts of the inputs are not
  132. disjoint, the output will have all the channels of the first input then all
  133. the channels of the second input, in that order, and the channel layout of
  134. the output will be the default value corresponding to the total number of
  135. channels.
  136. For example, if the first input is in 2.1 (FL+FR+LF) and the second input
  137. is FC+BL+BR, then the output will be in 5.1, with the channels in the
  138. following order: a1, a2, b1, a3, b2, b3 (a1 is the first channel of the
  139. first input, b1 is the first channel of the second input).
  140. On the other hand, if both input are in stereo, the output channels will be
  141. in the default order: a1, a2, b1, b2, and the channel layout will be
  142. arbitrarily set to 4.0, which may or may not be the expected value.
  143. Both inputs must have the same sample rate, and format.
  144. If inputs do not have the same duration, the output will stop with the
  145. shortest.
  146. Example: merge two mono files into a stereo stream:
  147. @example
  148. amovie=left.wav [l] ; amovie=right.mp3 [r] ; [l] [r] amerge
  149. @end example
  150. If you need to do multiple merges (for instance multiple mono audio streams in
  151. a single video media), you can do:
  152. @example
  153. ffmpeg -f lavfi -i "
  154. amovie=input.mkv:si=0 [a0];
  155. amovie=input.mkv:si=1 [a1];
  156. amovie=input.mkv:si=2 [a2];
  157. amovie=input.mkv:si=3 [a3];
  158. amovie=input.mkv:si=4 [a4];
  159. amovie=input.mkv:si=5 [a5];
  160. [a0][a1] amerge [x0];
  161. [x0][a2] amerge [x1];
  162. [x1][a3] amerge [x2];
  163. [x2][a4] amerge [x3];
  164. [x3][a5] amerge" -c:a pcm_s16le output.mkv
  165. @end example
  166. @section aformat
  167. Convert the input audio to one of the specified formats. The framework will
  168. negotiate the most appropriate format to minimize conversions.
  169. The filter accepts the following named parameters:
  170. @table @option
  171. @item sample_fmts
  172. A comma-separated list of requested sample formats.
  173. @item sample_rates
  174. A comma-separated list of requested sample rates.
  175. @item channel_layouts
  176. A comma-separated list of requested channel layouts.
  177. @end table
  178. If a parameter is omitted, all values are allowed.
  179. For example to force the output to either unsigned 8-bit or signed 16-bit stereo:
  180. @example
  181. aformat=sample_fmts\=u8\,s16:channel_layouts\=stereo
  182. @end example
  183. @section anull
  184. Pass the audio source unchanged to the output.
  185. @section aresample
  186. Resample the input audio to the specified sample rate.
  187. The filter accepts exactly one parameter, the output sample rate. If not
  188. specified then the filter will automatically convert between its input
  189. and output sample rates.
  190. For example, to resample the input audio to 44100Hz:
  191. @example
  192. aresample=44100
  193. @end example
  194. @section ashowinfo
  195. Show a line containing various information for each input audio frame.
  196. The input audio is not modified.
  197. The shown line contains a sequence of key/value pairs of the form
  198. @var{key}:@var{value}.
  199. A description of each shown parameter follows:
  200. @table @option
  201. @item n
  202. sequential number of the input frame, starting from 0
  203. @item pts
  204. presentation TimeStamp of the input frame, expressed as a number of
  205. time base units. The time base unit depends on the filter input pad, and
  206. is usually 1/@var{sample_rate}.
  207. @item pts_time
  208. presentation TimeStamp of the input frame, expressed as a number of
  209. seconds
  210. @item pos
  211. position of the frame in the input stream, -1 if this information in
  212. unavailable and/or meaningless (for example in case of synthetic audio)
  213. @item fmt
  214. sample format name
  215. @item chlayout
  216. channel layout description
  217. @item nb_samples
  218. number of samples (per each channel) contained in the filtered frame
  219. @item rate
  220. sample rate for the audio frame
  221. @item checksum
  222. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  223. @item plane_checksum
  224. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  225. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  226. @var{c6} @var{c7}]"
  227. @end table
  228. @section asplit
  229. Split input audio into several identical outputs.
  230. The filter accepts a single parameter which specifies the number of outputs. If
  231. unspecified, it defaults to 2.
  232. For example:
  233. @example
  234. [in] asplit [out0][out1]
  235. @end example
  236. will create two separate outputs from the same input.
  237. To create 3 or more outputs, you need to specify the number of
  238. outputs, like in:
  239. @example
  240. [in] asplit=3 [out0][out1][out2]
  241. @end example
  242. @section astreamsync
  243. Forward two audio streams and control the order the buffers are forwarded.
  244. The argument to the filter is an expression deciding which stream should be
  245. forwarded next: if the result is negative, the first stream is forwarded; if
  246. the result is positive or zero, the second stream is forwarded. It can use
  247. the following variables:
  248. @table @var
  249. @item b1 b2
  250. number of buffers forwarded so far on each stream
  251. @item s1 s2
  252. number of samples forwarded so far on each stream
  253. @item t1 t2
  254. current timestamp of each stream
  255. @end table
  256. The default value is @code{t1-t2}, which means to always forward the stream
  257. that has a smaller timestamp.
  258. Example: stress-test @code{amerge} by randomly sending buffers on the wrong
  259. input, while avoiding too much of a desynchronization:
  260. @example
  261. amovie=file.ogg [a] ; amovie=file.mp3 [b] ;
  262. [a] [b] astreamsync=(2*random(1))-1+tanh(5*(t1-t2)) [a2] [b2] ;
  263. [a2] [b2] amerge
  264. @end example
  265. @section earwax
  266. Make audio easier to listen to on headphones.
  267. This filter adds `cues' to 44.1kHz stereo (i.e. audio CD format) audio
  268. so that when listened to on headphones the stereo image is moved from
  269. inside your head (standard for headphones) to outside and in front of
  270. the listener (standard for speakers).
  271. Ported from SoX.
  272. @section pan
  273. Mix channels with specific gain levels. The filter accepts the output
  274. channel layout followed by a set of channels definitions.
  275. This filter is also designed to remap efficiently the channels of an audio
  276. stream.
  277. The filter accepts parameters of the form:
  278. "@var{l}:@var{outdef}:@var{outdef}:..."
  279. @table @option
  280. @item l
  281. output channel layout or number of channels
  282. @item outdef
  283. output channel specification, of the form:
  284. "@var{out_name}=[@var{gain}*]@var{in_name}[+[@var{gain}*]@var{in_name}...]"
  285. @item out_name
  286. output channel to define, either a channel name (FL, FR, etc.) or a channel
  287. number (c0, c1, etc.)
  288. @item gain
  289. multiplicative coefficient for the channel, 1 leaving the volume unchanged
  290. @item in_name
  291. input channel to use, see out_name for details; it is not possible to mix
  292. named and numbered input channels
  293. @end table
  294. If the `=' in a channel specification is replaced by `<', then the gains for
  295. that specification will be renormalized so that the total is 1, thus
  296. avoiding clipping noise.
  297. @subsection Mixing examples
  298. For example, if you want to down-mix from stereo to mono, but with a bigger
  299. factor for the left channel:
  300. @example
  301. pan=1:c0=0.9*c0+0.1*c1
  302. @end example
  303. A customized down-mix to stereo that works automatically for 3-, 4-, 5- and
  304. 7-channels surround:
  305. @example
  306. pan=stereo: FL < FL + 0.5*FC + 0.6*BL + 0.6*SL : FR < FR + 0.5*FC + 0.6*BR + 0.6*SR
  307. @end example
  308. Note that @command{ffmpeg} integrates a default down-mix (and up-mix) system
  309. that should be preferred (see "-ac" option) unless you have very specific
  310. needs.
  311. @subsection Remapping examples
  312. The channel remapping will be effective if, and only if:
  313. @itemize
  314. @item gain coefficients are zeroes or ones,
  315. @item only one input per channel output,
  316. @end itemize
  317. If all these conditions are satisfied, the filter will notify the user ("Pure
  318. channel mapping detected"), and use an optimized and lossless method to do the
  319. remapping.
  320. For example, if you have a 5.1 source and want a stereo audio stream by
  321. dropping the extra channels:
  322. @example
  323. pan="stereo: c0=FL : c1=FR"
  324. @end example
  325. Given the same source, you can also switch front left and front right channels
  326. and keep the input channel layout:
  327. @example
  328. pan="5.1: c0=c1 : c1=c0 : c2=c2 : c3=c3 : c4=c4 : c5=c5"
  329. @end example
  330. If the input is a stereo audio stream, you can mute the front left channel (and
  331. still keep the stereo channel layout) with:
  332. @example
  333. pan="stereo:c1=c1"
  334. @end example
  335. Still with a stereo audio stream input, you can copy the right channel in both
  336. front left and right:
  337. @example
  338. pan="stereo: c0=FR : c1=FR"
  339. @end example
  340. @section silencedetect
  341. Detect silence in an audio stream.
  342. This filter logs a message when it detects that the input audio volume is less
  343. or equal to a noise tolerance value for a duration greater or equal to the
  344. minimum detected noise duration.
  345. The printed times and duration are expressed in seconds.
  346. @table @option
  347. @item duration, d
  348. Set silence duration until notification (default is 2 seconds).
  349. @item noise, n
  350. Set noise tolerance. Can be specified in dB (in case "dB" is appended to the
  351. specified value) or amplitude ratio. Default is -60dB, or 0.001.
  352. @end table
  353. Detect 5 seconds of silence with -50dB noise tolerance:
  354. @example
  355. silencedetect=n=-50dB:d=5
  356. @end example
  357. Complete example with @command{ffmpeg} to detect silence with 0.0001 noise
  358. tolerance in @file{silence.mp3}:
  359. @example
  360. ffmpeg -f lavfi -i amovie=silence.mp3,silencedetect=noise=0.0001 -f null -
  361. @end example
  362. @section volume
  363. Adjust the input audio volume.
  364. The filter accepts exactly one parameter @var{vol}, which expresses
  365. how the audio volume will be increased or decreased.
  366. Output values are clipped to the maximum value.
  367. If @var{vol} is expressed as a decimal number, the output audio
  368. volume is given by the relation:
  369. @example
  370. @var{output_volume} = @var{vol} * @var{input_volume}
  371. @end example
  372. If @var{vol} is expressed as a decimal number followed by the string
  373. "dB", the value represents the requested change in decibels of the
  374. input audio power, and the output audio volume is given by the
  375. relation:
  376. @example
  377. @var{output_volume} = 10^(@var{vol}/20) * @var{input_volume}
  378. @end example
  379. Otherwise @var{vol} is considered an expression and its evaluated
  380. value is used for computing the output audio volume according to the
  381. first relation.
  382. Default value for @var{vol} is 1.0.
  383. @subsection Examples
  384. @itemize
  385. @item
  386. Half the input audio volume:
  387. @example
  388. volume=0.5
  389. @end example
  390. The above example is equivalent to:
  391. @example
  392. volume=1/2
  393. @end example
  394. @item
  395. Decrease input audio power by 12 decibels:
  396. @example
  397. volume=-12dB
  398. @end example
  399. @end itemize
  400. @section asyncts
  401. Synchronize audio data with timestamps by squeezing/stretching it and/or
  402. dropping samples/adding silence when needed.
  403. The filter accepts the following named parameters:
  404. @table @option
  405. @item compensate
  406. Enable stretching/squeezing the data to make it match the timestamps.
  407. @item min_delta
  408. Minimum difference between timestamps and audio data (in seconds) to trigger
  409. adding/dropping samples.
  410. @item max_comp
  411. Maximum compensation in samples per second.
  412. @end table
  413. @section resample
  414. Convert the audio sample format, sample rate and channel layout. This filter is
  415. not meant to be used directly.
  416. @c man end AUDIO FILTERS
  417. @chapter Audio Sources
  418. @c man begin AUDIO SOURCES
  419. Below is a description of the currently available audio sources.
  420. @section abuffer
  421. Buffer audio frames, and make them available to the filter chain.
  422. This source is mainly intended for a programmatic use, in particular
  423. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  424. It accepts the following mandatory parameters:
  425. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}
  426. @table @option
  427. @item sample_rate
  428. The sample rate of the incoming audio buffers.
  429. @item sample_fmt
  430. The sample format of the incoming audio buffers.
  431. Either a sample format name or its corresponging integer representation from
  432. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  433. @item channel_layout
  434. The channel layout of the incoming audio buffers.
  435. Either a channel layout name from channel_layout_map in
  436. @file{libavutil/audioconvert.c} or its corresponding integer representation
  437. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  438. @end table
  439. For example:
  440. @example
  441. abuffer=44100:s16p:stereo
  442. @end example
  443. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  444. Since the sample format with name "s16p" corresponds to the number
  445. 6 and the "stereo" channel layout corresponds to the value 0x3, this is
  446. equivalent to:
  447. @example
  448. abuffer=44100:6:0x3
  449. @end example
  450. @section aevalsrc
  451. Generate an audio signal specified by an expression.
  452. This source accepts in input one or more expressions (one for each
  453. channel), which are evaluated and used to generate a corresponding
  454. audio signal.
  455. It accepts the syntax: @var{exprs}[::@var{options}].
  456. @var{exprs} is a list of expressions separated by ":", one for each
  457. separate channel. In case the @var{channel_layout} is not
  458. specified, the selected channel layout depends on the number of
  459. provided expressions.
  460. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  461. separated by ":".
  462. The description of the accepted options follows.
  463. @table @option
  464. @item channel_layout, c
  465. Set the channel layout. The number of channels in the specified layout
  466. must be equal to the number of specified expressions.
  467. @item duration, d
  468. Set the minimum duration of the sourced audio. See the function
  469. @code{av_parse_time()} for the accepted format.
  470. Note that the resulting duration may be greater than the specified
  471. duration, as the generated audio is always cut at the end of a
  472. complete frame.
  473. If not specified, or the expressed duration is negative, the audio is
  474. supposed to be generated forever.
  475. @item nb_samples, n
  476. Set the number of samples per channel per each output frame,
  477. default to 1024.
  478. @item sample_rate, s
  479. Specify the sample rate, default to 44100.
  480. @end table
  481. Each expression in @var{exprs} can contain the following constants:
  482. @table @option
  483. @item n
  484. number of the evaluated sample, starting from 0
  485. @item t
  486. time of the evaluated sample expressed in seconds, starting from 0
  487. @item s
  488. sample rate
  489. @end table
  490. @subsection Examples
  491. @itemize
  492. @item
  493. Generate silence:
  494. @example
  495. aevalsrc=0
  496. @end example
  497. @item
  498. Generate a sin signal with frequency of 440 Hz, set sample rate to
  499. 8000 Hz:
  500. @example
  501. aevalsrc="sin(440*2*PI*t)::s=8000"
  502. @end example
  503. @item
  504. Generate a two channels signal, specify the channel layout (Front
  505. Center + Back Center) explicitly:
  506. @example
  507. aevalsrc="sin(420*2*PI*t):cos(430*2*PI*t)::c=FC|BC"
  508. @end example
  509. @item
  510. Generate white noise:
  511. @example
  512. aevalsrc="-2+random(0)"
  513. @end example
  514. @item
  515. Generate an amplitude modulated signal:
  516. @example
  517. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  518. @end example
  519. @item
  520. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  521. @example
  522. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  523. @end example
  524. @end itemize
  525. @section amovie
  526. Read an audio stream from a movie container.
  527. It accepts the syntax: @var{movie_name}[:@var{options}] where
  528. @var{movie_name} is the name of the resource to read (not necessarily
  529. a file but also a device or a stream accessed through some protocol),
  530. and @var{options} is an optional sequence of @var{key}=@var{value}
  531. pairs, separated by ":".
  532. The description of the accepted options follows.
  533. @table @option
  534. @item format_name, f
  535. Specify the format assumed for the movie to read, and can be either
  536. the name of a container or an input device. If not specified the
  537. format is guessed from @var{movie_name} or by probing.
  538. @item seek_point, sp
  539. Specify the seek point in seconds, the frames will be output
  540. starting from this seek point, the parameter is evaluated with
  541. @code{av_strtod} so the numerical value may be suffixed by an IS
  542. postfix. Default value is "0".
  543. @item stream_index, si
  544. Specify the index of the audio stream to read. If the value is -1,
  545. the best suited audio stream will be automatically selected. Default
  546. value is "-1".
  547. @end table
  548. @section anullsrc
  549. Null audio source, return unprocessed audio frames. It is mainly useful
  550. as a template and to be employed in analysis / debugging tools, or as
  551. the source for filters which ignore the input data (for example the sox
  552. synth filter).
  553. It accepts an optional sequence of @var{key}=@var{value} pairs,
  554. separated by ":".
  555. The description of the accepted options follows.
  556. @table @option
  557. @item sample_rate, s
  558. Specify the sample rate, and defaults to 44100.
  559. @item channel_layout, cl
  560. Specify the channel layout, and can be either an integer or a string
  561. representing a channel layout. The default value of @var{channel_layout}
  562. is "stereo".
  563. Check the channel_layout_map definition in
  564. @file{libavcodec/audioconvert.c} for the mapping between strings and
  565. channel layout values.
  566. @item nb_samples, n
  567. Set the number of samples per requested frames.
  568. @end table
  569. Follow some examples:
  570. @example
  571. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  572. anullsrc=r=48000:cl=4
  573. # same as
  574. anullsrc=r=48000:cl=mono
  575. @end example
  576. @section abuffer
  577. Buffer audio frames, and make them available to the filter chain.
  578. This source is not intended to be part of user-supplied graph descriptions but
  579. for insertion by calling programs through the interface defined in
  580. @file{libavfilter/buffersrc.h}.
  581. It accepts the following named parameters:
  582. @table @option
  583. @item time_base
  584. Timebase which will be used for timestamps of submitted frames. It must be
  585. either a floating-point number or in @var{numerator}/@var{denominator} form.
  586. @item sample_rate
  587. Audio sample rate.
  588. @item sample_fmt
  589. Name of the sample format, as returned by @code{av_get_sample_fmt_name()}.
  590. @item channel_layout
  591. Channel layout of the audio data, in the form that can be accepted by
  592. @code{av_get_channel_layout()}.
  593. @end table
  594. All the parameters need to be explicitly defined.
  595. @c man end AUDIO SOURCES
  596. @chapter Audio Sinks
  597. @c man begin AUDIO SINKS
  598. Below is a description of the currently available audio sinks.
  599. @section abuffersink
  600. Buffer audio frames, and make them available to the end of filter chain.
  601. This sink is mainly intended for programmatic use, in particular
  602. through the interface defined in @file{libavfilter/buffersink.h}.
  603. It requires a pointer to an AVABufferSinkContext structure, which
  604. defines the incoming buffers' formats, to be passed as the opaque
  605. parameter to @code{avfilter_init_filter} for initialization.
  606. @section anullsink
  607. Null audio sink, do absolutely nothing with the input audio. It is
  608. mainly useful as a template and to be employed in analysis / debugging
  609. tools.
  610. @section abuffersink
  611. This sink is intended for programmatic use. Frames that arrive on this sink can
  612. be retrieved by the calling program using the interface defined in
  613. @file{libavfilter/buffersink.h}.
  614. This filter accepts no parameters.
  615. @c man end AUDIO SINKS
  616. @chapter Video Filters
  617. @c man begin VIDEO FILTERS
  618. When you configure your FFmpeg build, you can disable any of the
  619. existing filters using @code{--disable-filters}.
  620. The configure output will show the video filters included in your
  621. build.
  622. Below is a description of the currently available video filters.
  623. @section ass
  624. Draw ASS (Advanced Substation Alpha) subtitles on top of input video
  625. using the libass library.
  626. To enable compilation of this filter you need to configure FFmpeg with
  627. @code{--enable-libass}.
  628. This filter accepts the syntax: @var{ass_filename}[:@var{options}],
  629. where @var{ass_filename} is the filename of the ASS file to read, and
  630. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  631. separated by ":".
  632. A description of the accepted options follows.
  633. @table @option
  634. @item original_size
  635. Specifies the size of the original video, the video for which the ASS file
  636. was composed. Due to a misdesign in ASS aspect ratio arithmetic, this is
  637. necessary to correctly scale the fonts if the aspect ratio has been changed.
  638. @end table
  639. For example, to render the file @file{sub.ass} on top of the input
  640. video, use the command:
  641. @example
  642. ass=sub.ass
  643. @end example
  644. @section bbox
  645. Compute the bounding box for the non-black pixels in the input frame
  646. luminance plane.
  647. This filter computes the bounding box containing all the pixels with a
  648. luminance value greater than the minimum allowed value.
  649. The parameters describing the bounding box are printed on the filter
  650. log.
  651. @section blackdetect
  652. Detect video intervals that are (almost) completely black. Can be
  653. useful to detect chapter transitions, commercials, or invalid
  654. recordings. Output lines contains the time for the start, end and
  655. duration of the detected black interval expressed in seconds.
  656. In order to display the output lines, you need to set the loglevel at
  657. least to the AV_LOG_INFO value.
  658. This filter accepts a list of options in the form of
  659. @var{key}=@var{value} pairs separated by ":". A description of the
  660. accepted options follows.
  661. @table @option
  662. @item black_min_duration, d
  663. Set the minimum detected black duration expressed in seconds. It must
  664. be a non-negative floating point number.
  665. Default value is 2.0.
  666. @item picture_black_ratio_th, pic_th
  667. Set the threshold for considering a picture "black".
  668. Express the minimum value for the ratio:
  669. @example
  670. @var{nb_black_pixels} / @var{nb_pixels}
  671. @end example
  672. for which a picture is considered black.
  673. Default value is 0.98.
  674. @item pixel_black_th, pix_th
  675. Set the threshold for considering a pixel "black".
  676. The threshold expresses the maximum pixel luminance value for which a
  677. pixel is considered "black". The provided value is scaled according to
  678. the following equation:
  679. @example
  680. @var{absolute_threshold} = @var{luminance_minimum_value} + @var{pixel_black_th} * @var{luminance_range_size}
  681. @end example
  682. @var{luminance_range_size} and @var{luminance_minimum_value} depend on
  683. the input video format, the range is [0-255] for YUV full-range
  684. formats and [16-235] for YUV non full-range formats.
  685. Default value is 0.10.
  686. @end table
  687. The following example sets the maximum pixel threshold to the minimum
  688. value, and detects only black intervals of 2 or more seconds:
  689. @example
  690. blackdetect=d=2:pix_th=0.00
  691. @end example
  692. @section blackframe
  693. Detect frames that are (almost) completely black. Can be useful to
  694. detect chapter transitions or commercials. Output lines consist of
  695. the frame number of the detected frame, the percentage of blackness,
  696. the position in the file if known or -1 and the timestamp in seconds.
  697. In order to display the output lines, you need to set the loglevel at
  698. least to the AV_LOG_INFO value.
  699. The filter accepts the syntax:
  700. @example
  701. blackframe[=@var{amount}:[@var{threshold}]]
  702. @end example
  703. @var{amount} is the percentage of the pixels that have to be below the
  704. threshold, and defaults to 98.
  705. @var{threshold} is the threshold below which a pixel value is
  706. considered black, and defaults to 32.
  707. @section boxblur
  708. Apply boxblur algorithm to the input video.
  709. This filter accepts the parameters:
  710. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  711. Chroma and alpha parameters are optional, if not specified they default
  712. to the corresponding values set for @var{luma_radius} and
  713. @var{luma_power}.
  714. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  715. the radius in pixels of the box used for blurring the corresponding
  716. input plane. They are expressions, and can contain the following
  717. constants:
  718. @table @option
  719. @item w, h
  720. the input width and height in pixels
  721. @item cw, ch
  722. the input chroma image width and height in pixels
  723. @item hsub, vsub
  724. horizontal and vertical chroma subsample values. For example for the
  725. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  726. @end table
  727. The radius must be a non-negative number, and must not be greater than
  728. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  729. and of @code{min(cw,ch)/2} for the chroma planes.
  730. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  731. how many times the boxblur filter is applied to the corresponding
  732. plane.
  733. Some examples follow:
  734. @itemize
  735. @item
  736. Apply a boxblur filter with luma, chroma, and alpha radius
  737. set to 2:
  738. @example
  739. boxblur=2:1
  740. @end example
  741. @item
  742. Set luma radius to 2, alpha and chroma radius to 0
  743. @example
  744. boxblur=2:1:0:0:0:0
  745. @end example
  746. @item
  747. Set luma and chroma radius to a fraction of the video dimension
  748. @example
  749. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  750. @end example
  751. @end itemize
  752. @section colormatrix
  753. The colormatrix filter allows conversion between any of the following color
  754. space: BT.709 (@var{bt709}), BT.601 (@var{bt601}), SMPTE-240M (@var{smpte240m})
  755. and FCC (@var{fcc}).
  756. The syntax of the parameters is @var{source}:@var{destination}:
  757. @example
  758. colormatrix=bt601:smpte240m
  759. @end example
  760. @section copy
  761. Copy the input source unchanged to the output. Mainly useful for
  762. testing purposes.
  763. @section crop
  764. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}:@var{keep_aspect}
  765. The @var{keep_aspect} parameter is optional, if specified and set to a
  766. non-zero value will force the output display aspect ratio to be the
  767. same of the input, by changing the output sample aspect ratio.
  768. The @var{out_w}, @var{out_h}, @var{x}, @var{y} parameters are
  769. expressions containing the following constants:
  770. @table @option
  771. @item x, y
  772. the computed values for @var{x} and @var{y}. They are evaluated for
  773. each new frame.
  774. @item in_w, in_h
  775. the input width and height
  776. @item iw, ih
  777. same as @var{in_w} and @var{in_h}
  778. @item out_w, out_h
  779. the output (cropped) width and height
  780. @item ow, oh
  781. same as @var{out_w} and @var{out_h}
  782. @item a
  783. same as @var{iw} / @var{ih}
  784. @item sar
  785. input sample aspect ratio
  786. @item dar
  787. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  788. @item hsub, vsub
  789. horizontal and vertical chroma subsample values. For example for the
  790. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  791. @item n
  792. the number of input frame, starting from 0
  793. @item pos
  794. the position in the file of the input frame, NAN if unknown
  795. @item t
  796. timestamp expressed in seconds, NAN if the input timestamp is unknown
  797. @end table
  798. The @var{out_w} and @var{out_h} parameters specify the expressions for
  799. the width and height of the output (cropped) video. They are
  800. evaluated just at the configuration of the filter.
  801. The default value of @var{out_w} is "in_w", and the default value of
  802. @var{out_h} is "in_h".
  803. The expression for @var{out_w} may depend on the value of @var{out_h},
  804. and the expression for @var{out_h} may depend on @var{out_w}, but they
  805. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  806. evaluated after @var{out_w} and @var{out_h}.
  807. The @var{x} and @var{y} parameters specify the expressions for the
  808. position of the top-left corner of the output (non-cropped) area. They
  809. are evaluated for each frame. If the evaluated value is not valid, it
  810. is approximated to the nearest valid value.
  811. The default value of @var{x} is "(in_w-out_w)/2", and the default
  812. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  813. the center of the input image.
  814. The expression for @var{x} may depend on @var{y}, and the expression
  815. for @var{y} may depend on @var{x}.
  816. Follow some examples:
  817. @example
  818. # crop the central input area with size 100x100
  819. crop=100:100
  820. # crop the central input area with size 2/3 of the input video
  821. "crop=2/3*in_w:2/3*in_h"
  822. # crop the input video central square
  823. crop=in_h
  824. # delimit the rectangle with the top-left corner placed at position
  825. # 100:100 and the right-bottom corner corresponding to the right-bottom
  826. # corner of the input image.
  827. crop=in_w-100:in_h-100:100:100
  828. # crop 10 pixels from the left and right borders, and 20 pixels from
  829. # the top and bottom borders
  830. "crop=in_w-2*10:in_h-2*20"
  831. # keep only the bottom right quarter of the input image
  832. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  833. # crop height for getting Greek harmony
  834. "crop=in_w:1/PHI*in_w"
  835. # trembling effect
  836. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  837. # erratic camera effect depending on timestamp
  838. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  839. # set x depending on the value of y
  840. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  841. @end example
  842. @section cropdetect
  843. Auto-detect crop size.
  844. Calculate necessary cropping parameters and prints the recommended
  845. parameters through the logging system. The detected dimensions
  846. correspond to the non-black area of the input video.
  847. It accepts the syntax:
  848. @example
  849. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  850. @end example
  851. @table @option
  852. @item limit
  853. Threshold, which can be optionally specified from nothing (0) to
  854. everything (255), defaults to 24.
  855. @item round
  856. Value which the width/height should be divisible by, defaults to
  857. 16. The offset is automatically adjusted to center the video. Use 2 to
  858. get only even dimensions (needed for 4:2:2 video). 16 is best when
  859. encoding to most video codecs.
  860. @item reset
  861. Counter that determines after how many frames cropdetect will reset
  862. the previously detected largest video area and start over to detect
  863. the current optimal crop area. Defaults to 0.
  864. This can be useful when channel logos distort the video area. 0
  865. indicates never reset and return the largest area encountered during
  866. playback.
  867. @end table
  868. @section delogo
  869. Suppress a TV station logo by a simple interpolation of the surrounding
  870. pixels. Just set a rectangle covering the logo and watch it disappear
  871. (and sometimes something even uglier appear - your mileage may vary).
  872. The filter accepts parameters as a string of the form
  873. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  874. @var{key}=@var{value} pairs, separated by ":".
  875. The description of the accepted parameters follows.
  876. @table @option
  877. @item x, y
  878. Specify the top left corner coordinates of the logo. They must be
  879. specified.
  880. @item w, h
  881. Specify the width and height of the logo to clear. They must be
  882. specified.
  883. @item band, t
  884. Specify the thickness of the fuzzy edge of the rectangle (added to
  885. @var{w} and @var{h}). The default value is 4.
  886. @item show
  887. When set to 1, a green rectangle is drawn on the screen to simplify
  888. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  889. @var{band} is set to 4. The default value is 0.
  890. @end table
  891. Some examples follow.
  892. @itemize
  893. @item
  894. Set a rectangle covering the area with top left corner coordinates 0,0
  895. and size 100x77, setting a band of size 10:
  896. @example
  897. delogo=0:0:100:77:10
  898. @end example
  899. @item
  900. As the previous example, but use named options:
  901. @example
  902. delogo=x=0:y=0:w=100:h=77:band=10
  903. @end example
  904. @end itemize
  905. @section deshake
  906. Attempt to fix small changes in horizontal and/or vertical shift. This
  907. filter helps remove camera shake from hand-holding a camera, bumping a
  908. tripod, moving on a vehicle, etc.
  909. The filter accepts parameters as a string of the form
  910. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  911. A description of the accepted parameters follows.
  912. @table @option
  913. @item x, y, w, h
  914. Specify a rectangular area where to limit the search for motion
  915. vectors.
  916. If desired the search for motion vectors can be limited to a
  917. rectangular area of the frame defined by its top left corner, width
  918. and height. These parameters have the same meaning as the drawbox
  919. filter which can be used to visualise the position of the bounding
  920. box.
  921. This is useful when simultaneous movement of subjects within the frame
  922. might be confused for camera motion by the motion vector search.
  923. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  924. then the full frame is used. This allows later options to be set
  925. without specifying the bounding box for the motion vector search.
  926. Default - search the whole frame.
  927. @item rx, ry
  928. Specify the maximum extent of movement in x and y directions in the
  929. range 0-64 pixels. Default 16.
  930. @item edge
  931. Specify how to generate pixels to fill blanks at the edge of the
  932. frame. An integer from 0 to 3 as follows:
  933. @table @option
  934. @item 0
  935. Fill zeroes at blank locations
  936. @item 1
  937. Original image at blank locations
  938. @item 2
  939. Extruded edge value at blank locations
  940. @item 3
  941. Mirrored edge at blank locations
  942. @end table
  943. The default setting is mirror edge at blank locations.
  944. @item blocksize
  945. Specify the blocksize to use for motion search. Range 4-128 pixels,
  946. default 8.
  947. @item contrast
  948. Specify the contrast threshold for blocks. Only blocks with more than
  949. the specified contrast (difference between darkest and lightest
  950. pixels) will be considered. Range 1-255, default 125.
  951. @item search
  952. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  953. search. Default - exhaustive search.
  954. @item filename
  955. If set then a detailed log of the motion search is written to the
  956. specified file.
  957. @end table
  958. @section drawbox
  959. Draw a colored box on the input image.
  960. It accepts the syntax:
  961. @example
  962. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  963. @end example
  964. @table @option
  965. @item x, y
  966. Specify the top left corner coordinates of the box. Default to 0.
  967. @item width, height
  968. Specify the width and height of the box, if 0 they are interpreted as
  969. the input width and height. Default to 0.
  970. @item color
  971. Specify the color of the box to write, it can be the name of a color
  972. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  973. @end table
  974. Follow some examples:
  975. @example
  976. # draw a black box around the edge of the input image
  977. drawbox
  978. # draw a box with color red and an opacity of 50%
  979. drawbox=10:20:200:60:red@@0.5"
  980. @end example
  981. @section drawtext
  982. Draw text string or text from specified file on top of video using the
  983. libfreetype library.
  984. To enable compilation of this filter you need to configure FFmpeg with
  985. @code{--enable-libfreetype}.
  986. The filter also recognizes strftime() sequences in the provided text
  987. and expands them accordingly. Check the documentation of strftime().
  988. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  989. separated by ":".
  990. The description of the accepted parameters follows.
  991. @table @option
  992. @item box
  993. Used to draw a box around text using background color.
  994. Value should be either 1 (enable) or 0 (disable).
  995. The default value of @var{box} is 0.
  996. @item boxcolor
  997. The color to be used for drawing box around text.
  998. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  999. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1000. The default value of @var{boxcolor} is "white".
  1001. @item draw
  1002. Set an expression which specifies if the text should be drawn. If the
  1003. expression evaluates to 0, the text is not drawn. This is useful for
  1004. specifying that the text should be drawn only when specific conditions
  1005. are met.
  1006. Default value is "1".
  1007. See below for the list of accepted constants and functions.
  1008. @item fix_bounds
  1009. If true, check and fix text coords to avoid clipping.
  1010. @item fontcolor
  1011. The color to be used for drawing fonts.
  1012. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  1013. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  1014. The default value of @var{fontcolor} is "black".
  1015. @item fontfile
  1016. The font file to be used for drawing text. Path must be included.
  1017. This parameter is mandatory.
  1018. @item fontsize
  1019. The font size to be used for drawing text.
  1020. The default value of @var{fontsize} is 16.
  1021. @item ft_load_flags
  1022. Flags to be used for loading the fonts.
  1023. The flags map the corresponding flags supported by libfreetype, and are
  1024. a combination of the following values:
  1025. @table @var
  1026. @item default
  1027. @item no_scale
  1028. @item no_hinting
  1029. @item render
  1030. @item no_bitmap
  1031. @item vertical_layout
  1032. @item force_autohint
  1033. @item crop_bitmap
  1034. @item pedantic
  1035. @item ignore_global_advance_width
  1036. @item no_recurse
  1037. @item ignore_transform
  1038. @item monochrome
  1039. @item linear_design
  1040. @item no_autohint
  1041. @item end table
  1042. @end table
  1043. Default value is "render".
  1044. For more information consult the documentation for the FT_LOAD_*
  1045. libfreetype flags.
  1046. @item shadowcolor
  1047. The color to be used for drawing a shadow behind the drawn text. It
  1048. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  1049. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  1050. The default value of @var{shadowcolor} is "black".
  1051. @item shadowx, shadowy
  1052. The x and y offsets for the text shadow position with respect to the
  1053. position of the text. They can be either positive or negative
  1054. values. Default value for both is "0".
  1055. @item tabsize
  1056. The size in number of spaces to use for rendering the tab.
  1057. Default value is 4.
  1058. @item timecode
  1059. Set the initial timecode representation in "hh:mm:ss[:;.]ff"
  1060. format. It can be used with or without text parameter. @var{timecode_rate}
  1061. option must be specified.
  1062. @item timecode_rate, rate, r
  1063. Set the timecode frame rate (timecode only).
  1064. @item text
  1065. The text string to be drawn. The text must be a sequence of UTF-8
  1066. encoded characters.
  1067. This parameter is mandatory if no file is specified with the parameter
  1068. @var{textfile}.
  1069. @item textfile
  1070. A text file containing text to be drawn. The text must be a sequence
  1071. of UTF-8 encoded characters.
  1072. This parameter is mandatory if no text string is specified with the
  1073. parameter @var{text}.
  1074. If both @var{text} and @var{textfile} are specified, an error is thrown.
  1075. @item x, y
  1076. The expressions which specify the offsets where text will be drawn
  1077. within the video frame. They are relative to the top/left border of the
  1078. output image.
  1079. The default value of @var{x} and @var{y} is "0".
  1080. See below for the list of accepted constants and functions.
  1081. @end table
  1082. The parameters for @var{x} and @var{y} are expressions containing the
  1083. following constants and functions:
  1084. @table @option
  1085. @item dar
  1086. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  1087. @item hsub, vsub
  1088. horizontal and vertical chroma subsample values. For example for the
  1089. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1090. @item line_h, lh
  1091. the height of each text line
  1092. @item main_h, h, H
  1093. the input height
  1094. @item main_w, w, W
  1095. the input width
  1096. @item max_glyph_a, ascent
  1097. the maximum distance from the baseline to the highest/upper grid
  1098. coordinate used to place a glyph outline point, for all the rendered
  1099. glyphs.
  1100. It is a positive value, due to the grid's orientation with the Y axis
  1101. upwards.
  1102. @item max_glyph_d, descent
  1103. the maximum distance from the baseline to the lowest grid coordinate
  1104. used to place a glyph outline point, for all the rendered glyphs.
  1105. This is a negative value, due to the grid's orientation, with the Y axis
  1106. upwards.
  1107. @item max_glyph_h
  1108. maximum glyph height, that is the maximum height for all the glyphs
  1109. contained in the rendered text, it is equivalent to @var{ascent} -
  1110. @var{descent}.
  1111. @item max_glyph_w
  1112. maximum glyph width, that is the maximum width for all the glyphs
  1113. contained in the rendered text
  1114. @item n
  1115. the number of input frame, starting from 0
  1116. @item rand(min, max)
  1117. return a random number included between @var{min} and @var{max}
  1118. @item sar
  1119. input sample aspect ratio
  1120. @item t
  1121. timestamp expressed in seconds, NAN if the input timestamp is unknown
  1122. @item text_h, th
  1123. the height of the rendered text
  1124. @item text_w, tw
  1125. the width of the rendered text
  1126. @item x, y
  1127. the x and y offset coordinates where the text is drawn.
  1128. These parameters allow the @var{x} and @var{y} expressions to refer
  1129. each other, so you can for example specify @code{y=x/dar}.
  1130. @end table
  1131. If libavfilter was built with @code{--enable-fontconfig}, then
  1132. @option{fontfile} can be a fontconfig pattern or omitted.
  1133. Some examples follow.
  1134. @itemize
  1135. @item
  1136. Draw "Test Text" with font FreeSerif, using the default values for the
  1137. optional parameters.
  1138. @example
  1139. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  1140. @end example
  1141. @item
  1142. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  1143. and y=50 (counting from the top-left corner of the screen), text is
  1144. yellow with a red box around it. Both the text and the box have an
  1145. opacity of 20%.
  1146. @example
  1147. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  1148. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  1149. @end example
  1150. Note that the double quotes are not necessary if spaces are not used
  1151. within the parameter list.
  1152. @item
  1153. Show the text at the center of the video frame:
  1154. @example
  1155. drawtext="fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  1156. @end example
  1157. @item
  1158. Show a text line sliding from right to left in the last row of the video
  1159. frame. The file @file{LONG_LINE} is assumed to contain a single line
  1160. with no newlines.
  1161. @example
  1162. drawtext="fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t"
  1163. @end example
  1164. @item
  1165. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  1166. @example
  1167. drawtext="fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  1168. @end example
  1169. @item
  1170. Draw a single green letter "g", at the center of the input video.
  1171. The glyph baseline is placed at half screen height.
  1172. @example
  1173. drawtext="fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent"
  1174. @end example
  1175. @item
  1176. Show text for 1 second every 3 seconds:
  1177. @example
  1178. drawtext="fontfile=FreeSerif.ttf:fontcolor=white:x=100:y=x/dar:draw=lt(mod(t\\,3)\\,1):text='blink'"
  1179. @end example
  1180. @item
  1181. Use fontconfig to set the font. Note that the colons need to be escaped.
  1182. @example
  1183. drawtext='fontfile=Linux Libertine O-40\\:style=Semibold:text=FFmpeg'
  1184. @end example
  1185. @end itemize
  1186. For more information about libfreetype, check:
  1187. @url{http://www.freetype.org/}.
  1188. For more information about fontconfig, check:
  1189. @url{http://freedesktop.org/software/fontconfig/fontconfig-user.html}.
  1190. @section fade
  1191. Apply fade-in/out effect to input video.
  1192. It accepts the parameters:
  1193. @var{type}:@var{start_frame}:@var{nb_frames}[:@var{options}]
  1194. @var{type} specifies if the effect type, can be either "in" for
  1195. fade-in, or "out" for a fade-out effect.
  1196. @var{start_frame} specifies the number of the start frame for starting
  1197. to apply the fade effect.
  1198. @var{nb_frames} specifies the number of frames for which the fade
  1199. effect has to last. At the end of the fade-in effect the output video
  1200. will have the same intensity as the input video, at the end of the
  1201. fade-out transition the output video will be completely black.
  1202. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  1203. separated by ":". The description of the accepted options follows.
  1204. @table @option
  1205. @item type, t
  1206. See @var{type}.
  1207. @item start_frame, s
  1208. See @var{start_frame}.
  1209. @item nb_frames, n
  1210. See @var{nb_frames}.
  1211. @item alpha
  1212. If set to 1, fade only alpha channel, if one exists on the input.
  1213. Default value is 0.
  1214. @end table
  1215. A few usage examples follow, usable too as test scenarios.
  1216. @example
  1217. # fade in first 30 frames of video
  1218. fade=in:0:30
  1219. # fade out last 45 frames of a 200-frame video
  1220. fade=out:155:45
  1221. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  1222. fade=in:0:25, fade=out:975:25
  1223. # make first 5 frames black, then fade in from frame 5-24
  1224. fade=in:5:20
  1225. # fade in alpha over first 25 frames of video
  1226. fade=in:0:25:alpha=1
  1227. @end example
  1228. @section fieldorder
  1229. Transform the field order of the input video.
  1230. It accepts one parameter which specifies the required field order that
  1231. the input interlaced video will be transformed to. The parameter can
  1232. assume one of the following values:
  1233. @table @option
  1234. @item 0 or bff
  1235. output bottom field first
  1236. @item 1 or tff
  1237. output top field first
  1238. @end table
  1239. Default value is "tff".
  1240. Transformation is achieved by shifting the picture content up or down
  1241. by one line, and filling the remaining line with appropriate picture content.
  1242. This method is consistent with most broadcast field order converters.
  1243. If the input video is not flagged as being interlaced, or it is already
  1244. flagged as being of the required output field order then this filter does
  1245. not alter the incoming video.
  1246. This filter is very useful when converting to or from PAL DV material,
  1247. which is bottom field first.
  1248. For example:
  1249. @example
  1250. ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  1251. @end example
  1252. @section fifo
  1253. Buffer input images and send them when they are requested.
  1254. This filter is mainly useful when auto-inserted by the libavfilter
  1255. framework.
  1256. The filter does not take parameters.
  1257. @section format
  1258. Convert the input video to one of the specified pixel formats.
  1259. Libavfilter will try to pick one that is supported for the input to
  1260. the next filter.
  1261. The filter accepts a list of pixel format names, separated by ":",
  1262. for example "yuv420p:monow:rgb24".
  1263. Some examples follow:
  1264. @example
  1265. # convert the input video to the format "yuv420p"
  1266. format=yuv420p
  1267. # convert the input video to any of the formats in the list
  1268. format=yuv420p:yuv444p:yuv410p
  1269. @end example
  1270. @section fps
  1271. Convert the video to specified constant framerate by duplicating or dropping
  1272. frames as necessary.
  1273. This filter accepts the following named parameters:
  1274. @table @option
  1275. @item fps
  1276. Desired output framerate.
  1277. @end table
  1278. @anchor{frei0r}
  1279. @section frei0r
  1280. Apply a frei0r effect to the input video.
  1281. To enable compilation of this filter you need to install the frei0r
  1282. header and configure FFmpeg with @code{--enable-frei0r}.
  1283. The filter supports the syntax:
  1284. @example
  1285. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  1286. @end example
  1287. @var{filter_name} is the name to the frei0r effect to load. If the
  1288. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  1289. is searched in each one of the directories specified by the colon
  1290. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  1291. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  1292. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  1293. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  1294. for the frei0r effect.
  1295. A frei0r effect parameter can be a boolean (whose values are specified
  1296. with "y" and "n"), a double, a color (specified by the syntax
  1297. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  1298. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  1299. description), a position (specified by the syntax @var{X}/@var{Y},
  1300. @var{X} and @var{Y} being float numbers) and a string.
  1301. The number and kind of parameters depend on the loaded effect. If an
  1302. effect parameter is not specified the default value is set.
  1303. Some examples follow:
  1304. @example
  1305. # apply the distort0r effect, set the first two double parameters
  1306. frei0r=distort0r:0.5:0.01
  1307. # apply the colordistance effect, takes a color as first parameter
  1308. frei0r=colordistance:0.2/0.3/0.4
  1309. frei0r=colordistance:violet
  1310. frei0r=colordistance:0x112233
  1311. # apply the perspective effect, specify the top left and top right
  1312. # image positions
  1313. frei0r=perspective:0.2/0.2:0.8/0.2
  1314. @end example
  1315. For more information see:
  1316. @url{http://piksel.org/frei0r}
  1317. @section gradfun
  1318. Fix the banding artifacts that are sometimes introduced into nearly flat
  1319. regions by truncation to 8bit color depth.
  1320. Interpolate the gradients that should go where the bands are, and
  1321. dither them.
  1322. This filter is designed for playback only. Do not use it prior to
  1323. lossy compression, because compression tends to lose the dither and
  1324. bring back the bands.
  1325. The filter takes two optional parameters, separated by ':':
  1326. @var{strength}:@var{radius}
  1327. @var{strength} is the maximum amount by which the filter will change
  1328. any one pixel. Also the threshold for detecting nearly flat
  1329. regions. Acceptable values range from .51 to 255, default value is
  1330. 1.2, out-of-range values will be clipped to the valid range.
  1331. @var{radius} is the neighborhood to fit the gradient to. A larger
  1332. radius makes for smoother gradients, but also prevents the filter from
  1333. modifying the pixels near detailed regions. Acceptable values are
  1334. 8-32, default value is 16, out-of-range values will be clipped to the
  1335. valid range.
  1336. @example
  1337. # default parameters
  1338. gradfun=1.2:16
  1339. # omitting radius
  1340. gradfun=1.2
  1341. @end example
  1342. @section hflip
  1343. Flip the input video horizontally.
  1344. For example to horizontally flip the input video with @command{ffmpeg}:
  1345. @example
  1346. ffmpeg -i in.avi -vf "hflip" out.avi
  1347. @end example
  1348. @section hqdn3d
  1349. High precision/quality 3d denoise filter. This filter aims to reduce
  1350. image noise producing smooth images and making still images really
  1351. still. It should enhance compressibility.
  1352. It accepts the following optional parameters:
  1353. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  1354. @table @option
  1355. @item luma_spatial
  1356. a non-negative float number which specifies spatial luma strength,
  1357. defaults to 4.0
  1358. @item chroma_spatial
  1359. a non-negative float number which specifies spatial chroma strength,
  1360. defaults to 3.0*@var{luma_spatial}/4.0
  1361. @item luma_tmp
  1362. a float number which specifies luma temporal strength, defaults to
  1363. 6.0*@var{luma_spatial}/4.0
  1364. @item chroma_tmp
  1365. a float number which specifies chroma temporal strength, defaults to
  1366. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  1367. @end table
  1368. @section idet
  1369. Interlaceing detect filter. This filter tries to detect if the input is
  1370. interlaced or progressive. Top or bottom field first.
  1371. @section lut, lutrgb, lutyuv
  1372. Compute a look-up table for binding each pixel component input value
  1373. to an output value, and apply it to input video.
  1374. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  1375. to an RGB input video.
  1376. These filters accept in input a ":"-separated list of options, which
  1377. specify the expressions used for computing the lookup table for the
  1378. corresponding pixel component values.
  1379. The @var{lut} filter requires either YUV or RGB pixel formats in
  1380. input, and accepts the options:
  1381. @table @option
  1382. @item c0
  1383. first pixel component
  1384. @item c1
  1385. second pixel component
  1386. @item c2
  1387. third pixel component
  1388. @item c3
  1389. fourth pixel component, corresponds to the alpha component
  1390. @end table
  1391. The exact component associated to each option depends on the format in
  1392. input.
  1393. The @var{lutrgb} filter requires RGB pixel formats in input, and
  1394. accepts the options:
  1395. @table @option
  1396. @item r
  1397. red component
  1398. @item g
  1399. green component
  1400. @item b
  1401. blue component
  1402. @item a
  1403. alpha component
  1404. @end table
  1405. The @var{lutyuv} filter requires YUV pixel formats in input, and
  1406. accepts the options:
  1407. @table @option
  1408. @item y
  1409. Y/luminance component
  1410. @item u
  1411. U/Cb component
  1412. @item v
  1413. V/Cr component
  1414. @item a
  1415. alpha component
  1416. @end table
  1417. The expressions can contain the following constants and functions:
  1418. @table @option
  1419. @item w, h
  1420. the input width and height
  1421. @item val
  1422. input value for the pixel component
  1423. @item clipval
  1424. the input value clipped in the @var{minval}-@var{maxval} range
  1425. @item maxval
  1426. maximum value for the pixel component
  1427. @item minval
  1428. minimum value for the pixel component
  1429. @item negval
  1430. the negated value for the pixel component value clipped in the
  1431. @var{minval}-@var{maxval} range , it corresponds to the expression
  1432. "maxval-clipval+minval"
  1433. @item clip(val)
  1434. the computed value in @var{val} clipped in the
  1435. @var{minval}-@var{maxval} range
  1436. @item gammaval(gamma)
  1437. the computed gamma correction value of the pixel component value
  1438. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1439. expression
  1440. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1441. @end table
  1442. All expressions default to "val".
  1443. Some examples follow:
  1444. @example
  1445. # negate input video
  1446. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1447. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1448. # the above is the same as
  1449. lutrgb="r=negval:g=negval:b=negval"
  1450. lutyuv="y=negval:u=negval:v=negval"
  1451. # negate luminance
  1452. lutyuv=y=negval
  1453. # remove chroma components, turns the video into a graytone image
  1454. lutyuv="u=128:v=128"
  1455. # apply a luma burning effect
  1456. lutyuv="y=2*val"
  1457. # remove green and blue components
  1458. lutrgb="g=0:b=0"
  1459. # set a constant alpha channel value on input
  1460. format=rgba,lutrgb=a="maxval-minval/2"
  1461. # correct luminance gamma by a 0.5 factor
  1462. lutyuv=y=gammaval(0.5)
  1463. @end example
  1464. @section mp
  1465. Apply an MPlayer filter to the input video.
  1466. This filter provides a wrapper around most of the filters of
  1467. MPlayer/MEncoder.
  1468. This wrapper is considered experimental. Some of the wrapped filters
  1469. may not work properly and we may drop support for them, as they will
  1470. be implemented natively into FFmpeg. Thus you should avoid
  1471. depending on them when writing portable scripts.
  1472. The filters accepts the parameters:
  1473. @var{filter_name}[:=]@var{filter_params}
  1474. @var{filter_name} is the name of a supported MPlayer filter,
  1475. @var{filter_params} is a string containing the parameters accepted by
  1476. the named filter.
  1477. The list of the currently supported filters follows:
  1478. @table @var
  1479. @item decimate
  1480. @item denoise3d
  1481. @item detc
  1482. @item dint
  1483. @item divtc
  1484. @item down3dright
  1485. @item dsize
  1486. @item eq2
  1487. @item eq
  1488. @item field
  1489. @item fil
  1490. @item fixpts
  1491. @item framestep
  1492. @item fspp
  1493. @item geq
  1494. @item harddup
  1495. @item hqdn3d
  1496. @item hue
  1497. @item il
  1498. @item ilpack
  1499. @item ivtc
  1500. @item kerndeint
  1501. @item mcdeint
  1502. @item noise
  1503. @item ow
  1504. @item palette
  1505. @item perspective
  1506. @item phase
  1507. @item pp7
  1508. @item pullup
  1509. @item qp
  1510. @item rectangle
  1511. @item rotate
  1512. @item sab
  1513. @item smartblur
  1514. @item softpulldown
  1515. @item softskip
  1516. @item spp
  1517. @item telecine
  1518. @item tile
  1519. @item tinterlace
  1520. @item unsharp
  1521. @item uspp
  1522. @item yuvcsp
  1523. @item yvu9
  1524. @end table
  1525. The parameter syntax and behavior for the listed filters are the same
  1526. of the corresponding MPlayer filters. For detailed instructions check
  1527. the "VIDEO FILTERS" section in the MPlayer manual.
  1528. Some examples follow:
  1529. @example
  1530. # adjust gamma, brightness, contrast
  1531. mp=eq2=1.0:2:0.5
  1532. # tweak hue and saturation
  1533. mp=hue=100:-10
  1534. @end example
  1535. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1536. @section negate
  1537. Negate input video.
  1538. This filter accepts an integer in input, if non-zero it negates the
  1539. alpha component (if available). The default value in input is 0.
  1540. @section noformat
  1541. Force libavfilter not to use any of the specified pixel formats for the
  1542. input to the next filter.
  1543. The filter accepts a list of pixel format names, separated by ":",
  1544. for example "yuv420p:monow:rgb24".
  1545. Some examples follow:
  1546. @example
  1547. # force libavfilter to use a format different from "yuv420p" for the
  1548. # input to the vflip filter
  1549. noformat=yuv420p,vflip
  1550. # convert the input video to any of the formats not contained in the list
  1551. noformat=yuv420p:yuv444p:yuv410p
  1552. @end example
  1553. @section null
  1554. Pass the video source unchanged to the output.
  1555. @section ocv
  1556. Apply video transform using libopencv.
  1557. To enable this filter install libopencv library and headers and
  1558. configure FFmpeg with @code{--enable-libopencv}.
  1559. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1560. @var{filter_name} is the name of the libopencv filter to apply.
  1561. @var{filter_params} specifies the parameters to pass to the libopencv
  1562. filter. If not specified the default values are assumed.
  1563. Refer to the official libopencv documentation for more precise
  1564. information:
  1565. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1566. Follows the list of supported libopencv filters.
  1567. @anchor{dilate}
  1568. @subsection dilate
  1569. Dilate an image by using a specific structuring element.
  1570. This filter corresponds to the libopencv function @code{cvDilate}.
  1571. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1572. @var{struct_el} represents a structuring element, and has the syntax:
  1573. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1574. @var{cols} and @var{rows} represent the number of columns and rows of
  1575. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1576. point, and @var{shape} the shape for the structuring element, and
  1577. can be one of the values "rect", "cross", "ellipse", "custom".
  1578. If the value for @var{shape} is "custom", it must be followed by a
  1579. string of the form "=@var{filename}". The file with name
  1580. @var{filename} is assumed to represent a binary image, with each
  1581. printable character corresponding to a bright pixel. When a custom
  1582. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1583. or columns and rows of the read file are assumed instead.
  1584. The default value for @var{struct_el} is "3x3+0x0/rect".
  1585. @var{nb_iterations} specifies the number of times the transform is
  1586. applied to the image, and defaults to 1.
  1587. Follow some example:
  1588. @example
  1589. # use the default values
  1590. ocv=dilate
  1591. # dilate using a structuring element with a 5x5 cross, iterate two times
  1592. ocv=dilate=5x5+2x2/cross:2
  1593. # read the shape from the file diamond.shape, iterate two times
  1594. # the file diamond.shape may contain a pattern of characters like this:
  1595. # *
  1596. # ***
  1597. # *****
  1598. # ***
  1599. # *
  1600. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1601. ocv=0x0+2x2/custom=diamond.shape:2
  1602. @end example
  1603. @subsection erode
  1604. Erode an image by using a specific structuring element.
  1605. This filter corresponds to the libopencv function @code{cvErode}.
  1606. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1607. with the same syntax and semantics as the @ref{dilate} filter.
  1608. @subsection smooth
  1609. Smooth the input video.
  1610. The filter takes the following parameters:
  1611. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1612. @var{type} is the type of smooth filter to apply, and can be one of
  1613. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1614. "bilateral". The default value is "gaussian".
  1615. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1616. parameters whose meanings depend on smooth type. @var{param1} and
  1617. @var{param2} accept integer positive values or 0, @var{param3} and
  1618. @var{param4} accept float values.
  1619. The default value for @var{param1} is 3, the default value for the
  1620. other parameters is 0.
  1621. These parameters correspond to the parameters assigned to the
  1622. libopencv function @code{cvSmooth}.
  1623. @anchor{overlay}
  1624. @section overlay
  1625. Overlay one video on top of another.
  1626. It takes two inputs and one output, the first input is the "main"
  1627. video on which the second input is overlayed.
  1628. It accepts the parameters: @var{x}:@var{y}[:@var{options}].
  1629. @var{x} is the x coordinate of the overlayed video on the main video,
  1630. @var{y} is the y coordinate. @var{x} and @var{y} are expressions containing
  1631. the following parameters:
  1632. @table @option
  1633. @item main_w, main_h
  1634. main input width and height
  1635. @item W, H
  1636. same as @var{main_w} and @var{main_h}
  1637. @item overlay_w, overlay_h
  1638. overlay input width and height
  1639. @item w, h
  1640. same as @var{overlay_w} and @var{overlay_h}
  1641. @end table
  1642. @var{options} is an optional list of @var{key}=@var{value} pairs,
  1643. separated by ":".
  1644. The description of the accepted options follows.
  1645. @table @option
  1646. @item rgb
  1647. If set to 1, force the filter to accept inputs in the RGB
  1648. color space. Default value is 0.
  1649. @end table
  1650. Be aware that frames are taken from each input video in timestamp
  1651. order, hence, if their initial timestamps differ, it is a a good idea
  1652. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1653. have them begin in the same zero timestamp, as it does the example for
  1654. the @var{movie} filter.
  1655. Follow some examples:
  1656. @example
  1657. # draw the overlay at 10 pixels from the bottom right
  1658. # corner of the main video.
  1659. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1660. # insert a transparent PNG logo in the bottom left corner of the input
  1661. ffmpeg -i input -i logo -filter_complex 'overlay=10:main_h-overlay_h-10' output
  1662. # insert 2 different transparent PNG logos (second logo on bottom
  1663. # right corner):
  1664. ffmpeg -i input -i logo1 -i logo2 -filter_complex
  1665. 'overlay=10:H-h-10,overlay=W-w-10:H-h-10' output
  1666. # add a transparent color layer on top of the main video,
  1667. # WxH specifies the size of the main input to the overlay filter
  1668. color=red@.3:WxH [over]; [in][over] overlay [out]
  1669. @end example
  1670. You can chain together more overlays but the efficiency of such
  1671. approach is yet to be tested.
  1672. @section pad
  1673. Add paddings to the input image, and places the original input at the
  1674. given coordinates @var{x}, @var{y}.
  1675. It accepts the following parameters:
  1676. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1677. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1678. expressions containing the following constants:
  1679. @table @option
  1680. @item in_w, in_h
  1681. the input video width and height
  1682. @item iw, ih
  1683. same as @var{in_w} and @var{in_h}
  1684. @item out_w, out_h
  1685. the output width and height, that is the size of the padded area as
  1686. specified by the @var{width} and @var{height} expressions
  1687. @item ow, oh
  1688. same as @var{out_w} and @var{out_h}
  1689. @item x, y
  1690. x and y offsets as specified by the @var{x} and @var{y}
  1691. expressions, or NAN if not yet specified
  1692. @item a
  1693. same as @var{iw} / @var{ih}
  1694. @item sar
  1695. input sample aspect ratio
  1696. @item dar
  1697. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1698. @item hsub, vsub
  1699. horizontal and vertical chroma subsample values. For example for the
  1700. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1701. @end table
  1702. Follows the description of the accepted parameters.
  1703. @table @option
  1704. @item width, height
  1705. Specify the size of the output image with the paddings added. If the
  1706. value for @var{width} or @var{height} is 0, the corresponding input size
  1707. is used for the output.
  1708. The @var{width} expression can reference the value set by the
  1709. @var{height} expression, and vice versa.
  1710. The default value of @var{width} and @var{height} is 0.
  1711. @item x, y
  1712. Specify the offsets where to place the input image in the padded area
  1713. with respect to the top/left border of the output image.
  1714. The @var{x} expression can reference the value set by the @var{y}
  1715. expression, and vice versa.
  1716. The default value of @var{x} and @var{y} is 0.
  1717. @item color
  1718. Specify the color of the padded area, it can be the name of a color
  1719. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1720. The default value of @var{color} is "black".
  1721. @end table
  1722. Some examples follow:
  1723. @example
  1724. # Add paddings with color "violet" to the input video. Output video
  1725. # size is 640x480, the top-left corner of the input video is placed at
  1726. # column 0, row 40.
  1727. pad=640:480:0:40:violet
  1728. # pad the input to get an output with dimensions increased bt 3/2,
  1729. # and put the input video at the center of the padded area
  1730. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1731. # pad the input to get a squared output with size equal to the maximum
  1732. # value between the input width and height, and put the input video at
  1733. # the center of the padded area
  1734. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1735. # pad the input to get a final w/h ratio of 16:9
  1736. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1737. # for anamorphic video, in order to set the output display aspect ratio,
  1738. # it is necessary to use sar in the expression, according to the relation:
  1739. # (ih * X / ih) * sar = output_dar
  1740. # X = output_dar / sar
  1741. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1742. # double output size and put the input video in the bottom-right
  1743. # corner of the output padded area
  1744. pad="2*iw:2*ih:ow-iw:oh-ih"
  1745. @end example
  1746. @section pixdesctest
  1747. Pixel format descriptor test filter, mainly useful for internal
  1748. testing. The output video should be equal to the input video.
  1749. For example:
  1750. @example
  1751. format=monow, pixdesctest
  1752. @end example
  1753. can be used to test the monowhite pixel format descriptor definition.
  1754. @section removelogo
  1755. Suppress a TV station logo, using an image file to determine which
  1756. pixels comprise the logo. It works by filling in the pixels that
  1757. comprise the logo with neighboring pixels.
  1758. This filter requires one argument which specifies the filter bitmap
  1759. file, which can be any image format supported by libavformat. The
  1760. width and height of the image file must match those of the video
  1761. stream being processed.
  1762. Pixels in the provided bitmap image with a value of zero are not
  1763. considered part of the logo, non-zero pixels are considered part of
  1764. the logo. If you use white (255) for the logo and black (0) for the
  1765. rest, you will be safe. For making the filter bitmap, it is
  1766. recommended to take a screen capture of a black frame with the logo
  1767. visible, and then using a threshold filter followed by the erode
  1768. filter once or twice.
  1769. If needed, little splotches can be fixed manually. Remember that if
  1770. logo pixels are not covered, the filter quality will be much
  1771. reduced. Marking too many pixels as part of the logo does not hurt as
  1772. much, but it will increase the amount of blurring needed to cover over
  1773. the image and will destroy more information than necessary, and extra
  1774. pixels will slow things down on a large logo.
  1775. @section scale
  1776. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1777. The scale filter forces the output display aspect ratio to be the same
  1778. of the input, by changing the output sample aspect ratio.
  1779. The parameters @var{width} and @var{height} are expressions containing
  1780. the following constants:
  1781. @table @option
  1782. @item in_w, in_h
  1783. the input width and height
  1784. @item iw, ih
  1785. same as @var{in_w} and @var{in_h}
  1786. @item out_w, out_h
  1787. the output (cropped) width and height
  1788. @item ow, oh
  1789. same as @var{out_w} and @var{out_h}
  1790. @item a
  1791. same as @var{iw} / @var{ih}
  1792. @item sar
  1793. input sample aspect ratio
  1794. @item dar
  1795. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1796. @item hsub, vsub
  1797. horizontal and vertical chroma subsample values. For example for the
  1798. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1799. @end table
  1800. If the input image format is different from the format requested by
  1801. the next filter, the scale filter will convert the input to the
  1802. requested format.
  1803. If the value for @var{width} or @var{height} is 0, the respective input
  1804. size is used for the output.
  1805. If the value for @var{width} or @var{height} is -1, the scale filter will
  1806. use, for the respective output size, a value that maintains the aspect
  1807. ratio of the input image.
  1808. The default value of @var{width} and @var{height} is 0.
  1809. Valid values for the optional parameter @var{interl} are:
  1810. @table @option
  1811. @item 1
  1812. force interlaced aware scaling
  1813. @item -1
  1814. select interlaced aware scaling depending on whether the source frames
  1815. are flagged as interlaced or not
  1816. @end table
  1817. Unless @var{interl} is set to one of the above options, interlaced scaling will not be used.
  1818. Some examples follow:
  1819. @example
  1820. # scale the input video to a size of 200x100.
  1821. scale=200:100
  1822. # scale the input to 2x
  1823. scale=2*iw:2*ih
  1824. # the above is the same as
  1825. scale=2*in_w:2*in_h
  1826. # scale the input to 2x with forced interlaced scaling
  1827. scale=2*iw:2*ih:interl=1
  1828. # scale the input to half size
  1829. scale=iw/2:ih/2
  1830. # increase the width, and set the height to the same size
  1831. scale=3/2*iw:ow
  1832. # seek for Greek harmony
  1833. scale=iw:1/PHI*iw
  1834. scale=ih*PHI:ih
  1835. # increase the height, and set the width to 3/2 of the height
  1836. scale=3/2*oh:3/5*ih
  1837. # increase the size, but make the size a multiple of the chroma
  1838. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1839. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1840. scale='min(500\, iw*3/2):-1'
  1841. @end example
  1842. @section select
  1843. Select frames to pass in output.
  1844. It accepts in input an expression, which is evaluated for each input
  1845. frame. If the expression is evaluated to a non-zero value, the frame
  1846. is selected and passed to the output, otherwise it is discarded.
  1847. The expression can contain the following constants:
  1848. @table @option
  1849. @item n
  1850. the sequential number of the filtered frame, starting from 0
  1851. @item selected_n
  1852. the sequential number of the selected frame, starting from 0
  1853. @item prev_selected_n
  1854. the sequential number of the last selected frame, NAN if undefined
  1855. @item TB
  1856. timebase of the input timestamps
  1857. @item pts
  1858. the PTS (Presentation TimeStamp) of the filtered video frame,
  1859. expressed in @var{TB} units, NAN if undefined
  1860. @item t
  1861. the PTS (Presentation TimeStamp) of the filtered video frame,
  1862. expressed in seconds, NAN if undefined
  1863. @item prev_pts
  1864. the PTS of the previously filtered video frame, NAN if undefined
  1865. @item prev_selected_pts
  1866. the PTS of the last previously filtered video frame, NAN if undefined
  1867. @item prev_selected_t
  1868. the PTS of the last previously selected video frame, NAN if undefined
  1869. @item start_pts
  1870. the PTS of the first video frame in the video, NAN if undefined
  1871. @item start_t
  1872. the time of the first video frame in the video, NAN if undefined
  1873. @item pict_type
  1874. the type of the filtered frame, can assume one of the following
  1875. values:
  1876. @table @option
  1877. @item I
  1878. @item P
  1879. @item B
  1880. @item S
  1881. @item SI
  1882. @item SP
  1883. @item BI
  1884. @end table
  1885. @item interlace_type
  1886. the frame interlace type, can assume one of the following values:
  1887. @table @option
  1888. @item PROGRESSIVE
  1889. the frame is progressive (not interlaced)
  1890. @item TOPFIRST
  1891. the frame is top-field-first
  1892. @item BOTTOMFIRST
  1893. the frame is bottom-field-first
  1894. @end table
  1895. @item key
  1896. 1 if the filtered frame is a key-frame, 0 otherwise
  1897. @item pos
  1898. the position in the file of the filtered frame, -1 if the information
  1899. is not available (e.g. for synthetic video)
  1900. @end table
  1901. The default value of the select expression is "1".
  1902. Some examples follow:
  1903. @example
  1904. # select all frames in input
  1905. select
  1906. # the above is the same as:
  1907. select=1
  1908. # skip all frames:
  1909. select=0
  1910. # select only I-frames
  1911. select='eq(pict_type\,I)'
  1912. # select one frame every 100
  1913. select='not(mod(n\,100))'
  1914. # select only frames contained in the 10-20 time interval
  1915. select='gte(t\,10)*lte(t\,20)'
  1916. # select only I frames contained in the 10-20 time interval
  1917. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1918. # select frames with a minimum distance of 10 seconds
  1919. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1920. @end example
  1921. @section setdar, setsar
  1922. The @code{setdar} filter sets the Display Aspect Ratio for the filter
  1923. output video.
  1924. This is done by changing the specified Sample (aka Pixel) Aspect
  1925. Ratio, according to the following equation:
  1926. @example
  1927. @var{DAR} = @var{HORIZONTAL_RESOLUTION} / @var{VERTICAL_RESOLUTION} * @var{SAR}
  1928. @end example
  1929. Keep in mind that the @code{setdar} filter does not modify the pixel
  1930. dimensions of the video frame. Also the display aspect ratio set by
  1931. this filter may be changed by later filters in the filterchain,
  1932. e.g. in case of scaling or if another "setdar" or a "setsar" filter is
  1933. applied.
  1934. The @code{setsar} filter sets the Sample (aka Pixel) Aspect Ratio for
  1935. the filter output video.
  1936. Note that as a consequence of the application of this filter, the
  1937. output display aspect ratio will change according to the equation
  1938. above.
  1939. Keep in mind that the sample aspect ratio set by the @code{setsar}
  1940. filter may be changed by later filters in the filterchain, e.g. if
  1941. another "setsar" or a "setdar" filter is applied.
  1942. The @code{setdar} and @code{setsar} filters accept a parameter string
  1943. which represents the wanted aspect ratio. The parameter can
  1944. be a floating point number string, an expression, or a string of the form
  1945. @var{num}:@var{den}, where @var{num} and @var{den} are the numerator
  1946. and denominator of the aspect ratio. If the parameter is not
  1947. specified, it is assumed the value "0:1".
  1948. For example to change the display aspect ratio to 16:9, specify:
  1949. @example
  1950. setdar=16:9
  1951. @end example
  1952. The example above is equivalent to:
  1953. @example
  1954. setdar=1.77777
  1955. @end example
  1956. To change the sample aspect ratio to 10:11, specify:
  1957. @example
  1958. setsar=10:11
  1959. @end example
  1960. @section setfield
  1961. Force field for the output video frame.
  1962. The @code{setfield} filter marks the interlace type field for the
  1963. output frames. It does not change the input frame, but only sets the
  1964. corresponding property, which affects how the frame is treated by
  1965. following filters (e.g. @code{fieldorder} or @code{yadif}).
  1966. It accepts a string parameter, which can assume the following values:
  1967. @table @samp
  1968. @item auto
  1969. Keep the same field property.
  1970. @item bff
  1971. Mark the frame as bottom-field-first.
  1972. @item tff
  1973. Mark the frame as top-field-first.
  1974. @item prog
  1975. Mark the frame as progressive.
  1976. @end table
  1977. @section setpts
  1978. Change the PTS (presentation timestamp) of the input video frames.
  1979. Accept in input an expression evaluated through the eval API, which
  1980. can contain the following constants:
  1981. @table @option
  1982. @item PTS
  1983. the presentation timestamp in input
  1984. @item N
  1985. the count of the input frame, starting from 0.
  1986. @item STARTPTS
  1987. the PTS of the first video frame
  1988. @item INTERLACED
  1989. tell if the current frame is interlaced
  1990. @item POS
  1991. original position in the file of the frame, or undefined if undefined
  1992. for the current frame
  1993. @item PREV_INPTS
  1994. previous input PTS
  1995. @item PREV_OUTPTS
  1996. previous output PTS
  1997. @end table
  1998. Some examples follow:
  1999. @example
  2000. # start counting PTS from zero
  2001. setpts=PTS-STARTPTS
  2002. # fast motion
  2003. setpts=0.5*PTS
  2004. # slow motion
  2005. setpts=2.0*PTS
  2006. # fixed rate 25 fps
  2007. setpts=N/(25*TB)
  2008. # fixed rate 25 fps with some jitter
  2009. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  2010. @end example
  2011. @section settb
  2012. Set the timebase to use for the output frames timestamps.
  2013. It is mainly useful for testing timebase configuration.
  2014. It accepts in input an arithmetic expression representing a rational.
  2015. The expression can contain the constants "AVTB" (the
  2016. default timebase), and "intb" (the input timebase).
  2017. The default value for the input is "intb".
  2018. Follow some examples.
  2019. @example
  2020. # set the timebase to 1/25
  2021. settb=1/25
  2022. # set the timebase to 1/10
  2023. settb=0.1
  2024. #set the timebase to 1001/1000
  2025. settb=1+0.001
  2026. #set the timebase to 2*intb
  2027. settb=2*intb
  2028. #set the default timebase value
  2029. settb=AVTB
  2030. @end example
  2031. @section showinfo
  2032. Show a line containing various information for each input video frame.
  2033. The input video is not modified.
  2034. The shown line contains a sequence of key/value pairs of the form
  2035. @var{key}:@var{value}.
  2036. A description of each shown parameter follows:
  2037. @table @option
  2038. @item n
  2039. sequential number of the input frame, starting from 0
  2040. @item pts
  2041. Presentation TimeStamp of the input frame, expressed as a number of
  2042. time base units. The time base unit depends on the filter input pad.
  2043. @item pts_time
  2044. Presentation TimeStamp of the input frame, expressed as a number of
  2045. seconds
  2046. @item pos
  2047. position of the frame in the input stream, -1 if this information in
  2048. unavailable and/or meaningless (for example in case of synthetic video)
  2049. @item fmt
  2050. pixel format name
  2051. @item sar
  2052. sample aspect ratio of the input frame, expressed in the form
  2053. @var{num}/@var{den}
  2054. @item s
  2055. size of the input frame, expressed in the form
  2056. @var{width}x@var{height}
  2057. @item i
  2058. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  2059. for bottom field first)
  2060. @item iskey
  2061. 1 if the frame is a key frame, 0 otherwise
  2062. @item type
  2063. picture type of the input frame ("I" for an I-frame, "P" for a
  2064. P-frame, "B" for a B-frame, "?" for unknown type).
  2065. Check also the documentation of the @code{AVPictureType} enum and of
  2066. the @code{av_get_picture_type_char} function defined in
  2067. @file{libavutil/avutil.h}.
  2068. @item checksum
  2069. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  2070. @item plane_checksum
  2071. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  2072. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  2073. @end table
  2074. @section slicify
  2075. Pass the images of input video on to next video filter as multiple
  2076. slices.
  2077. @example
  2078. ffmpeg -i in.avi -vf "slicify=32" out.avi
  2079. @end example
  2080. The filter accepts the slice height as parameter. If the parameter is
  2081. not specified it will use the default value of 16.
  2082. Adding this in the beginning of filter chains should make filtering
  2083. faster due to better use of the memory cache.
  2084. @section split
  2085. Split input video into several identical outputs.
  2086. The filter accepts a single parameter which specifies the number of outputs. If
  2087. unspecified, it defaults to 2.
  2088. For example
  2089. @example
  2090. ffmpeg -i INPUT -filter_complex split=5 OUTPUT
  2091. @end example
  2092. will create 5 copies of the input video.
  2093. For example:
  2094. @example
  2095. [in] split [splitout1][splitout2];
  2096. [splitout1] crop=100:100:0:0 [cropout];
  2097. [splitout2] pad=200:200:100:100 [padout];
  2098. @end example
  2099. will create two separate outputs from the same input, one cropped and
  2100. one padded.
  2101. @section super2xsai
  2102. Scale the input by 2x and smooth using the Super2xSaI (Scale and
  2103. Interpolate) pixel art scaling algorithm.
  2104. Useful for enlarging pixel art images without reducing sharpness.
  2105. @section swapuv
  2106. Swap U & V plane.
  2107. @section thumbnail
  2108. Select the most representative frame in a given sequence of consecutive frames.
  2109. It accepts as argument the frames batch size to analyze (default @var{N}=100);
  2110. in a set of @var{N} frames, the filter will pick one of them, and then handle
  2111. the next batch of @var{N} frames until the end.
  2112. Since the filter keeps track of the whole frames sequence, a bigger @var{N}
  2113. value will result in a higher memory usage, so a high value is not recommended.
  2114. The following example extract one picture each 50 frames:
  2115. @example
  2116. thumbnail=50
  2117. @end example
  2118. Complete example of a thumbnail creation with @command{ffmpeg}:
  2119. @example
  2120. ffmpeg -i in.avi -vf thumbnail,scale=300:200 -frames:v 1 out.png
  2121. @end example
  2122. @section tile
  2123. Tile several successive frames together.
  2124. It accepts as argument the tile size (i.e. the number of lines and columns)
  2125. in the form "@var{w}x@var{h}".
  2126. For example, produce 8×8 PNG tiles of all keyframes (@option{-skip_frame
  2127. nokey}) in a movie:
  2128. @example
  2129. ffmpeg -skip_frame nokey -i file.avi -vf 'scale=128:72,tile=8x8' -an -vsync 0 keyframes%03d.png
  2130. @end example
  2131. The @option{-vsync 0} is necessary to prevent @command{ffmpeg} from
  2132. duplicating each output frame to accomodate the originally detected frame
  2133. rate.
  2134. @section tinterlace
  2135. Perform various types of temporal field interlacing.
  2136. Frames are counted starting from 1, so the first input frame is
  2137. considered odd.
  2138. This filter accepts a single parameter specifying the mode. Available
  2139. modes are:
  2140. @table @samp
  2141. @item merge, 0
  2142. Move odd frames into the upper field, even into the lower field,
  2143. generating a double height frame at half framerate.
  2144. @item drop_odd, 1
  2145. Only output even frames, odd frames are dropped, generating a frame with
  2146. unchanged height at half framerate.
  2147. @item drop_even, 2
  2148. Only output odd frames, even frames are dropped, generating a frame with
  2149. unchanged height at half framerate.
  2150. @item pad, 3
  2151. Expand each frame to full height, but pad alternate lines with black,
  2152. generating a frame with double height at the same input framerate.
  2153. @item interleave_top, 4
  2154. Interleave the upper field from odd frames with the lower field from
  2155. even frames, generating a frame with unchanged height at half framerate.
  2156. @item interleave_bottom, 5
  2157. Interleave the lower field from odd frames with the upper field from
  2158. even frames, generating a frame with unchanged height at half framerate.
  2159. @item interlacex2, 6
  2160. Double frame rate with unchanged height. Frames are inserted each
  2161. containing the second temporal field from the previous input frame and
  2162. the first temporal field from the next input frame. This mode relies on
  2163. the top_field_first flag. Useful for interlaced video displays with no
  2164. field synchronisation.
  2165. @end table
  2166. Numeric values are deprecated but are accepted for backward
  2167. compatibility reasons.
  2168. Default mode is @code{merge}.
  2169. @section transpose
  2170. Transpose rows with columns in the input video and optionally flip it.
  2171. It accepts a parameter representing an integer, which can assume the
  2172. values:
  2173. @table @samp
  2174. @item 0
  2175. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  2176. @example
  2177. L.R L.l
  2178. . . -> . .
  2179. l.r R.r
  2180. @end example
  2181. @item 1
  2182. Rotate by 90 degrees clockwise, that is:
  2183. @example
  2184. L.R l.L
  2185. . . -> . .
  2186. l.r r.R
  2187. @end example
  2188. @item 2
  2189. Rotate by 90 degrees counterclockwise, that is:
  2190. @example
  2191. L.R R.r
  2192. . . -> . .
  2193. l.r L.l
  2194. @end example
  2195. @item 3
  2196. Rotate by 90 degrees clockwise and vertically flip, that is:
  2197. @example
  2198. L.R r.R
  2199. . . -> . .
  2200. l.r l.L
  2201. @end example
  2202. @end table
  2203. @section unsharp
  2204. Sharpen or blur the input video.
  2205. It accepts the following parameters:
  2206. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  2207. Negative values for the amount will blur the input video, while positive
  2208. values will sharpen. All parameters are optional and default to the
  2209. equivalent of the string '5:5:1.0:5:5:0.0'.
  2210. @table @option
  2211. @item luma_msize_x
  2212. Set the luma matrix horizontal size. It can be an integer between 3
  2213. and 13, default value is 5.
  2214. @item luma_msize_y
  2215. Set the luma matrix vertical size. It can be an integer between 3
  2216. and 13, default value is 5.
  2217. @item luma_amount
  2218. Set the luma effect strength. It can be a float number between -2.0
  2219. and 5.0, default value is 1.0.
  2220. @item chroma_msize_x
  2221. Set the chroma matrix horizontal size. It can be an integer between 3
  2222. and 13, default value is 5.
  2223. @item chroma_msize_y
  2224. Set the chroma matrix vertical size. It can be an integer between 3
  2225. and 13, default value is 5.
  2226. @item chroma_amount
  2227. Set the chroma effect strength. It can be a float number between -2.0
  2228. and 5.0, default value is 0.0.
  2229. @end table
  2230. @example
  2231. # Strong luma sharpen effect parameters
  2232. unsharp=7:7:2.5
  2233. # Strong blur of both luma and chroma parameters
  2234. unsharp=7:7:-2:7:7:-2
  2235. # Use the default values with @command{ffmpeg}
  2236. ffmpeg -i in.avi -vf "unsharp" out.mp4
  2237. @end example
  2238. @section vflip
  2239. Flip the input video vertically.
  2240. @example
  2241. ffmpeg -i in.avi -vf "vflip" out.avi
  2242. @end example
  2243. @section yadif
  2244. Deinterlace the input video ("yadif" means "yet another deinterlacing
  2245. filter").
  2246. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  2247. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  2248. following values:
  2249. @table @option
  2250. @item 0
  2251. output 1 frame for each frame
  2252. @item 1
  2253. output 1 frame for each field
  2254. @item 2
  2255. like 0 but skips spatial interlacing check
  2256. @item 3
  2257. like 1 but skips spatial interlacing check
  2258. @end table
  2259. Default value is 0.
  2260. @var{parity} specifies the picture field parity assumed for the input
  2261. interlaced video, accepts one of the following values:
  2262. @table @option
  2263. @item 0
  2264. assume top field first
  2265. @item 1
  2266. assume bottom field first
  2267. @item -1
  2268. enable automatic detection
  2269. @end table
  2270. Default value is -1.
  2271. If interlacing is unknown or decoder does not export this information,
  2272. top field first will be assumed.
  2273. @var{auto} specifies if deinterlacer should trust the interlaced flag
  2274. and only deinterlace frames marked as interlaced
  2275. @table @option
  2276. @item 0
  2277. deinterlace all frames
  2278. @item 1
  2279. only deinterlace frames marked as interlaced
  2280. @end table
  2281. Default value is 0.
  2282. @c man end VIDEO FILTERS
  2283. @chapter Video Sources
  2284. @c man begin VIDEO SOURCES
  2285. Below is a description of the currently available video sources.
  2286. @section buffer
  2287. Buffer video frames, and make them available to the filter chain.
  2288. This source is mainly intended for a programmatic use, in particular
  2289. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  2290. It accepts the following parameters:
  2291. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  2292. All the parameters but @var{scale_params} need to be explicitly
  2293. defined.
  2294. Follows the list of the accepted parameters.
  2295. @table @option
  2296. @item width, height
  2297. Specify the width and height of the buffered video frames.
  2298. @item pix_fmt_string
  2299. A string representing the pixel format of the buffered video frames.
  2300. It may be a number corresponding to a pixel format, or a pixel format
  2301. name.
  2302. @item timebase_num, timebase_den
  2303. Specify numerator and denomitor of the timebase assumed by the
  2304. timestamps of the buffered frames.
  2305. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  2306. Specify numerator and denominator of the sample aspect ratio assumed
  2307. by the video frames.
  2308. @item scale_params
  2309. Specify the optional parameters to be used for the scale filter which
  2310. is automatically inserted when an input change is detected in the
  2311. input size or format.
  2312. @end table
  2313. For example:
  2314. @example
  2315. buffer=320:240:yuv410p:1:24:1:1
  2316. @end example
  2317. will instruct the source to accept video frames with size 320x240 and
  2318. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  2319. square pixels (1:1 sample aspect ratio).
  2320. Since the pixel format with name "yuv410p" corresponds to the number 6
  2321. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  2322. this example corresponds to:
  2323. @example
  2324. buffer=320:240:6:1:24:1:1
  2325. @end example
  2326. @section cellauto
  2327. Create a pattern generated by an elementary cellular automaton.
  2328. The initial state of the cellular automaton can be defined through the
  2329. @option{filename}, and @option{pattern} options. If such options are
  2330. not specified an initial state is created randomly.
  2331. At each new frame a new row in the video is filled with the result of
  2332. the cellular automaton next generation. The behavior when the whole
  2333. frame is filled is defined by the @option{scroll} option.
  2334. This source accepts a list of options in the form of
  2335. @var{key}=@var{value} pairs separated by ":". A description of the
  2336. accepted options follows.
  2337. @table @option
  2338. @item filename, f
  2339. Read the initial cellular automaton state, i.e. the starting row, from
  2340. the specified file.
  2341. In the file, each non-whitespace character is considered an alive
  2342. cell, a newline will terminate the row, and further characters in the
  2343. file will be ignored.
  2344. @item pattern, p
  2345. Read the initial cellular automaton state, i.e. the starting row, from
  2346. the specified string.
  2347. Each non-whitespace character in the string is considered an alive
  2348. cell, a newline will terminate the row, and further characters in the
  2349. string will be ignored.
  2350. @item rate, r
  2351. Set the video rate, that is the number of frames generated per second.
  2352. Default is 25.
  2353. @item random_fill_ratio, ratio
  2354. Set the random fill ratio for the initial cellular automaton row. It
  2355. is a floating point number value ranging from 0 to 1, defaults to
  2356. 1/PHI.
  2357. This option is ignored when a file or a pattern is specified.
  2358. @item random_seed, seed
  2359. Set the seed for filling randomly the initial row, must be an integer
  2360. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2361. set to -1, the filter will try to use a good random seed on a best
  2362. effort basis.
  2363. @item rule
  2364. Set the cellular automaton rule, it is a number ranging from 0 to 255.
  2365. Default value is 110.
  2366. @item size, s
  2367. Set the size of the output video.
  2368. If @option{filename} or @option{pattern} is specified, the size is set
  2369. by default to the width of the specified initial state row, and the
  2370. height is set to @var{width} * PHI.
  2371. If @option{size} is set, it must contain the width of the specified
  2372. pattern string, and the specified pattern will be centered in the
  2373. larger row.
  2374. If a filename or a pattern string is not specified, the size value
  2375. defaults to "320x518" (used for a randomly generated initial state).
  2376. @item scroll
  2377. If set to 1, scroll the output upward when all the rows in the output
  2378. have been already filled. If set to 0, the new generated row will be
  2379. written over the top row just after the bottom row is filled.
  2380. Defaults to 1.
  2381. @item start_full, full
  2382. If set to 1, completely fill the output with generated rows before
  2383. outputting the first frame.
  2384. This is the default behavior, for disabling set the value to 0.
  2385. @item stitch
  2386. If set to 1, stitch the left and right row edges together.
  2387. This is the default behavior, for disabling set the value to 0.
  2388. @end table
  2389. @subsection Examples
  2390. @itemize
  2391. @item
  2392. Read the initial state from @file{pattern}, and specify an output of
  2393. size 200x400.
  2394. @example
  2395. cellauto=f=pattern:s=200x400
  2396. @end example
  2397. @item
  2398. Generate a random initial row with a width of 200 cells, with a fill
  2399. ratio of 2/3:
  2400. @example
  2401. cellauto=ratio=2/3:s=200x200
  2402. @end example
  2403. @item
  2404. Create a pattern generated by rule 18 starting by a single alive cell
  2405. centered on an initial row with width 100:
  2406. @example
  2407. cellauto=p=@@:s=100x400:full=0:rule=18
  2408. @end example
  2409. @item
  2410. Specify a more elaborated initial pattern:
  2411. @example
  2412. cellauto=p='@@@@ @@ @@@@':s=100x400:full=0:rule=18
  2413. @end example
  2414. @end itemize
  2415. @section color
  2416. Provide an uniformly colored input.
  2417. It accepts the following parameters:
  2418. @var{color}:@var{frame_size}:@var{frame_rate}
  2419. Follows the description of the accepted parameters.
  2420. @table @option
  2421. @item color
  2422. Specify the color of the source. It can be the name of a color (case
  2423. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  2424. alpha specifier. The default value is "black".
  2425. @item frame_size
  2426. Specify the size of the sourced video, it may be a string of the form
  2427. @var{width}x@var{height}, or the name of a size abbreviation. The
  2428. default value is "320x240".
  2429. @item frame_rate
  2430. Specify the frame rate of the sourced video, as the number of frames
  2431. generated per second. It has to be a string in the format
  2432. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2433. number or a valid video frame rate abbreviation. The default value is
  2434. "25".
  2435. @end table
  2436. For example the following graph description will generate a red source
  2437. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  2438. frames per second, which will be overlayed over the source connected
  2439. to the pad with identifier "in".
  2440. @example
  2441. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  2442. @end example
  2443. @section movie
  2444. Read a video stream from a movie container.
  2445. It accepts the syntax: @var{movie_name}[:@var{options}] where
  2446. @var{movie_name} is the name of the resource to read (not necessarily
  2447. a file but also a device or a stream accessed through some protocol),
  2448. and @var{options} is an optional sequence of @var{key}=@var{value}
  2449. pairs, separated by ":".
  2450. The description of the accepted options follows.
  2451. @table @option
  2452. @item format_name, f
  2453. Specifies the format assumed for the movie to read, and can be either
  2454. the name of a container or an input device. If not specified the
  2455. format is guessed from @var{movie_name} or by probing.
  2456. @item seek_point, sp
  2457. Specifies the seek point in seconds, the frames will be output
  2458. starting from this seek point, the parameter is evaluated with
  2459. @code{av_strtod} so the numerical value may be suffixed by an IS
  2460. postfix. Default value is "0".
  2461. @item stream_index, si
  2462. Specifies the index of the video stream to read. If the value is -1,
  2463. the best suited video stream will be automatically selected. Default
  2464. value is "-1".
  2465. @item loop
  2466. Specifies how many times to read the video stream in sequence.
  2467. If the value is less than 1, the stream will be read again and again.
  2468. Default value is "1".
  2469. Note that when the movie is looped the source timestamps are not
  2470. changed, so it will generate non monotonically increasing timestamps.
  2471. @end table
  2472. This filter allows to overlay a second video on top of main input of
  2473. a filtergraph as shown in this graph:
  2474. @example
  2475. input -----------> deltapts0 --> overlay --> output
  2476. ^
  2477. |
  2478. movie --> scale--> deltapts1 -------+
  2479. @end example
  2480. Some examples follow:
  2481. @example
  2482. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  2483. # on top of the input labelled as "in".
  2484. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2485. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2486. # read from a video4linux2 device, and overlay it on top of the input
  2487. # labelled as "in"
  2488. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  2489. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  2490. @end example
  2491. @section mptestsrc
  2492. Generate various test patterns, as generated by the MPlayer test filter.
  2493. The size of the generated video is fixed, and is 256x256.
  2494. This source is useful in particular for testing encoding features.
  2495. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  2496. separated by ":". The description of the accepted options follows.
  2497. @table @option
  2498. @item rate, r
  2499. Specify the frame rate of the sourced video, as the number of frames
  2500. generated per second. It has to be a string in the format
  2501. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2502. number or a valid video frame rate abbreviation. The default value is
  2503. "25".
  2504. @item duration, d
  2505. Set the video duration of the sourced video. The accepted syntax is:
  2506. @example
  2507. [-]HH:MM:SS[.m...]
  2508. [-]S+[.m...]
  2509. @end example
  2510. See also the function @code{av_parse_time()}.
  2511. If not specified, or the expressed duration is negative, the video is
  2512. supposed to be generated forever.
  2513. @item test, t
  2514. Set the number or the name of the test to perform. Supported tests are:
  2515. @table @option
  2516. @item dc_luma
  2517. @item dc_chroma
  2518. @item freq_luma
  2519. @item freq_chroma
  2520. @item amp_luma
  2521. @item amp_chroma
  2522. @item cbp
  2523. @item mv
  2524. @item ring1
  2525. @item ring2
  2526. @item all
  2527. @end table
  2528. Default value is "all", which will cycle through the list of all tests.
  2529. @end table
  2530. For example the following:
  2531. @example
  2532. testsrc=t=dc_luma
  2533. @end example
  2534. will generate a "dc_luma" test pattern.
  2535. @section frei0r_src
  2536. Provide a frei0r source.
  2537. To enable compilation of this filter you need to install the frei0r
  2538. header and configure FFmpeg with @code{--enable-frei0r}.
  2539. The source supports the syntax:
  2540. @example
  2541. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  2542. @end example
  2543. @var{size} is the size of the video to generate, may be a string of the
  2544. form @var{width}x@var{height} or a frame size abbreviation.
  2545. @var{rate} is the rate of the video to generate, may be a string of
  2546. the form @var{num}/@var{den} or a frame rate abbreviation.
  2547. @var{src_name} is the name to the frei0r source to load. For more
  2548. information regarding frei0r and how to set the parameters read the
  2549. section @ref{frei0r} in the description of the video filters.
  2550. Some examples follow:
  2551. @example
  2552. # generate a frei0r partik0l source with size 200x200 and frame rate 10
  2553. # which is overlayed on the overlay filter main input
  2554. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  2555. @end example
  2556. @section life
  2557. Generate a life pattern.
  2558. This source is based on a generalization of John Conway's life game.
  2559. The sourced input represents a life grid, each pixel represents a cell
  2560. which can be in one of two possible states, alive or dead. Every cell
  2561. interacts with its eight neighbours, which are the cells that are
  2562. horizontally, vertically, or diagonally adjacent.
  2563. At each interaction the grid evolves according to the adopted rule,
  2564. which specifies the number of neighbor alive cells which will make a
  2565. cell stay alive or born. The @option{rule} option allows to specify
  2566. the rule to adopt.
  2567. This source accepts a list of options in the form of
  2568. @var{key}=@var{value} pairs separated by ":". A description of the
  2569. accepted options follows.
  2570. @table @option
  2571. @item filename, f
  2572. Set the file from which to read the initial grid state. In the file,
  2573. each non-whitespace character is considered an alive cell, and newline
  2574. is used to delimit the end of each row.
  2575. If this option is not specified, the initial grid is generated
  2576. randomly.
  2577. @item rate, r
  2578. Set the video rate, that is the number of frames generated per second.
  2579. Default is 25.
  2580. @item random_fill_ratio, ratio
  2581. Set the random fill ratio for the initial random grid. It is a
  2582. floating point number value ranging from 0 to 1, defaults to 1/PHI.
  2583. It is ignored when a file is specified.
  2584. @item random_seed, seed
  2585. Set the seed for filling the initial random grid, must be an integer
  2586. included between 0 and UINT32_MAX. If not specified, or if explicitly
  2587. set to -1, the filter will try to use a good random seed on a best
  2588. effort basis.
  2589. @item rule
  2590. Set the life rule.
  2591. A rule can be specified with a code of the kind "S@var{NS}/B@var{NB}",
  2592. where @var{NS} and @var{NB} are sequences of numbers in the range 0-8,
  2593. @var{NS} specifies the number of alive neighbor cells which make a
  2594. live cell stay alive, and @var{NB} the number of alive neighbor cells
  2595. which make a dead cell to become alive (i.e. to "born").
  2596. "s" and "b" can be used in place of "S" and "B", respectively.
  2597. Alternatively a rule can be specified by an 18-bits integer. The 9
  2598. high order bits are used to encode the next cell state if it is alive
  2599. for each number of neighbor alive cells, the low order bits specify
  2600. the rule for "borning" new cells. Higher order bits encode for an
  2601. higher number of neighbor cells.
  2602. For example the number 6153 = @code{(12<<9)+9} specifies a stay alive
  2603. rule of 12 and a born rule of 9, which corresponds to "S23/B03".
  2604. Default value is "S23/B3", which is the original Conway's game of life
  2605. rule, and will keep a cell alive if it has 2 or 3 neighbor alive
  2606. cells, and will born a new cell if there are three alive cells around
  2607. a dead cell.
  2608. @item size, s
  2609. Set the size of the output video.
  2610. If @option{filename} is specified, the size is set by default to the
  2611. same size of the input file. If @option{size} is set, it must contain
  2612. the size specified in the input file, and the initial grid defined in
  2613. that file is centered in the larger resulting area.
  2614. If a filename is not specified, the size value defaults to "320x240"
  2615. (used for a randomly generated initial grid).
  2616. @item stitch
  2617. If set to 1, stitch the left and right grid edges together, and the
  2618. top and bottom edges also. Defaults to 1.
  2619. @item mold
  2620. Set cell mold speed. If set, a dead cell will go from @option{death_color} to
  2621. @option{mold_color} with a step of @option{mold}. @option{mold} can have a
  2622. value from 0 to 255.
  2623. @item life_color
  2624. Set the color of living (or new born) cells.
  2625. @item death_color
  2626. Set the color of dead cells. If @option{mold} is set, this is the first color
  2627. used to represent a dead cell.
  2628. @item mold_color
  2629. Set mold color, for definitely dead and moldy cells.
  2630. @end table
  2631. @subsection Examples
  2632. @itemize
  2633. @item
  2634. Read a grid from @file{pattern}, and center it on a grid of size
  2635. 300x300 pixels:
  2636. @example
  2637. life=f=pattern:s=300x300
  2638. @end example
  2639. @item
  2640. Generate a random grid of size 200x200, with a fill ratio of 2/3:
  2641. @example
  2642. life=ratio=2/3:s=200x200
  2643. @end example
  2644. @item
  2645. Specify a custom rule for evolving a randomly generated grid:
  2646. @example
  2647. life=rule=S14/B34
  2648. @end example
  2649. @item
  2650. Full example with slow death effect (mold) using @command{ffplay}:
  2651. @example
  2652. ffplay -f lavfi life=s=300x200:mold=10:r=60:ratio=0.1:death_color=#C83232:life_color=#00ff00,scale=1200:800:flags=16
  2653. @end example
  2654. @end itemize
  2655. @section nullsrc, rgbtestsrc, testsrc
  2656. The @code{nullsrc} source returns unprocessed video frames. It is
  2657. mainly useful to be employed in analysis / debugging tools, or as the
  2658. source for filters which ignore the input data.
  2659. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  2660. detecting RGB vs BGR issues. You should see a red, green and blue
  2661. stripe from top to bottom.
  2662. The @code{testsrc} source generates a test video pattern, showing a
  2663. color pattern, a scrolling gradient and a timestamp. This is mainly
  2664. intended for testing purposes.
  2665. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  2666. separated by ":". The description of the accepted options follows.
  2667. @table @option
  2668. @item size, s
  2669. Specify the size of the sourced video, it may be a string of the form
  2670. @var{width}x@var{height}, or the name of a size abbreviation. The
  2671. default value is "320x240".
  2672. @item rate, r
  2673. Specify the frame rate of the sourced video, as the number of frames
  2674. generated per second. It has to be a string in the format
  2675. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  2676. number or a valid video frame rate abbreviation. The default value is
  2677. "25".
  2678. @item sar
  2679. Set the sample aspect ratio of the sourced video.
  2680. @item duration, d
  2681. Set the video duration of the sourced video. The accepted syntax is:
  2682. @example
  2683. [-]HH[:MM[:SS[.m...]]]
  2684. [-]S+[.m...]
  2685. @end example
  2686. See also the function @code{av_parse_time()}.
  2687. If not specified, or the expressed duration is negative, the video is
  2688. supposed to be generated forever.
  2689. @item decimals, n
  2690. Set the number of decimals to show in the timestamp, only used in the
  2691. @code{testsrc} source.
  2692. The displayed timestamp value will correspond to the original
  2693. timestamp value multiplied by the power of 10 of the specified
  2694. value. Default value is 0.
  2695. @end table
  2696. For example the following:
  2697. @example
  2698. testsrc=duration=5.3:size=qcif:rate=10
  2699. @end example
  2700. will generate a video with a duration of 5.3 seconds, with size
  2701. 176x144 and a frame rate of 10 frames per second.
  2702. If the input content is to be ignored, @code{nullsrc} can be used. The
  2703. following command generates noise in the luminance plane by employing
  2704. the @code{mp=geq} filter:
  2705. @example
  2706. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  2707. @end example
  2708. @c man end VIDEO SOURCES
  2709. @chapter Video Sinks
  2710. @c man begin VIDEO SINKS
  2711. Below is a description of the currently available video sinks.
  2712. @section buffersink
  2713. Buffer video frames, and make them available to the end of the filter
  2714. graph.
  2715. This sink is mainly intended for a programmatic use, in particular
  2716. through the interface defined in @file{libavfilter/buffersink.h}.
  2717. It does not require a string parameter in input, but you need to
  2718. specify a pointer to a list of supported pixel formats terminated by
  2719. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  2720. when initializing this sink.
  2721. @section nullsink
  2722. Null video sink, do absolutely nothing with the input video. It is
  2723. mainly useful as a template and to be employed in analysis / debugging
  2724. tools.
  2725. @c man end VIDEO SINKS