You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2380 lines
86KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_SYS_MMAN_H
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/mathematics.h"
  46. #include "libavutil/opt.h"
  47. #include "libavutil/pixdesc.h"
  48. #include "libavutil/ppc/cpu.h"
  49. #include "libavutil/x86/asm.h"
  50. #include "libavutil/x86/cpu.h"
  51. #include "rgb2rgb.h"
  52. #include "swscale.h"
  53. #include "swscale_internal.h"
  54. static void handle_formats(SwsContext *c);
  55. unsigned swscale_version(void)
  56. {
  57. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  58. return LIBSWSCALE_VERSION_INT;
  59. }
  60. const char *swscale_configuration(void)
  61. {
  62. return FFMPEG_CONFIGURATION;
  63. }
  64. const char *swscale_license(void)
  65. {
  66. #define LICENSE_PREFIX "libswscale license: "
  67. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  68. }
  69. typedef struct FormatEntry {
  70. uint8_t is_supported_in :1;
  71. uint8_t is_supported_out :1;
  72. uint8_t is_supported_endianness :1;
  73. } FormatEntry;
  74. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  75. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  76. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  77. [AV_PIX_FMT_RGB24] = { 1, 1 },
  78. [AV_PIX_FMT_BGR24] = { 1, 1 },
  79. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  80. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  82. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  83. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  84. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  85. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  86. [AV_PIX_FMT_PAL8] = { 1, 0 },
  87. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  88. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  90. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  91. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  92. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  93. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  94. [AV_PIX_FMT_BGR8] = { 1, 1 },
  95. [AV_PIX_FMT_BGR4] = { 0, 1 },
  96. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  97. [AV_PIX_FMT_RGB8] = { 1, 1 },
  98. [AV_PIX_FMT_RGB4] = { 0, 1 },
  99. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  100. [AV_PIX_FMT_NV12] = { 1, 1 },
  101. [AV_PIX_FMT_NV21] = { 1, 1 },
  102. [AV_PIX_FMT_ARGB] = { 1, 1 },
  103. [AV_PIX_FMT_RGBA] = { 1, 1 },
  104. [AV_PIX_FMT_ABGR] = { 1, 1 },
  105. [AV_PIX_FMT_BGRA] = { 1, 1 },
  106. [AV_PIX_FMT_0RGB] = { 1, 1 },
  107. [AV_PIX_FMT_RGB0] = { 1, 1 },
  108. [AV_PIX_FMT_0BGR] = { 1, 1 },
  109. [AV_PIX_FMT_BGR0] = { 1, 1 },
  110. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  111. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  113. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  114. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  115. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  116. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  117. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  118. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  127. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  128. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  134. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  135. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  136. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  137. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  138. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  139. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  140. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  141. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  142. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  143. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  146. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  150. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  151. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  157. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  158. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  159. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  160. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  161. [AV_PIX_FMT_YA8] = { 1, 1 },
  162. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  163. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  164. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  165. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  166. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  167. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  168. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  187. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  188. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  192. [AV_PIX_FMT_GBRP] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  195. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  196. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  197. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  198. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  199. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  200. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  201. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  202. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  203. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  204. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  205. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  206. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  207. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  208. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  213. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  214. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  215. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  216. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  217. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  218. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  219. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  220. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  221. };
  222. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  223. {
  224. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  225. format_entries[pix_fmt].is_supported_in : 0;
  226. }
  227. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  228. {
  229. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  230. format_entries[pix_fmt].is_supported_out : 0;
  231. }
  232. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  233. {
  234. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  235. format_entries[pix_fmt].is_supported_endianness : 0;
  236. }
  237. static double getSplineCoeff(double a, double b, double c, double d,
  238. double dist)
  239. {
  240. if (dist <= 1.0)
  241. return ((d * dist + c) * dist + b) * dist + a;
  242. else
  243. return getSplineCoeff(0.0,
  244. b + 2.0 * c + 3.0 * d,
  245. c + 3.0 * d,
  246. -b - 3.0 * c - 6.0 * d,
  247. dist - 1.0);
  248. }
  249. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  250. {
  251. if (pos == -1 || pos <= -513) {
  252. pos = (128 << chr_subsample) - 128;
  253. }
  254. pos += 128; // relative to ideal left edge
  255. return pos >> chr_subsample;
  256. }
  257. typedef struct {
  258. int flag; ///< flag associated to the algorithm
  259. const char *description; ///< human-readable description
  260. int size_factor; ///< size factor used when initing the filters
  261. } ScaleAlgorithm;
  262. static const ScaleAlgorithm scale_algorithms[] = {
  263. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  264. { SWS_BICUBIC, "bicubic", 4 },
  265. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  266. { SWS_BILINEAR, "bilinear", 2 },
  267. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  268. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  269. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  270. { SWS_POINT, "nearest neighbor / point", -1 },
  271. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  272. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  273. { SWS_X, "experimental", 8 },
  274. };
  275. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  276. int *outFilterSize, int xInc, int srcW,
  277. int dstW, int filterAlign, int one,
  278. int flags, int cpu_flags,
  279. SwsVector *srcFilter, SwsVector *dstFilter,
  280. double param[2], int srcPos, int dstPos)
  281. {
  282. int i;
  283. int filterSize;
  284. int filter2Size;
  285. int minFilterSize;
  286. int64_t *filter = NULL;
  287. int64_t *filter2 = NULL;
  288. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  289. int ret = -1;
  290. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  291. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  292. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  293. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  294. int i;
  295. filterSize = 1;
  296. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  297. dstW, sizeof(*filter) * filterSize, fail);
  298. for (i = 0; i < dstW; i++) {
  299. filter[i * filterSize] = fone;
  300. (*filterPos)[i] = i;
  301. }
  302. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  303. int i;
  304. int64_t xDstInSrc;
  305. filterSize = 1;
  306. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  307. dstW, sizeof(*filter) * filterSize, fail);
  308. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  309. for (i = 0; i < dstW; i++) {
  310. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  311. (*filterPos)[i] = xx;
  312. filter[i] = fone;
  313. xDstInSrc += xInc;
  314. }
  315. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  316. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  317. int i;
  318. int64_t xDstInSrc;
  319. filterSize = 2;
  320. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  321. dstW, sizeof(*filter) * filterSize, fail);
  322. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  323. for (i = 0; i < dstW; i++) {
  324. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  325. int j;
  326. (*filterPos)[i] = xx;
  327. // bilinear upscale / linear interpolate / area averaging
  328. for (j = 0; j < filterSize; j++) {
  329. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  330. if (coeff < 0)
  331. coeff = 0;
  332. filter[i * filterSize + j] = coeff;
  333. xx++;
  334. }
  335. xDstInSrc += xInc;
  336. }
  337. } else {
  338. int64_t xDstInSrc;
  339. int sizeFactor = -1;
  340. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  341. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  342. sizeFactor = scale_algorithms[i].size_factor;
  343. break;
  344. }
  345. }
  346. if (flags & SWS_LANCZOS)
  347. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  348. av_assert0(sizeFactor > 0);
  349. if (xInc <= 1 << 16)
  350. filterSize = 1 + sizeFactor; // upscale
  351. else
  352. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  353. filterSize = FFMIN(filterSize, srcW - 2);
  354. filterSize = FFMAX(filterSize, 1);
  355. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  356. dstW, sizeof(*filter) * filterSize, fail);
  357. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  358. for (i = 0; i < dstW; i++) {
  359. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  360. int j;
  361. (*filterPos)[i] = xx;
  362. for (j = 0; j < filterSize; j++) {
  363. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  364. double floatd;
  365. int64_t coeff;
  366. if (xInc > 1 << 16)
  367. d = d * dstW / srcW;
  368. floatd = d * (1.0 / (1 << 30));
  369. if (flags & SWS_BICUBIC) {
  370. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  371. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  372. if (d >= 1LL << 31) {
  373. coeff = 0.0;
  374. } else {
  375. int64_t dd = (d * d) >> 30;
  376. int64_t ddd = (dd * d) >> 30;
  377. if (d < 1LL << 30)
  378. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  379. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  380. (6 * (1 << 24) - 2 * B) * (1 << 30);
  381. else
  382. coeff = (-B - 6 * C) * ddd +
  383. (6 * B + 30 * C) * dd +
  384. (-12 * B - 48 * C) * d +
  385. (8 * B + 24 * C) * (1 << 30);
  386. }
  387. coeff /= (1LL<<54)/fone;
  388. }
  389. #if 0
  390. else if (flags & SWS_X) {
  391. double p = param ? param * 0.01 : 0.3;
  392. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  393. coeff *= pow(2.0, -p * d * d);
  394. }
  395. #endif
  396. else if (flags & SWS_X) {
  397. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  398. double c;
  399. if (floatd < 1.0)
  400. c = cos(floatd * M_PI);
  401. else
  402. c = -1.0;
  403. if (c < 0.0)
  404. c = -pow(-c, A);
  405. else
  406. c = pow(c, A);
  407. coeff = (c * 0.5 + 0.5) * fone;
  408. } else if (flags & SWS_AREA) {
  409. int64_t d2 = d - (1 << 29);
  410. if (d2 * xInc < -(1LL << (29 + 16)))
  411. coeff = 1.0 * (1LL << (30 + 16));
  412. else if (d2 * xInc < (1LL << (29 + 16)))
  413. coeff = -d2 * xInc + (1LL << (29 + 16));
  414. else
  415. coeff = 0.0;
  416. coeff *= fone >> (30 + 16);
  417. } else if (flags & SWS_GAUSS) {
  418. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  419. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  420. } else if (flags & SWS_SINC) {
  421. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  422. } else if (flags & SWS_LANCZOS) {
  423. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  424. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  425. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  426. if (floatd > p)
  427. coeff = 0;
  428. } else if (flags & SWS_BILINEAR) {
  429. coeff = (1 << 30) - d;
  430. if (coeff < 0)
  431. coeff = 0;
  432. coeff *= fone >> 30;
  433. } else if (flags & SWS_SPLINE) {
  434. double p = -2.196152422706632;
  435. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  436. } else {
  437. av_assert0(0);
  438. }
  439. filter[i * filterSize + j] = coeff;
  440. xx++;
  441. }
  442. xDstInSrc += 2 * xInc;
  443. }
  444. }
  445. /* apply src & dst Filter to filter -> filter2
  446. * av_free(filter);
  447. */
  448. av_assert0(filterSize > 0);
  449. filter2Size = filterSize;
  450. if (srcFilter)
  451. filter2Size += srcFilter->length - 1;
  452. if (dstFilter)
  453. filter2Size += dstFilter->length - 1;
  454. av_assert0(filter2Size > 0);
  455. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  456. for (i = 0; i < dstW; i++) {
  457. int j, k;
  458. if (srcFilter) {
  459. for (k = 0; k < srcFilter->length; k++) {
  460. for (j = 0; j < filterSize; j++)
  461. filter2[i * filter2Size + k + j] +=
  462. srcFilter->coeff[k] * filter[i * filterSize + j];
  463. }
  464. } else {
  465. for (j = 0; j < filterSize; j++)
  466. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  467. }
  468. // FIXME dstFilter
  469. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  470. }
  471. av_freep(&filter);
  472. /* try to reduce the filter-size (step1 find size and shift left) */
  473. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  474. minFilterSize = 0;
  475. for (i = dstW - 1; i >= 0; i--) {
  476. int min = filter2Size;
  477. int j;
  478. int64_t cutOff = 0.0;
  479. /* get rid of near zero elements on the left by shifting left */
  480. for (j = 0; j < filter2Size; j++) {
  481. int k;
  482. cutOff += FFABS(filter2[i * filter2Size]);
  483. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  484. break;
  485. /* preserve monotonicity because the core can't handle the
  486. * filter otherwise */
  487. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  488. break;
  489. // move filter coefficients left
  490. for (k = 1; k < filter2Size; k++)
  491. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  492. filter2[i * filter2Size + k - 1] = 0;
  493. (*filterPos)[i]++;
  494. }
  495. cutOff = 0;
  496. /* count near zeros on the right */
  497. for (j = filter2Size - 1; j > 0; j--) {
  498. cutOff += FFABS(filter2[i * filter2Size + j]);
  499. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  500. break;
  501. min--;
  502. }
  503. if (min > minFilterSize)
  504. minFilterSize = min;
  505. }
  506. if (PPC_ALTIVEC(cpu_flags)) {
  507. // we can handle the special case 4, so we don't want to go the full 8
  508. if (minFilterSize < 5)
  509. filterAlign = 4;
  510. /* We really don't want to waste our time doing useless computation, so
  511. * fall back on the scalar C code for very small filters.
  512. * Vectorizing is worth it only if you have a decent-sized vector. */
  513. if (minFilterSize < 3)
  514. filterAlign = 1;
  515. }
  516. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  517. // special case for unscaled vertical filtering
  518. if (minFilterSize == 1 && filterAlign == 2)
  519. filterAlign = 1;
  520. }
  521. av_assert0(minFilterSize > 0);
  522. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  523. av_assert0(filterSize > 0);
  524. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  525. if (!filter)
  526. goto fail;
  527. if (filterSize >= MAX_FILTER_SIZE * 16 /
  528. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  529. ret = RETCODE_USE_CASCADE;
  530. goto fail;
  531. }
  532. *outFilterSize = filterSize;
  533. if (flags & SWS_PRINT_INFO)
  534. av_log(NULL, AV_LOG_VERBOSE,
  535. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  536. filter2Size, filterSize);
  537. /* try to reduce the filter-size (step2 reduce it) */
  538. for (i = 0; i < dstW; i++) {
  539. int j;
  540. for (j = 0; j < filterSize; j++) {
  541. if (j >= filter2Size)
  542. filter[i * filterSize + j] = 0;
  543. else
  544. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  545. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  546. filter[i * filterSize + j] = 0;
  547. }
  548. }
  549. // FIXME try to align filterPos if possible
  550. // fix borders
  551. for (i = 0; i < dstW; i++) {
  552. int j;
  553. if ((*filterPos)[i] < 0) {
  554. // move filter coefficients left to compensate for filterPos
  555. for (j = 1; j < filterSize; j++) {
  556. int left = FFMAX(j + (*filterPos)[i], 0);
  557. filter[i * filterSize + left] += filter[i * filterSize + j];
  558. filter[i * filterSize + j] = 0;
  559. }
  560. (*filterPos)[i]= 0;
  561. }
  562. if ((*filterPos)[i] + filterSize > srcW) {
  563. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  564. int64_t acc = 0;
  565. for (j = filterSize - 1; j >= 0; j--) {
  566. if ((*filterPos)[i] + j >= srcW) {
  567. acc += filter[i * filterSize + j];
  568. filter[i * filterSize + j] = 0;
  569. }
  570. }
  571. for (j = filterSize - 1; j >= 0; j--) {
  572. if (j < shift) {
  573. filter[i * filterSize + j] = 0;
  574. } else {
  575. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  576. }
  577. }
  578. (*filterPos)[i]-= shift;
  579. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  580. }
  581. av_assert0((*filterPos)[i] >= 0);
  582. av_assert0((*filterPos)[i] < srcW);
  583. if ((*filterPos)[i] + filterSize > srcW) {
  584. for (j = 0; j < filterSize; j++) {
  585. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  586. }
  587. }
  588. }
  589. // Note the +1 is for the MMX scaler which reads over the end
  590. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  591. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  592. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  593. /* normalize & store in outFilter */
  594. for (i = 0; i < dstW; i++) {
  595. int j;
  596. int64_t error = 0;
  597. int64_t sum = 0;
  598. for (j = 0; j < filterSize; j++) {
  599. sum += filter[i * filterSize + j];
  600. }
  601. sum = (sum + one / 2) / one;
  602. if (!sum) {
  603. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  604. sum = 1;
  605. }
  606. for (j = 0; j < *outFilterSize; j++) {
  607. int64_t v = filter[i * filterSize + j] + error;
  608. int intV = ROUNDED_DIV(v, sum);
  609. (*outFilter)[i * (*outFilterSize) + j] = intV;
  610. error = v - intV * sum;
  611. }
  612. }
  613. (*filterPos)[dstW + 0] =
  614. (*filterPos)[dstW + 1] =
  615. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  616. * read over the end */
  617. for (i = 0; i < *outFilterSize; i++) {
  618. int k = (dstW - 1) * (*outFilterSize) + i;
  619. (*outFilter)[k + 1 * (*outFilterSize)] =
  620. (*outFilter)[k + 2 * (*outFilterSize)] =
  621. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  622. }
  623. ret = 0;
  624. fail:
  625. if(ret < 0)
  626. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  627. av_free(filter);
  628. av_free(filter2);
  629. return ret;
  630. }
  631. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  632. {
  633. int64_t W, V, Z, Cy, Cu, Cv;
  634. int64_t vr = table[0];
  635. int64_t ub = table[1];
  636. int64_t ug = -table[2];
  637. int64_t vg = -table[3];
  638. int64_t ONE = 65536;
  639. int64_t cy = ONE;
  640. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  641. int i;
  642. static const int8_t map[] = {
  643. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  644. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  645. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  646. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  647. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  648. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  649. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  650. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  651. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  652. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  653. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  654. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  655. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  656. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  657. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  658. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  659. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  660. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  661. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  662. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  663. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  664. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  665. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  666. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  667. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  668. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  669. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  670. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  671. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  672. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  673. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  674. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  675. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  676. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  677. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  678. };
  679. dstRange = 0; //FIXME range = 1 is handled elsewhere
  680. if (!dstRange) {
  681. cy = cy * 255 / 219;
  682. } else {
  683. vr = vr * 224 / 255;
  684. ub = ub * 224 / 255;
  685. ug = ug * 224 / 255;
  686. vg = vg * 224 / 255;
  687. }
  688. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  689. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  690. Z = ONE*ONE-W-V;
  691. Cy = ROUNDED_DIV(cy*Z, ONE);
  692. Cu = ROUNDED_DIV(ub*Z, ONE);
  693. Cv = ROUNDED_DIV(vr*Z, ONE);
  694. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  695. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  696. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  697. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  698. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  699. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  700. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  701. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  702. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  703. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  704. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  705. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  706. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  707. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  708. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  709. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  710. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  711. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  712. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  713. }
  714. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  715. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  716. }
  717. static void fill_xyztables(struct SwsContext *c)
  718. {
  719. int i;
  720. double xyzgamma = XYZ_GAMMA;
  721. double rgbgamma = 1.0 / RGB_GAMMA;
  722. double xyzgammainv = 1.0 / XYZ_GAMMA;
  723. double rgbgammainv = RGB_GAMMA;
  724. static const int16_t xyz2rgb_matrix[3][4] = {
  725. {13270, -6295, -2041},
  726. {-3969, 7682, 170},
  727. { 228, -835, 4329} };
  728. static const int16_t rgb2xyz_matrix[3][4] = {
  729. {1689, 1464, 739},
  730. { 871, 2929, 296},
  731. { 79, 488, 3891} };
  732. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  733. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  734. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  735. c->xyzgamma = xyzgamma_tab;
  736. c->rgbgamma = rgbgamma_tab;
  737. c->xyzgammainv = xyzgammainv_tab;
  738. c->rgbgammainv = rgbgammainv_tab;
  739. if (rgbgamma_tab[4095])
  740. return;
  741. /* set gamma vectors */
  742. for (i = 0; i < 4096; i++) {
  743. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  744. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  745. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  746. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  747. }
  748. }
  749. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  750. int srcRange, const int table[4], int dstRange,
  751. int brightness, int contrast, int saturation)
  752. {
  753. const AVPixFmtDescriptor *desc_dst;
  754. const AVPixFmtDescriptor *desc_src;
  755. int need_reinit = 0;
  756. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  757. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  758. handle_formats(c);
  759. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  760. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  761. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  762. dstRange = 0;
  763. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  764. srcRange = 0;
  765. c->brightness = brightness;
  766. c->contrast = contrast;
  767. c->saturation = saturation;
  768. if (c->srcRange != srcRange || c->dstRange != dstRange)
  769. need_reinit = 1;
  770. c->srcRange = srcRange;
  771. c->dstRange = dstRange;
  772. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  773. //and what we have in ticket 2939 looks better with this check
  774. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  775. ff_sws_init_range_convert(c);
  776. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  777. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  778. if (c->cascaded_context[c->cascaded_mainindex])
  779. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  780. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  781. if (!c->cascaded_context[0] &&
  782. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  783. c->srcW && c->srcH && c->dstW && c->dstH) {
  784. enum AVPixelFormat tmp_format;
  785. int tmp_width, tmp_height;
  786. int srcW = c->srcW;
  787. int srcH = c->srcH;
  788. int dstW = c->dstW;
  789. int dstH = c->dstH;
  790. int ret;
  791. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  792. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  793. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  794. tmp_format = AV_PIX_FMT_BGRA64;
  795. } else {
  796. tmp_format = AV_PIX_FMT_BGR48;
  797. }
  798. } else {
  799. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  800. tmp_format = AV_PIX_FMT_BGRA;
  801. } else {
  802. tmp_format = AV_PIX_FMT_BGR24;
  803. }
  804. }
  805. if (srcW*srcH > dstW*dstH) {
  806. tmp_width = dstW;
  807. tmp_height = dstH;
  808. } else {
  809. tmp_width = srcW;
  810. tmp_height = srcH;
  811. }
  812. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  813. tmp_width, tmp_height, tmp_format, 64);
  814. if (ret < 0)
  815. return ret;
  816. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  817. tmp_width, tmp_height, tmp_format,
  818. c->flags, c->param);
  819. if (!c->cascaded_context[0])
  820. return -1;
  821. c->cascaded_context[0]->alphablend = c->alphablend;
  822. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  823. if (ret < 0)
  824. return ret;
  825. //we set both src and dst depending on that the RGB side will be ignored
  826. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  827. srcRange, table, dstRange,
  828. brightness, contrast, saturation);
  829. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  830. dstW, dstH, c->dstFormat,
  831. c->flags, NULL, NULL, c->param);
  832. if (!c->cascaded_context[1])
  833. return -1;
  834. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  835. srcRange, table, dstRange,
  836. 0, 1 << 16, 1 << 16);
  837. return 0;
  838. }
  839. return -1;
  840. }
  841. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  842. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  843. contrast, saturation);
  844. // FIXME factorize
  845. if (ARCH_PPC)
  846. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  847. contrast, saturation);
  848. }
  849. fill_rgb2yuv_table(c, table, dstRange);
  850. return 0;
  851. }
  852. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  853. int *srcRange, int **table, int *dstRange,
  854. int *brightness, int *contrast, int *saturation)
  855. {
  856. if (!c )
  857. return -1;
  858. *inv_table = c->srcColorspaceTable;
  859. *table = c->dstColorspaceTable;
  860. *srcRange = c->srcRange;
  861. *dstRange = c->dstRange;
  862. *brightness = c->brightness;
  863. *contrast = c->contrast;
  864. *saturation = c->saturation;
  865. return 0;
  866. }
  867. static int handle_jpeg(enum AVPixelFormat *format)
  868. {
  869. switch (*format) {
  870. case AV_PIX_FMT_YUVJ420P:
  871. *format = AV_PIX_FMT_YUV420P;
  872. return 1;
  873. case AV_PIX_FMT_YUVJ411P:
  874. *format = AV_PIX_FMT_YUV411P;
  875. return 1;
  876. case AV_PIX_FMT_YUVJ422P:
  877. *format = AV_PIX_FMT_YUV422P;
  878. return 1;
  879. case AV_PIX_FMT_YUVJ444P:
  880. *format = AV_PIX_FMT_YUV444P;
  881. return 1;
  882. case AV_PIX_FMT_YUVJ440P:
  883. *format = AV_PIX_FMT_YUV440P;
  884. return 1;
  885. case AV_PIX_FMT_GRAY8:
  886. case AV_PIX_FMT_YA8:
  887. case AV_PIX_FMT_GRAY16LE:
  888. case AV_PIX_FMT_GRAY16BE:
  889. case AV_PIX_FMT_YA16BE:
  890. case AV_PIX_FMT_YA16LE:
  891. return 1;
  892. default:
  893. return 0;
  894. }
  895. }
  896. static int handle_0alpha(enum AVPixelFormat *format)
  897. {
  898. switch (*format) {
  899. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  900. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  901. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  902. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  903. default: return 0;
  904. }
  905. }
  906. static int handle_xyz(enum AVPixelFormat *format)
  907. {
  908. switch (*format) {
  909. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  910. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  911. default: return 0;
  912. }
  913. }
  914. static void handle_formats(SwsContext *c)
  915. {
  916. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  917. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  918. c->srcXYZ |= handle_xyz(&c->srcFormat);
  919. c->dstXYZ |= handle_xyz(&c->dstFormat);
  920. if (c->srcXYZ || c->dstXYZ)
  921. fill_xyztables(c);
  922. }
  923. SwsContext *sws_alloc_context(void)
  924. {
  925. SwsContext *c = av_mallocz(sizeof(SwsContext));
  926. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  927. if (c) {
  928. c->av_class = &sws_context_class;
  929. av_opt_set_defaults(c);
  930. }
  931. return c;
  932. }
  933. static uint16_t * alloc_gamma_tbl(double e)
  934. {
  935. int i = 0;
  936. uint16_t * tbl;
  937. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  938. if (!tbl)
  939. return NULL;
  940. for (i = 0; i < 65536; ++i) {
  941. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  942. }
  943. return tbl;
  944. }
  945. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  946. {
  947. switch(fmt) {
  948. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  949. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  950. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  951. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  952. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  953. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  954. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  955. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  956. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  957. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  958. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  959. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  960. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  961. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  962. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  963. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  964. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  965. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  966. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  967. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  968. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  969. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  970. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  971. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  972. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  973. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  974. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  975. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  976. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  977. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  978. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  979. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  980. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  981. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  982. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  983. // case AV_PIX_FMT_AYUV64LE:
  984. // case AV_PIX_FMT_AYUV64BE:
  985. // case AV_PIX_FMT_PAL8:
  986. default: return AV_PIX_FMT_NONE;
  987. }
  988. }
  989. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  990. SwsFilter *dstFilter)
  991. {
  992. int i, j;
  993. int usesVFilter, usesHFilter;
  994. int unscaled;
  995. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  996. int srcW = c->srcW;
  997. int srcH = c->srcH;
  998. int dstW = c->dstW;
  999. int dstH = c->dstH;
  1000. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1001. int flags, cpu_flags;
  1002. enum AVPixelFormat srcFormat = c->srcFormat;
  1003. enum AVPixelFormat dstFormat = c->dstFormat;
  1004. const AVPixFmtDescriptor *desc_src;
  1005. const AVPixFmtDescriptor *desc_dst;
  1006. int ret = 0;
  1007. enum AVPixelFormat tmpFmt;
  1008. cpu_flags = av_get_cpu_flags();
  1009. flags = c->flags;
  1010. emms_c();
  1011. if (!rgb15to16)
  1012. sws_rgb2rgb_init();
  1013. unscaled = (srcW == dstW && srcH == dstH);
  1014. c->srcRange |= handle_jpeg(&c->srcFormat);
  1015. c->dstRange |= handle_jpeg(&c->dstFormat);
  1016. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1017. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1018. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1019. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1020. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1021. c->dstRange, 0, 1 << 16, 1 << 16);
  1022. handle_formats(c);
  1023. srcFormat = c->srcFormat;
  1024. dstFormat = c->dstFormat;
  1025. desc_src = av_pix_fmt_desc_get(srcFormat);
  1026. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1027. // If the source has no alpha then disable alpha blendaway
  1028. if (c->src0Alpha)
  1029. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1030. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1031. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1032. if (!sws_isSupportedInput(srcFormat)) {
  1033. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1034. av_get_pix_fmt_name(srcFormat));
  1035. return AVERROR(EINVAL);
  1036. }
  1037. if (!sws_isSupportedOutput(dstFormat)) {
  1038. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1039. av_get_pix_fmt_name(dstFormat));
  1040. return AVERROR(EINVAL);
  1041. }
  1042. }
  1043. av_assert2(desc_src && desc_dst);
  1044. i = flags & (SWS_POINT |
  1045. SWS_AREA |
  1046. SWS_BILINEAR |
  1047. SWS_FAST_BILINEAR |
  1048. SWS_BICUBIC |
  1049. SWS_X |
  1050. SWS_GAUSS |
  1051. SWS_LANCZOS |
  1052. SWS_SINC |
  1053. SWS_SPLINE |
  1054. SWS_BICUBLIN);
  1055. /* provide a default scaler if not set by caller */
  1056. if (!i) {
  1057. if (dstW < srcW && dstH < srcH)
  1058. flags |= SWS_BICUBIC;
  1059. else if (dstW > srcW && dstH > srcH)
  1060. flags |= SWS_BICUBIC;
  1061. else
  1062. flags |= SWS_BICUBIC;
  1063. c->flags = flags;
  1064. } else if (i & (i - 1)) {
  1065. av_log(c, AV_LOG_ERROR,
  1066. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1067. return AVERROR(EINVAL);
  1068. }
  1069. /* sanity check */
  1070. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1071. /* FIXME check if these are enough and try to lower them after
  1072. * fixing the relevant parts of the code */
  1073. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1074. srcW, srcH, dstW, dstH);
  1075. return AVERROR(EINVAL);
  1076. }
  1077. if (!dstFilter)
  1078. dstFilter = &dummyFilter;
  1079. if (!srcFilter)
  1080. srcFilter = &dummyFilter;
  1081. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1082. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1083. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1084. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1085. c->vRounder = 4 * 0x0001000100010001ULL;
  1086. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1087. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1088. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1089. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1090. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1091. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1092. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1093. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1094. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1095. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1096. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1097. if (dstW&1) {
  1098. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1099. flags |= SWS_FULL_CHR_H_INT;
  1100. c->flags = flags;
  1101. }
  1102. if ( c->chrSrcHSubSample == 0
  1103. && c->chrSrcVSubSample == 0
  1104. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1105. && !(c->flags & SWS_FAST_BILINEAR)
  1106. ) {
  1107. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1108. flags |= SWS_FULL_CHR_H_INT;
  1109. c->flags = flags;
  1110. }
  1111. }
  1112. if (c->dither == SWS_DITHER_AUTO) {
  1113. if (flags & SWS_ERROR_DIFFUSION)
  1114. c->dither = SWS_DITHER_ED;
  1115. }
  1116. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1117. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1118. dstFormat == AV_PIX_FMT_BGR8 ||
  1119. dstFormat == AV_PIX_FMT_RGB8) {
  1120. if (c->dither == SWS_DITHER_AUTO)
  1121. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1122. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1123. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1124. av_log(c, AV_LOG_DEBUG,
  1125. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1126. av_get_pix_fmt_name(dstFormat));
  1127. flags |= SWS_FULL_CHR_H_INT;
  1128. c->flags = flags;
  1129. }
  1130. }
  1131. if (flags & SWS_FULL_CHR_H_INT) {
  1132. if (c->dither == SWS_DITHER_BAYER) {
  1133. av_log(c, AV_LOG_DEBUG,
  1134. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1135. av_get_pix_fmt_name(dstFormat));
  1136. c->dither = SWS_DITHER_ED;
  1137. }
  1138. }
  1139. }
  1140. if (isPlanarRGB(dstFormat)) {
  1141. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1142. av_log(c, AV_LOG_DEBUG,
  1143. "%s output is not supported with half chroma resolution, switching to full\n",
  1144. av_get_pix_fmt_name(dstFormat));
  1145. flags |= SWS_FULL_CHR_H_INT;
  1146. c->flags = flags;
  1147. }
  1148. }
  1149. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1150. * chroma interpolation */
  1151. if (flags & SWS_FULL_CHR_H_INT &&
  1152. isAnyRGB(dstFormat) &&
  1153. !isPlanarRGB(dstFormat) &&
  1154. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1155. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1156. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1157. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1158. dstFormat != AV_PIX_FMT_RGB48LE &&
  1159. dstFormat != AV_PIX_FMT_RGB48BE &&
  1160. dstFormat != AV_PIX_FMT_BGR48LE &&
  1161. dstFormat != AV_PIX_FMT_BGR48BE &&
  1162. dstFormat != AV_PIX_FMT_RGBA &&
  1163. dstFormat != AV_PIX_FMT_ARGB &&
  1164. dstFormat != AV_PIX_FMT_BGRA &&
  1165. dstFormat != AV_PIX_FMT_ABGR &&
  1166. dstFormat != AV_PIX_FMT_RGB24 &&
  1167. dstFormat != AV_PIX_FMT_BGR24 &&
  1168. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1169. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1170. dstFormat != AV_PIX_FMT_BGR8 &&
  1171. dstFormat != AV_PIX_FMT_RGB8
  1172. ) {
  1173. av_log(c, AV_LOG_WARNING,
  1174. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1175. av_get_pix_fmt_name(dstFormat));
  1176. flags &= ~SWS_FULL_CHR_H_INT;
  1177. c->flags = flags;
  1178. }
  1179. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1180. c->chrDstHSubSample = 1;
  1181. // drop some chroma lines if the user wants it
  1182. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1183. SWS_SRC_V_CHR_DROP_SHIFT;
  1184. c->chrSrcVSubSample += c->vChrDrop;
  1185. /* drop every other pixel for chroma calculation unless user
  1186. * wants full chroma */
  1187. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1188. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1189. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1190. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1191. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1192. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1193. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1194. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1195. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1196. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1197. (flags & SWS_FAST_BILINEAR)))
  1198. c->chrSrcHSubSample = 1;
  1199. // Note the FF_CEIL_RSHIFT is so that we always round toward +inf.
  1200. c->chrSrcW = FF_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1201. c->chrSrcH = FF_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1202. c->chrDstW = FF_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1203. c->chrDstH = FF_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1204. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1205. c->srcBpc = desc_src->comp[0].depth;
  1206. if (c->srcBpc < 8)
  1207. c->srcBpc = 8;
  1208. c->dstBpc = desc_dst->comp[0].depth;
  1209. if (c->dstBpc < 8)
  1210. c->dstBpc = 8;
  1211. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1212. c->srcBpc = 16;
  1213. if (c->dstBpc == 16)
  1214. dst_stride <<= 1;
  1215. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1216. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1217. c->chrDstW >= c->chrSrcW &&
  1218. (srcW & 15) == 0;
  1219. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1220. && (flags & SWS_FAST_BILINEAR)) {
  1221. if (flags & SWS_PRINT_INFO)
  1222. av_log(c, AV_LOG_INFO,
  1223. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1224. }
  1225. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1226. c->canMMXEXTBeUsed = 0;
  1227. } else
  1228. c->canMMXEXTBeUsed = 0;
  1229. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1230. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1231. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1232. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1233. * correct scaling.
  1234. * n-2 is the last chrominance sample available.
  1235. * This is not perfect, but no one should notice the difference, the more
  1236. * correct variant would be like the vertical one, but that would require
  1237. * some special code for the first and last pixel */
  1238. if (flags & SWS_FAST_BILINEAR) {
  1239. if (c->canMMXEXTBeUsed) {
  1240. c->lumXInc += 20;
  1241. c->chrXInc += 20;
  1242. }
  1243. // we don't use the x86 asm scaler if MMX is available
  1244. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1245. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1246. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1247. }
  1248. }
  1249. // hardcoded for now
  1250. c->gamma_value = 2.2;
  1251. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1252. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1253. SwsContext *c2;
  1254. c->cascaded_context[0] = NULL;
  1255. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1256. srcW, srcH, tmpFmt, 64);
  1257. if (ret < 0)
  1258. return ret;
  1259. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1260. srcW, srcH, tmpFmt,
  1261. flags, NULL, NULL, c->param);
  1262. if (!c->cascaded_context[0]) {
  1263. return -1;
  1264. }
  1265. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1266. dstW, dstH, tmpFmt,
  1267. flags, srcFilter, dstFilter, c->param);
  1268. if (!c->cascaded_context[1])
  1269. return -1;
  1270. c2 = c->cascaded_context[1];
  1271. c2->is_internal_gamma = 1;
  1272. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1273. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1274. if (!c2->gamma || !c2->inv_gamma)
  1275. return AVERROR(ENOMEM);
  1276. // is_internal_flag is set after creating the context
  1277. // to properly create the gamma convert FilterDescriptor
  1278. // we have to re-initialize it
  1279. ff_free_filters(c2);
  1280. if (ff_init_filters(c2) < 0) {
  1281. sws_freeContext(c2);
  1282. return -1;
  1283. }
  1284. c->cascaded_context[2] = NULL;
  1285. if (dstFormat != tmpFmt) {
  1286. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1287. dstW, dstH, tmpFmt, 64);
  1288. if (ret < 0)
  1289. return ret;
  1290. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1291. dstW, dstH, dstFormat,
  1292. flags, NULL, NULL, c->param);
  1293. if (!c->cascaded_context[2])
  1294. return -1;
  1295. }
  1296. return 0;
  1297. }
  1298. if (isBayer(srcFormat)) {
  1299. if (!unscaled ||
  1300. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1301. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1302. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1303. srcW, srcH, tmpFormat, 64);
  1304. if (ret < 0)
  1305. return ret;
  1306. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1307. srcW, srcH, tmpFormat,
  1308. flags, srcFilter, NULL, c->param);
  1309. if (!c->cascaded_context[0])
  1310. return -1;
  1311. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1312. dstW, dstH, dstFormat,
  1313. flags, NULL, dstFilter, c->param);
  1314. if (!c->cascaded_context[1])
  1315. return -1;
  1316. return 0;
  1317. }
  1318. }
  1319. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1320. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1321. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1322. if (!unscaled ||
  1323. dstFormat != tmpFormat ||
  1324. usesHFilter || usesVFilter ||
  1325. c->srcRange != c->dstRange
  1326. ) {
  1327. c->cascaded_mainindex = 1;
  1328. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1329. srcW, srcH, tmpFormat, 64);
  1330. if (ret < 0)
  1331. return ret;
  1332. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1333. srcW, srcH, tmpFormat,
  1334. flags, c->param);
  1335. if (!c->cascaded_context[0])
  1336. return -1;
  1337. c->cascaded_context[0]->alphablend = c->alphablend;
  1338. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1339. if (ret < 0)
  1340. return ret;
  1341. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1342. dstW, dstH, dstFormat,
  1343. flags, c->param);
  1344. if (!c->cascaded_context[1])
  1345. return -1;
  1346. c->cascaded_context[1]->srcRange = c->srcRange;
  1347. c->cascaded_context[1]->dstRange = c->dstRange;
  1348. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1349. if (ret < 0)
  1350. return ret;
  1351. return 0;
  1352. }
  1353. }
  1354. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1355. /* precalculate horizontal scaler filter coefficients */
  1356. {
  1357. #if HAVE_MMXEXT_INLINE
  1358. // can't downscale !!!
  1359. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1360. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1361. NULL, NULL, 8);
  1362. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1363. NULL, NULL, NULL, 4);
  1364. #if USE_MMAP
  1365. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1366. PROT_READ | PROT_WRITE,
  1367. MAP_PRIVATE | MAP_ANONYMOUS,
  1368. -1, 0);
  1369. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1370. PROT_READ | PROT_WRITE,
  1371. MAP_PRIVATE | MAP_ANONYMOUS,
  1372. -1, 0);
  1373. #elif HAVE_VIRTUALALLOC
  1374. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1375. c->lumMmxextFilterCodeSize,
  1376. MEM_COMMIT,
  1377. PAGE_EXECUTE_READWRITE);
  1378. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1379. c->chrMmxextFilterCodeSize,
  1380. MEM_COMMIT,
  1381. PAGE_EXECUTE_READWRITE);
  1382. #else
  1383. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1384. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1385. #endif
  1386. #ifdef MAP_ANONYMOUS
  1387. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1388. #else
  1389. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1390. #endif
  1391. {
  1392. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1393. return AVERROR(ENOMEM);
  1394. }
  1395. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1396. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1397. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1398. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1399. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1400. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1401. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1402. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1403. #if USE_MMAP
  1404. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1405. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1406. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1407. goto fail;
  1408. }
  1409. #endif
  1410. } else
  1411. #endif /* HAVE_MMXEXT_INLINE */
  1412. {
  1413. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1414. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1415. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1416. &c->hLumFilterSize, c->lumXInc,
  1417. srcW, dstW, filterAlign, 1 << 14,
  1418. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1419. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1420. c->param,
  1421. get_local_pos(c, 0, 0, 0),
  1422. get_local_pos(c, 0, 0, 0))) < 0)
  1423. goto fail;
  1424. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1425. &c->hChrFilterSize, c->chrXInc,
  1426. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1427. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1428. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1429. c->param,
  1430. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1431. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1432. goto fail;
  1433. }
  1434. } // initialize horizontal stuff
  1435. /* precalculate vertical scaler filter coefficients */
  1436. {
  1437. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1438. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1439. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1440. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1441. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1442. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1443. c->param,
  1444. get_local_pos(c, 0, 0, 1),
  1445. get_local_pos(c, 0, 0, 1))) < 0)
  1446. goto fail;
  1447. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1448. c->chrYInc, c->chrSrcH, c->chrDstH,
  1449. filterAlign, (1 << 12),
  1450. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1451. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1452. c->param,
  1453. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1454. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1455. goto fail;
  1456. #if HAVE_ALTIVEC
  1457. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1458. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1459. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1460. int j;
  1461. short *p = (short *)&c->vYCoeffsBank[i];
  1462. for (j = 0; j < 8; j++)
  1463. p[j] = c->vLumFilter[i];
  1464. }
  1465. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1466. int j;
  1467. short *p = (short *)&c->vCCoeffsBank[i];
  1468. for (j = 0; j < 8; j++)
  1469. p[j] = c->vChrFilter[i];
  1470. }
  1471. #endif
  1472. }
  1473. // calculate buffer sizes so that they won't run out while handling these damn slices
  1474. c->vLumBufSize = c->vLumFilterSize;
  1475. c->vChrBufSize = c->vChrFilterSize;
  1476. for (i = 0; i < dstH; i++) {
  1477. int chrI = (int64_t)i * c->chrDstH / dstH;
  1478. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1479. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1480. << c->chrSrcVSubSample));
  1481. nextSlice >>= c->chrSrcVSubSample;
  1482. nextSlice <<= c->chrSrcVSubSample;
  1483. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1484. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1485. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1486. (nextSlice >> c->chrSrcVSubSample))
  1487. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1488. c->vChrFilterPos[chrI];
  1489. }
  1490. for (i = 0; i < 4; i++)
  1491. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1492. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1493. * need to allocate several megabytes to handle all possible cases) */
  1494. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1495. FF_ALLOCZ_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1496. FF_ALLOCZ_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1497. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1498. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1499. /* Note we need at least one pixel more at the end because of the MMX code
  1500. * (just in case someone wants to replace the 4000/8000). */
  1501. /* align at 16 bytes for AltiVec */
  1502. for (i = 0; i < c->vLumBufSize; i++) {
  1503. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1504. dst_stride + 16, fail);
  1505. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1506. }
  1507. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1508. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1509. c->uv_offx2 = dst_stride + 16;
  1510. for (i = 0; i < c->vChrBufSize; i++) {
  1511. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1512. dst_stride * 2 + 32, fail);
  1513. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1514. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1515. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1516. }
  1517. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1518. for (i = 0; i < c->vLumBufSize; i++) {
  1519. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1520. dst_stride + 16, fail);
  1521. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1522. }
  1523. // try to avoid drawing green stuff between the right end and the stride end
  1524. for (i = 0; i < c->vChrBufSize; i++)
  1525. if(desc_dst->comp[0].depth == 16){
  1526. av_assert0(c->dstBpc > 14);
  1527. for(j=0; j<dst_stride/2+1; j++)
  1528. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1529. } else
  1530. for(j=0; j<dst_stride+1; j++)
  1531. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1532. av_assert0(c->chrDstH <= dstH);
  1533. if (flags & SWS_PRINT_INFO) {
  1534. const char *scaler = NULL, *cpucaps;
  1535. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1536. if (flags & scale_algorithms[i].flag) {
  1537. scaler = scale_algorithms[i].description;
  1538. break;
  1539. }
  1540. }
  1541. if (!scaler)
  1542. scaler = "ehh flags invalid?!";
  1543. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1544. scaler,
  1545. av_get_pix_fmt_name(srcFormat),
  1546. #ifdef DITHER1XBPP
  1547. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1548. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1549. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1550. "dithered " : "",
  1551. #else
  1552. "",
  1553. #endif
  1554. av_get_pix_fmt_name(dstFormat));
  1555. if (INLINE_MMXEXT(cpu_flags))
  1556. cpucaps = "MMXEXT";
  1557. else if (INLINE_AMD3DNOW(cpu_flags))
  1558. cpucaps = "3DNOW";
  1559. else if (INLINE_MMX(cpu_flags))
  1560. cpucaps = "MMX";
  1561. else if (PPC_ALTIVEC(cpu_flags))
  1562. cpucaps = "AltiVec";
  1563. else
  1564. cpucaps = "C";
  1565. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1566. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1567. av_log(c, AV_LOG_DEBUG,
  1568. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1569. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1570. av_log(c, AV_LOG_DEBUG,
  1571. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1572. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1573. c->chrXInc, c->chrYInc);
  1574. }
  1575. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1576. if (unscaled && !usesHFilter && !usesVFilter &&
  1577. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1578. isALPHA(srcFormat) &&
  1579. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1580. alphaless_fmt(srcFormat) == dstFormat
  1581. ) {
  1582. c->swscale = ff_sws_alphablendaway;
  1583. if (flags & SWS_PRINT_INFO)
  1584. av_log(c, AV_LOG_INFO,
  1585. "using alpha blendaway %s -> %s special converter\n",
  1586. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1587. return 0;
  1588. }
  1589. /* unscaled special cases */
  1590. if (unscaled && !usesHFilter && !usesVFilter &&
  1591. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1592. ff_get_unscaled_swscale(c);
  1593. if (c->swscale) {
  1594. if (flags & SWS_PRINT_INFO)
  1595. av_log(c, AV_LOG_INFO,
  1596. "using unscaled %s -> %s special converter\n",
  1597. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1598. return 0;
  1599. }
  1600. }
  1601. c->swscale = ff_getSwsFunc(c);
  1602. return ff_init_filters(c);
  1603. fail: // FIXME replace things by appropriate error codes
  1604. if (ret == RETCODE_USE_CASCADE) {
  1605. int tmpW = sqrt(srcW * (int64_t)dstW);
  1606. int tmpH = sqrt(srcH * (int64_t)dstH);
  1607. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1608. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1609. return AVERROR(EINVAL);
  1610. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1611. tmpW, tmpH, tmpFormat, 64);
  1612. if (ret < 0)
  1613. return ret;
  1614. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1615. tmpW, tmpH, tmpFormat,
  1616. flags, srcFilter, NULL, c->param);
  1617. if (!c->cascaded_context[0])
  1618. return -1;
  1619. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1620. dstW, dstH, dstFormat,
  1621. flags, NULL, dstFilter, c->param);
  1622. if (!c->cascaded_context[1])
  1623. return -1;
  1624. return 0;
  1625. }
  1626. return -1;
  1627. }
  1628. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1629. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1630. int flags, const double *param)
  1631. {
  1632. SwsContext *c;
  1633. if (!(c = sws_alloc_context()))
  1634. return NULL;
  1635. c->flags = flags;
  1636. c->srcW = srcW;
  1637. c->srcH = srcH;
  1638. c->dstW = dstW;
  1639. c->dstH = dstH;
  1640. c->srcFormat = srcFormat;
  1641. c->dstFormat = dstFormat;
  1642. if (param) {
  1643. c->param[0] = param[0];
  1644. c->param[1] = param[1];
  1645. }
  1646. return c;
  1647. }
  1648. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1649. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1650. int flags, SwsFilter *srcFilter,
  1651. SwsFilter *dstFilter, const double *param)
  1652. {
  1653. SwsContext *c;
  1654. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1655. dstW, dstH, dstFormat,
  1656. flags, param);
  1657. if (!c)
  1658. return NULL;
  1659. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1660. sws_freeContext(c);
  1661. return NULL;
  1662. }
  1663. return c;
  1664. }
  1665. static int isnan_vec(SwsVector *a)
  1666. {
  1667. int i;
  1668. for (i=0; i<a->length; i++)
  1669. if (isnan(a->coeff[i]))
  1670. return 1;
  1671. return 0;
  1672. }
  1673. static void makenan_vec(SwsVector *a)
  1674. {
  1675. int i;
  1676. for (i=0; i<a->length; i++)
  1677. a->coeff[i] = NAN;
  1678. }
  1679. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1680. float lumaSharpen, float chromaSharpen,
  1681. float chromaHShift, float chromaVShift,
  1682. int verbose)
  1683. {
  1684. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1685. if (!filter)
  1686. return NULL;
  1687. if (lumaGBlur != 0.0) {
  1688. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1689. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1690. } else {
  1691. filter->lumH = sws_getIdentityVec();
  1692. filter->lumV = sws_getIdentityVec();
  1693. }
  1694. if (chromaGBlur != 0.0) {
  1695. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1696. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1697. } else {
  1698. filter->chrH = sws_getIdentityVec();
  1699. filter->chrV = sws_getIdentityVec();
  1700. }
  1701. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1702. goto fail;
  1703. if (chromaSharpen != 0.0) {
  1704. SwsVector *id = sws_getIdentityVec();
  1705. if (!id)
  1706. goto fail;
  1707. sws_scaleVec(filter->chrH, -chromaSharpen);
  1708. sws_scaleVec(filter->chrV, -chromaSharpen);
  1709. sws_addVec(filter->chrH, id);
  1710. sws_addVec(filter->chrV, id);
  1711. sws_freeVec(id);
  1712. }
  1713. if (lumaSharpen != 0.0) {
  1714. SwsVector *id = sws_getIdentityVec();
  1715. if (!id)
  1716. goto fail;
  1717. sws_scaleVec(filter->lumH, -lumaSharpen);
  1718. sws_scaleVec(filter->lumV, -lumaSharpen);
  1719. sws_addVec(filter->lumH, id);
  1720. sws_addVec(filter->lumV, id);
  1721. sws_freeVec(id);
  1722. }
  1723. if (chromaHShift != 0.0)
  1724. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1725. if (chromaVShift != 0.0)
  1726. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1727. sws_normalizeVec(filter->chrH, 1.0);
  1728. sws_normalizeVec(filter->chrV, 1.0);
  1729. sws_normalizeVec(filter->lumH, 1.0);
  1730. sws_normalizeVec(filter->lumV, 1.0);
  1731. if (isnan_vec(filter->chrH) ||
  1732. isnan_vec(filter->chrV) ||
  1733. isnan_vec(filter->lumH) ||
  1734. isnan_vec(filter->lumV))
  1735. goto fail;
  1736. if (verbose)
  1737. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1738. if (verbose)
  1739. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1740. return filter;
  1741. fail:
  1742. sws_freeVec(filter->lumH);
  1743. sws_freeVec(filter->lumV);
  1744. sws_freeVec(filter->chrH);
  1745. sws_freeVec(filter->chrV);
  1746. av_freep(&filter);
  1747. return NULL;
  1748. }
  1749. SwsVector *sws_allocVec(int length)
  1750. {
  1751. SwsVector *vec;
  1752. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1753. return NULL;
  1754. vec = av_malloc(sizeof(SwsVector));
  1755. if (!vec)
  1756. return NULL;
  1757. vec->length = length;
  1758. vec->coeff = av_malloc(sizeof(double) * length);
  1759. if (!vec->coeff)
  1760. av_freep(&vec);
  1761. return vec;
  1762. }
  1763. SwsVector *sws_getGaussianVec(double variance, double quality)
  1764. {
  1765. const int length = (int)(variance * quality + 0.5) | 1;
  1766. int i;
  1767. double middle = (length - 1) * 0.5;
  1768. SwsVector *vec;
  1769. if(variance < 0 || quality < 0)
  1770. return NULL;
  1771. vec = sws_allocVec(length);
  1772. if (!vec)
  1773. return NULL;
  1774. for (i = 0; i < length; i++) {
  1775. double dist = i - middle;
  1776. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1777. sqrt(2 * variance * M_PI);
  1778. }
  1779. sws_normalizeVec(vec, 1.0);
  1780. return vec;
  1781. }
  1782. SwsVector *sws_getConstVec(double c, int length)
  1783. {
  1784. int i;
  1785. SwsVector *vec = sws_allocVec(length);
  1786. if (!vec)
  1787. return NULL;
  1788. for (i = 0; i < length; i++)
  1789. vec->coeff[i] = c;
  1790. return vec;
  1791. }
  1792. SwsVector *sws_getIdentityVec(void)
  1793. {
  1794. return sws_getConstVec(1.0, 1);
  1795. }
  1796. static double sws_dcVec(SwsVector *a)
  1797. {
  1798. int i;
  1799. double sum = 0;
  1800. for (i = 0; i < a->length; i++)
  1801. sum += a->coeff[i];
  1802. return sum;
  1803. }
  1804. void sws_scaleVec(SwsVector *a, double scalar)
  1805. {
  1806. int i;
  1807. for (i = 0; i < a->length; i++)
  1808. a->coeff[i] *= scalar;
  1809. }
  1810. void sws_normalizeVec(SwsVector *a, double height)
  1811. {
  1812. sws_scaleVec(a, height / sws_dcVec(a));
  1813. }
  1814. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1815. {
  1816. int length = a->length + b->length - 1;
  1817. int i, j;
  1818. SwsVector *vec = sws_getConstVec(0.0, length);
  1819. if (!vec)
  1820. return NULL;
  1821. for (i = 0; i < a->length; i++) {
  1822. for (j = 0; j < b->length; j++) {
  1823. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1824. }
  1825. }
  1826. return vec;
  1827. }
  1828. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1829. {
  1830. int length = FFMAX(a->length, b->length);
  1831. int i;
  1832. SwsVector *vec = sws_getConstVec(0.0, length);
  1833. if (!vec)
  1834. return NULL;
  1835. for (i = 0; i < a->length; i++)
  1836. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1837. for (i = 0; i < b->length; i++)
  1838. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1839. return vec;
  1840. }
  1841. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1842. {
  1843. int length = FFMAX(a->length, b->length);
  1844. int i;
  1845. SwsVector *vec = sws_getConstVec(0.0, length);
  1846. if (!vec)
  1847. return NULL;
  1848. for (i = 0; i < a->length; i++)
  1849. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1850. for (i = 0; i < b->length; i++)
  1851. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1852. return vec;
  1853. }
  1854. /* shift left / or right if "shift" is negative */
  1855. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1856. {
  1857. int length = a->length + FFABS(shift) * 2;
  1858. int i;
  1859. SwsVector *vec = sws_getConstVec(0.0, length);
  1860. if (!vec)
  1861. return NULL;
  1862. for (i = 0; i < a->length; i++) {
  1863. vec->coeff[i + (length - 1) / 2 -
  1864. (a->length - 1) / 2 - shift] = a->coeff[i];
  1865. }
  1866. return vec;
  1867. }
  1868. void sws_shiftVec(SwsVector *a, int shift)
  1869. {
  1870. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1871. if (!shifted) {
  1872. makenan_vec(a);
  1873. return;
  1874. }
  1875. av_free(a->coeff);
  1876. a->coeff = shifted->coeff;
  1877. a->length = shifted->length;
  1878. av_free(shifted);
  1879. }
  1880. void sws_addVec(SwsVector *a, SwsVector *b)
  1881. {
  1882. SwsVector *sum = sws_sumVec(a, b);
  1883. if (!sum) {
  1884. makenan_vec(a);
  1885. return;
  1886. }
  1887. av_free(a->coeff);
  1888. a->coeff = sum->coeff;
  1889. a->length = sum->length;
  1890. av_free(sum);
  1891. }
  1892. void sws_subVec(SwsVector *a, SwsVector *b)
  1893. {
  1894. SwsVector *diff = sws_diffVec(a, b);
  1895. if (!diff) {
  1896. makenan_vec(a);
  1897. return;
  1898. }
  1899. av_free(a->coeff);
  1900. a->coeff = diff->coeff;
  1901. a->length = diff->length;
  1902. av_free(diff);
  1903. }
  1904. void sws_convVec(SwsVector *a, SwsVector *b)
  1905. {
  1906. SwsVector *conv = sws_getConvVec(a, b);
  1907. if (!conv) {
  1908. makenan_vec(a);
  1909. return;
  1910. }
  1911. av_free(a->coeff);
  1912. a->coeff = conv->coeff;
  1913. a->length = conv->length;
  1914. av_free(conv);
  1915. }
  1916. SwsVector *sws_cloneVec(SwsVector *a)
  1917. {
  1918. SwsVector *vec = sws_allocVec(a->length);
  1919. if (!vec)
  1920. return NULL;
  1921. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1922. return vec;
  1923. }
  1924. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1925. {
  1926. int i;
  1927. double max = 0;
  1928. double min = 0;
  1929. double range;
  1930. for (i = 0; i < a->length; i++)
  1931. if (a->coeff[i] > max)
  1932. max = a->coeff[i];
  1933. for (i = 0; i < a->length; i++)
  1934. if (a->coeff[i] < min)
  1935. min = a->coeff[i];
  1936. range = max - min;
  1937. for (i = 0; i < a->length; i++) {
  1938. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1939. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1940. for (; x > 0; x--)
  1941. av_log(log_ctx, log_level, " ");
  1942. av_log(log_ctx, log_level, "|\n");
  1943. }
  1944. }
  1945. void sws_freeVec(SwsVector *a)
  1946. {
  1947. if (!a)
  1948. return;
  1949. av_freep(&a->coeff);
  1950. a->length = 0;
  1951. av_free(a);
  1952. }
  1953. void sws_freeFilter(SwsFilter *filter)
  1954. {
  1955. if (!filter)
  1956. return;
  1957. sws_freeVec(filter->lumH);
  1958. sws_freeVec(filter->lumV);
  1959. sws_freeVec(filter->chrH);
  1960. sws_freeVec(filter->chrV);
  1961. av_free(filter);
  1962. }
  1963. void sws_freeContext(SwsContext *c)
  1964. {
  1965. int i;
  1966. if (!c)
  1967. return;
  1968. if (c->lumPixBuf) {
  1969. for (i = 0; i < c->vLumBufSize; i++)
  1970. av_freep(&c->lumPixBuf[i]);
  1971. av_freep(&c->lumPixBuf);
  1972. }
  1973. if (c->chrUPixBuf) {
  1974. for (i = 0; i < c->vChrBufSize; i++)
  1975. av_freep(&c->chrUPixBuf[i]);
  1976. av_freep(&c->chrUPixBuf);
  1977. av_freep(&c->chrVPixBuf);
  1978. }
  1979. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1980. for (i = 0; i < c->vLumBufSize; i++)
  1981. av_freep(&c->alpPixBuf[i]);
  1982. av_freep(&c->alpPixBuf);
  1983. }
  1984. for (i = 0; i < 4; i++)
  1985. av_freep(&c->dither_error[i]);
  1986. av_freep(&c->vLumFilter);
  1987. av_freep(&c->vChrFilter);
  1988. av_freep(&c->hLumFilter);
  1989. av_freep(&c->hChrFilter);
  1990. #if HAVE_ALTIVEC
  1991. av_freep(&c->vYCoeffsBank);
  1992. av_freep(&c->vCCoeffsBank);
  1993. #endif
  1994. av_freep(&c->vLumFilterPos);
  1995. av_freep(&c->vChrFilterPos);
  1996. av_freep(&c->hLumFilterPos);
  1997. av_freep(&c->hChrFilterPos);
  1998. #if HAVE_MMX_INLINE
  1999. #if USE_MMAP
  2000. if (c->lumMmxextFilterCode)
  2001. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2002. if (c->chrMmxextFilterCode)
  2003. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2004. #elif HAVE_VIRTUALALLOC
  2005. if (c->lumMmxextFilterCode)
  2006. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2007. if (c->chrMmxextFilterCode)
  2008. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2009. #else
  2010. av_free(c->lumMmxextFilterCode);
  2011. av_free(c->chrMmxextFilterCode);
  2012. #endif
  2013. c->lumMmxextFilterCode = NULL;
  2014. c->chrMmxextFilterCode = NULL;
  2015. #endif /* HAVE_MMX_INLINE */
  2016. av_freep(&c->yuvTable);
  2017. av_freep(&c->formatConvBuffer);
  2018. sws_freeContext(c->cascaded_context[0]);
  2019. sws_freeContext(c->cascaded_context[1]);
  2020. sws_freeContext(c->cascaded_context[2]);
  2021. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2022. av_freep(&c->cascaded_tmp[0]);
  2023. av_freep(&c->cascaded1_tmp[0]);
  2024. av_freep(&c->gamma);
  2025. av_freep(&c->inv_gamma);
  2026. ff_free_filters(c);
  2027. av_free(c);
  2028. }
  2029. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2030. int srcH, enum AVPixelFormat srcFormat,
  2031. int dstW, int dstH,
  2032. enum AVPixelFormat dstFormat, int flags,
  2033. SwsFilter *srcFilter,
  2034. SwsFilter *dstFilter,
  2035. const double *param)
  2036. {
  2037. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2038. SWS_PARAM_DEFAULT };
  2039. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2040. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2041. if (!param)
  2042. param = default_param;
  2043. if (context &&
  2044. (context->srcW != srcW ||
  2045. context->srcH != srcH ||
  2046. context->srcFormat != srcFormat ||
  2047. context->dstW != dstW ||
  2048. context->dstH != dstH ||
  2049. context->dstFormat != dstFormat ||
  2050. context->flags != flags ||
  2051. context->param[0] != param[0] ||
  2052. context->param[1] != param[1])) {
  2053. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2054. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2055. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2056. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2057. sws_freeContext(context);
  2058. context = NULL;
  2059. }
  2060. if (!context) {
  2061. if (!(context = sws_alloc_context()))
  2062. return NULL;
  2063. context->srcW = srcW;
  2064. context->srcH = srcH;
  2065. context->srcFormat = srcFormat;
  2066. context->dstW = dstW;
  2067. context->dstH = dstH;
  2068. context->dstFormat = dstFormat;
  2069. context->flags = flags;
  2070. context->param[0] = param[0];
  2071. context->param[1] = param[1];
  2072. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2073. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2074. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2075. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2076. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2077. sws_freeContext(context);
  2078. return NULL;
  2079. }
  2080. }
  2081. return context;
  2082. }