You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3408 lines
123KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. static const uint16_t vlc_offs[] = {
  47. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  48. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  49. 9262, 10202, 10756, 11310, 12228, 15078
  50. };
  51. /**
  52. * Init VC-1 specific tables and VC1Context members
  53. * @param v The VC1Context to initialize
  54. * @return Status
  55. */
  56. static int vc1_init_common(VC1Context *v)
  57. {
  58. static int done = 0;
  59. int i = 0;
  60. static VLC_TYPE vlc_table[15078][2];
  61. v->hrd_rate = v->hrd_buffer = NULL;
  62. /* VLC tables */
  63. if(!done)
  64. {
  65. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  66. ff_vc1_bfraction_bits, 1, 1,
  67. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  68. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  69. ff_vc1_norm2_bits, 1, 1,
  70. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  71. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  72. ff_vc1_norm6_bits, 1, 1,
  73. ff_vc1_norm6_codes, 2, 2, 556);
  74. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  75. ff_vc1_imode_bits, 1, 1,
  76. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  77. for (i=0; i<3; i++)
  78. {
  79. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  80. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  81. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  82. ff_vc1_ttmb_bits[i], 1, 1,
  83. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  84. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  85. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  86. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  87. ff_vc1_ttblk_bits[i], 1, 1,
  88. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  89. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  90. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  91. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  92. ff_vc1_subblkpat_bits[i], 1, 1,
  93. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  94. }
  95. for(i=0; i<4; i++)
  96. {
  97. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  98. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  99. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  100. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  101. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  102. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  103. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  104. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  105. ff_vc1_cbpcy_p_bits[i], 1, 1,
  106. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  107. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  108. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  109. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  110. ff_vc1_mv_diff_bits[i], 1, 1,
  111. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  112. }
  113. for(i=0; i<8; i++){
  114. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  115. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  116. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  117. &vc1_ac_tables[i][0][1], 8, 4,
  118. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  119. }
  120. done = 1;
  121. }
  122. /* Other defaults */
  123. v->pq = -1;
  124. v->mvrange = 0; /* 7.1.1.18, p80 */
  125. return 0;
  126. }
  127. /***********************************************************************/
  128. /**
  129. * @defgroup vc1bitplane VC-1 Bitplane decoding
  130. * @see 8.7, p56
  131. * @{
  132. */
  133. /**
  134. * Imode types
  135. * @{
  136. */
  137. enum Imode {
  138. IMODE_RAW,
  139. IMODE_NORM2,
  140. IMODE_DIFF2,
  141. IMODE_NORM6,
  142. IMODE_DIFF6,
  143. IMODE_ROWSKIP,
  144. IMODE_COLSKIP
  145. };
  146. /** @} */ //imode defines
  147. /** @} */ //Bitplane group
  148. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  149. {
  150. int j;
  151. if (!s->first_slice_line) {
  152. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  153. if (s->mb_x)
  154. s->dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize, s->linesize, pq);
  155. s->dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize+8, s->linesize, pq);
  156. for(j = 0; j < 2; j++){
  157. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  158. if (s->mb_x)
  159. s->dsp.vc1_h_loop_filter8(s->dest[j+1]-8*s->uvlinesize, s->uvlinesize, pq);
  160. }
  161. }
  162. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  163. if (s->mb_y == s->mb_height-1) {
  164. if (s->mb_x) {
  165. s->dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  166. s->dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  167. s->dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  168. }
  169. s->dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  170. }
  171. }
  172. /** Put block onto picture
  173. */
  174. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  175. {
  176. uint8_t *Y;
  177. int ys, us, vs;
  178. DSPContext *dsp = &v->s.dsp;
  179. if(v->rangeredfrm) {
  180. int i, j, k;
  181. for(k = 0; k < 6; k++)
  182. for(j = 0; j < 8; j++)
  183. for(i = 0; i < 8; i++)
  184. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  185. }
  186. ys = v->s.current_picture.linesize[0];
  187. us = v->s.current_picture.linesize[1];
  188. vs = v->s.current_picture.linesize[2];
  189. Y = v->s.dest[0];
  190. dsp->put_pixels_clamped(block[0], Y, ys);
  191. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  192. Y += ys * 8;
  193. dsp->put_pixels_clamped(block[2], Y, ys);
  194. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  195. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  196. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  197. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  198. }
  199. }
  200. /** Do motion compensation over 1 macroblock
  201. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  202. */
  203. static void vc1_mc_1mv(VC1Context *v, int dir)
  204. {
  205. MpegEncContext *s = &v->s;
  206. DSPContext *dsp = &v->s.dsp;
  207. uint8_t *srcY, *srcU, *srcV;
  208. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  209. if(!v->s.last_picture.data[0])return;
  210. mx = s->mv[dir][0][0];
  211. my = s->mv[dir][0][1];
  212. // store motion vectors for further use in B frames
  213. if(s->pict_type == FF_P_TYPE) {
  214. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  215. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  216. }
  217. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  218. uvmy = (my + ((my & 3) == 3)) >> 1;
  219. if(v->fastuvmc) {
  220. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  221. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  222. }
  223. if(!dir) {
  224. srcY = s->last_picture.data[0];
  225. srcU = s->last_picture.data[1];
  226. srcV = s->last_picture.data[2];
  227. } else {
  228. srcY = s->next_picture.data[0];
  229. srcU = s->next_picture.data[1];
  230. srcV = s->next_picture.data[2];
  231. }
  232. src_x = s->mb_x * 16 + (mx >> 2);
  233. src_y = s->mb_y * 16 + (my >> 2);
  234. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  235. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  236. if(v->profile != PROFILE_ADVANCED){
  237. src_x = av_clip( src_x, -16, s->mb_width * 16);
  238. src_y = av_clip( src_y, -16, s->mb_height * 16);
  239. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  240. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  241. }else{
  242. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  243. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  244. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  245. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  246. }
  247. srcY += src_y * s->linesize + src_x;
  248. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  249. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  250. /* for grayscale we should not try to read from unknown area */
  251. if(s->flags & CODEC_FLAG_GRAY) {
  252. srcU = s->edge_emu_buffer + 18 * s->linesize;
  253. srcV = s->edge_emu_buffer + 18 * s->linesize;
  254. }
  255. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  256. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  257. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  258. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  259. srcY -= s->mspel * (1 + s->linesize);
  260. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  261. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  262. srcY = s->edge_emu_buffer;
  263. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  264. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  265. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  266. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  267. srcU = uvbuf;
  268. srcV = uvbuf + 16;
  269. /* if we deal with range reduction we need to scale source blocks */
  270. if(v->rangeredfrm) {
  271. int i, j;
  272. uint8_t *src, *src2;
  273. src = srcY;
  274. for(j = 0; j < 17 + s->mspel*2; j++) {
  275. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  276. src += s->linesize;
  277. }
  278. src = srcU; src2 = srcV;
  279. for(j = 0; j < 9; j++) {
  280. for(i = 0; i < 9; i++) {
  281. src[i] = ((src[i] - 128) >> 1) + 128;
  282. src2[i] = ((src2[i] - 128) >> 1) + 128;
  283. }
  284. src += s->uvlinesize;
  285. src2 += s->uvlinesize;
  286. }
  287. }
  288. /* if we deal with intensity compensation we need to scale source blocks */
  289. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  290. int i, j;
  291. uint8_t *src, *src2;
  292. src = srcY;
  293. for(j = 0; j < 17 + s->mspel*2; j++) {
  294. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  295. src += s->linesize;
  296. }
  297. src = srcU; src2 = srcV;
  298. for(j = 0; j < 9; j++) {
  299. for(i = 0; i < 9; i++) {
  300. src[i] = v->lutuv[src[i]];
  301. src2[i] = v->lutuv[src2[i]];
  302. }
  303. src += s->uvlinesize;
  304. src2 += s->uvlinesize;
  305. }
  306. }
  307. srcY += s->mspel * (1 + s->linesize);
  308. }
  309. if(s->mspel) {
  310. dxy = ((my & 3) << 2) | (mx & 3);
  311. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  312. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  313. srcY += s->linesize * 8;
  314. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  315. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  316. } else { // hpel mc - always used for luma
  317. dxy = (my & 2) | ((mx & 2) >> 1);
  318. if(!v->rnd)
  319. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  320. else
  321. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  322. }
  323. if(s->flags & CODEC_FLAG_GRAY) return;
  324. /* Chroma MC always uses qpel bilinear */
  325. uvmx = (uvmx&3)<<1;
  326. uvmy = (uvmy&3)<<1;
  327. if(!v->rnd){
  328. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  329. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  330. }else{
  331. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  332. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  333. }
  334. }
  335. /** Do motion compensation for 4-MV macroblock - luminance block
  336. */
  337. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  338. {
  339. MpegEncContext *s = &v->s;
  340. DSPContext *dsp = &v->s.dsp;
  341. uint8_t *srcY;
  342. int dxy, mx, my, src_x, src_y;
  343. int off;
  344. if(!v->s.last_picture.data[0])return;
  345. mx = s->mv[0][n][0];
  346. my = s->mv[0][n][1];
  347. srcY = s->last_picture.data[0];
  348. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  349. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  350. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  351. if(v->profile != PROFILE_ADVANCED){
  352. src_x = av_clip( src_x, -16, s->mb_width * 16);
  353. src_y = av_clip( src_y, -16, s->mb_height * 16);
  354. }else{
  355. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  356. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  357. }
  358. srcY += src_y * s->linesize + src_x;
  359. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  360. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  361. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  362. srcY -= s->mspel * (1 + s->linesize);
  363. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  364. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  365. srcY = s->edge_emu_buffer;
  366. /* if we deal with range reduction we need to scale source blocks */
  367. if(v->rangeredfrm) {
  368. int i, j;
  369. uint8_t *src;
  370. src = srcY;
  371. for(j = 0; j < 9 + s->mspel*2; j++) {
  372. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  373. src += s->linesize;
  374. }
  375. }
  376. /* if we deal with intensity compensation we need to scale source blocks */
  377. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  378. int i, j;
  379. uint8_t *src;
  380. src = srcY;
  381. for(j = 0; j < 9 + s->mspel*2; j++) {
  382. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  383. src += s->linesize;
  384. }
  385. }
  386. srcY += s->mspel * (1 + s->linesize);
  387. }
  388. if(s->mspel) {
  389. dxy = ((my & 3) << 2) | (mx & 3);
  390. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  391. } else { // hpel mc - always used for luma
  392. dxy = (my & 2) | ((mx & 2) >> 1);
  393. if(!v->rnd)
  394. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  395. else
  396. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  397. }
  398. }
  399. static inline int median4(int a, int b, int c, int d)
  400. {
  401. if(a < b) {
  402. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  403. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  404. } else {
  405. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  406. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  407. }
  408. }
  409. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  410. */
  411. static void vc1_mc_4mv_chroma(VC1Context *v)
  412. {
  413. MpegEncContext *s = &v->s;
  414. DSPContext *dsp = &v->s.dsp;
  415. uint8_t *srcU, *srcV;
  416. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  417. int i, idx, tx = 0, ty = 0;
  418. int mvx[4], mvy[4], intra[4];
  419. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  420. if(!v->s.last_picture.data[0])return;
  421. if(s->flags & CODEC_FLAG_GRAY) return;
  422. for(i = 0; i < 4; i++) {
  423. mvx[i] = s->mv[0][i][0];
  424. mvy[i] = s->mv[0][i][1];
  425. intra[i] = v->mb_type[0][s->block_index[i]];
  426. }
  427. /* calculate chroma MV vector from four luma MVs */
  428. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  429. if(!idx) { // all blocks are inter
  430. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  431. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  432. } else if(count[idx] == 1) { // 3 inter blocks
  433. switch(idx) {
  434. case 0x1:
  435. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  436. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  437. break;
  438. case 0x2:
  439. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  440. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  441. break;
  442. case 0x4:
  443. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  444. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  445. break;
  446. case 0x8:
  447. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  448. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  449. break;
  450. }
  451. } else if(count[idx] == 2) {
  452. int t1 = 0, t2 = 0;
  453. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  454. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  455. tx = (mvx[t1] + mvx[t2]) / 2;
  456. ty = (mvy[t1] + mvy[t2]) / 2;
  457. } else {
  458. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  459. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  460. return; //no need to do MC for inter blocks
  461. }
  462. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  463. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  464. uvmx = (tx + ((tx&3) == 3)) >> 1;
  465. uvmy = (ty + ((ty&3) == 3)) >> 1;
  466. if(v->fastuvmc) {
  467. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  468. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  469. }
  470. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  471. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  472. if(v->profile != PROFILE_ADVANCED){
  473. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  474. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  475. }else{
  476. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  477. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  478. }
  479. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  480. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  481. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  482. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  483. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  484. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  485. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  486. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  487. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  488. srcU = s->edge_emu_buffer;
  489. srcV = s->edge_emu_buffer + 16;
  490. /* if we deal with range reduction we need to scale source blocks */
  491. if(v->rangeredfrm) {
  492. int i, j;
  493. uint8_t *src, *src2;
  494. src = srcU; src2 = srcV;
  495. for(j = 0; j < 9; j++) {
  496. for(i = 0; i < 9; i++) {
  497. src[i] = ((src[i] - 128) >> 1) + 128;
  498. src2[i] = ((src2[i] - 128) >> 1) + 128;
  499. }
  500. src += s->uvlinesize;
  501. src2 += s->uvlinesize;
  502. }
  503. }
  504. /* if we deal with intensity compensation we need to scale source blocks */
  505. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  506. int i, j;
  507. uint8_t *src, *src2;
  508. src = srcU; src2 = srcV;
  509. for(j = 0; j < 9; j++) {
  510. for(i = 0; i < 9; i++) {
  511. src[i] = v->lutuv[src[i]];
  512. src2[i] = v->lutuv[src2[i]];
  513. }
  514. src += s->uvlinesize;
  515. src2 += s->uvlinesize;
  516. }
  517. }
  518. }
  519. /* Chroma MC always uses qpel bilinear */
  520. uvmx = (uvmx&3)<<1;
  521. uvmy = (uvmy&3)<<1;
  522. if(!v->rnd){
  523. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  524. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  525. }else{
  526. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  527. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  528. }
  529. }
  530. /***********************************************************************/
  531. /**
  532. * @defgroup vc1block VC-1 Block-level functions
  533. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  534. * @{
  535. */
  536. /**
  537. * @def GET_MQUANT
  538. * @brief Get macroblock-level quantizer scale
  539. */
  540. #define GET_MQUANT() \
  541. if (v->dquantfrm) \
  542. { \
  543. int edges = 0; \
  544. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  545. { \
  546. if (v->dqbilevel) \
  547. { \
  548. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  549. } \
  550. else \
  551. { \
  552. mqdiff = get_bits(gb, 3); \
  553. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  554. else mquant = get_bits(gb, 5); \
  555. } \
  556. } \
  557. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  558. edges = 1 << v->dqsbedge; \
  559. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  560. edges = (3 << v->dqsbedge) % 15; \
  561. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  562. edges = 15; \
  563. if((edges&1) && !s->mb_x) \
  564. mquant = v->altpq; \
  565. if((edges&2) && s->first_slice_line) \
  566. mquant = v->altpq; \
  567. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  568. mquant = v->altpq; \
  569. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  570. mquant = v->altpq; \
  571. }
  572. /**
  573. * @def GET_MVDATA(_dmv_x, _dmv_y)
  574. * @brief Get MV differentials
  575. * @see MVDATA decoding from 8.3.5.2, p(1)20
  576. * @param _dmv_x Horizontal differential for decoded MV
  577. * @param _dmv_y Vertical differential for decoded MV
  578. */
  579. #define GET_MVDATA(_dmv_x, _dmv_y) \
  580. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  581. VC1_MV_DIFF_VLC_BITS, 2); \
  582. if (index > 36) \
  583. { \
  584. mb_has_coeffs = 1; \
  585. index -= 37; \
  586. } \
  587. else mb_has_coeffs = 0; \
  588. s->mb_intra = 0; \
  589. if (!index) { _dmv_x = _dmv_y = 0; } \
  590. else if (index == 35) \
  591. { \
  592. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  593. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  594. } \
  595. else if (index == 36) \
  596. { \
  597. _dmv_x = 0; \
  598. _dmv_y = 0; \
  599. s->mb_intra = 1; \
  600. } \
  601. else \
  602. { \
  603. index1 = index%6; \
  604. if (!s->quarter_sample && index1 == 5) val = 1; \
  605. else val = 0; \
  606. if(size_table[index1] - val > 0) \
  607. val = get_bits(gb, size_table[index1] - val); \
  608. else val = 0; \
  609. sign = 0 - (val&1); \
  610. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  611. \
  612. index1 = index/6; \
  613. if (!s->quarter_sample && index1 == 5) val = 1; \
  614. else val = 0; \
  615. if(size_table[index1] - val > 0) \
  616. val = get_bits(gb, size_table[index1] - val); \
  617. else val = 0; \
  618. sign = 0 - (val&1); \
  619. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  620. }
  621. /** Predict and set motion vector
  622. */
  623. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  624. {
  625. int xy, wrap, off = 0;
  626. int16_t *A, *B, *C;
  627. int px, py;
  628. int sum;
  629. /* scale MV difference to be quad-pel */
  630. dmv_x <<= 1 - s->quarter_sample;
  631. dmv_y <<= 1 - s->quarter_sample;
  632. wrap = s->b8_stride;
  633. xy = s->block_index[n];
  634. if(s->mb_intra){
  635. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  636. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  637. s->current_picture.motion_val[1][xy][0] = 0;
  638. s->current_picture.motion_val[1][xy][1] = 0;
  639. if(mv1) { /* duplicate motion data for 1-MV block */
  640. s->current_picture.motion_val[0][xy + 1][0] = 0;
  641. s->current_picture.motion_val[0][xy + 1][1] = 0;
  642. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  643. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  644. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  645. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  646. s->current_picture.motion_val[1][xy + 1][0] = 0;
  647. s->current_picture.motion_val[1][xy + 1][1] = 0;
  648. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  649. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  650. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  651. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  652. }
  653. return;
  654. }
  655. C = s->current_picture.motion_val[0][xy - 1];
  656. A = s->current_picture.motion_val[0][xy - wrap];
  657. if(mv1)
  658. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  659. else {
  660. //in 4-MV mode different blocks have different B predictor position
  661. switch(n){
  662. case 0:
  663. off = (s->mb_x > 0) ? -1 : 1;
  664. break;
  665. case 1:
  666. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  667. break;
  668. case 2:
  669. off = 1;
  670. break;
  671. case 3:
  672. off = -1;
  673. }
  674. }
  675. B = s->current_picture.motion_val[0][xy - wrap + off];
  676. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  677. if(s->mb_width == 1) {
  678. px = A[0];
  679. py = A[1];
  680. } else {
  681. px = mid_pred(A[0], B[0], C[0]);
  682. py = mid_pred(A[1], B[1], C[1]);
  683. }
  684. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  685. px = C[0];
  686. py = C[1];
  687. } else {
  688. px = py = 0;
  689. }
  690. /* Pullback MV as specified in 8.3.5.3.4 */
  691. {
  692. int qx, qy, X, Y;
  693. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  694. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  695. X = (s->mb_width << 6) - 4;
  696. Y = (s->mb_height << 6) - 4;
  697. if(mv1) {
  698. if(qx + px < -60) px = -60 - qx;
  699. if(qy + py < -60) py = -60 - qy;
  700. } else {
  701. if(qx + px < -28) px = -28 - qx;
  702. if(qy + py < -28) py = -28 - qy;
  703. }
  704. if(qx + px > X) px = X - qx;
  705. if(qy + py > Y) py = Y - qy;
  706. }
  707. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  708. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  709. if(is_intra[xy - wrap])
  710. sum = FFABS(px) + FFABS(py);
  711. else
  712. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  713. if(sum > 32) {
  714. if(get_bits1(&s->gb)) {
  715. px = A[0];
  716. py = A[1];
  717. } else {
  718. px = C[0];
  719. py = C[1];
  720. }
  721. } else {
  722. if(is_intra[xy - 1])
  723. sum = FFABS(px) + FFABS(py);
  724. else
  725. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  726. if(sum > 32) {
  727. if(get_bits1(&s->gb)) {
  728. px = A[0];
  729. py = A[1];
  730. } else {
  731. px = C[0];
  732. py = C[1];
  733. }
  734. }
  735. }
  736. }
  737. /* store MV using signed modulus of MV range defined in 4.11 */
  738. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  739. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  740. if(mv1) { /* duplicate motion data for 1-MV block */
  741. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  742. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  743. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  744. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  745. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  746. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  747. }
  748. }
  749. /** Motion compensation for direct or interpolated blocks in B-frames
  750. */
  751. static void vc1_interp_mc(VC1Context *v)
  752. {
  753. MpegEncContext *s = &v->s;
  754. DSPContext *dsp = &v->s.dsp;
  755. uint8_t *srcY, *srcU, *srcV;
  756. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  757. if(!v->s.next_picture.data[0])return;
  758. mx = s->mv[1][0][0];
  759. my = s->mv[1][0][1];
  760. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  761. uvmy = (my + ((my & 3) == 3)) >> 1;
  762. if(v->fastuvmc) {
  763. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  764. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  765. }
  766. srcY = s->next_picture.data[0];
  767. srcU = s->next_picture.data[1];
  768. srcV = s->next_picture.data[2];
  769. src_x = s->mb_x * 16 + (mx >> 2);
  770. src_y = s->mb_y * 16 + (my >> 2);
  771. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  772. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  773. if(v->profile != PROFILE_ADVANCED){
  774. src_x = av_clip( src_x, -16, s->mb_width * 16);
  775. src_y = av_clip( src_y, -16, s->mb_height * 16);
  776. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  777. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  778. }else{
  779. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  780. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  781. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  782. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  783. }
  784. srcY += src_y * s->linesize + src_x;
  785. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  786. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  787. /* for grayscale we should not try to read from unknown area */
  788. if(s->flags & CODEC_FLAG_GRAY) {
  789. srcU = s->edge_emu_buffer + 18 * s->linesize;
  790. srcV = s->edge_emu_buffer + 18 * s->linesize;
  791. }
  792. if(v->rangeredfrm
  793. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  794. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  795. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  796. srcY -= s->mspel * (1 + s->linesize);
  797. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  798. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  799. srcY = s->edge_emu_buffer;
  800. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  801. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  802. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  803. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  804. srcU = uvbuf;
  805. srcV = uvbuf + 16;
  806. /* if we deal with range reduction we need to scale source blocks */
  807. if(v->rangeredfrm) {
  808. int i, j;
  809. uint8_t *src, *src2;
  810. src = srcY;
  811. for(j = 0; j < 17 + s->mspel*2; j++) {
  812. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  813. src += s->linesize;
  814. }
  815. src = srcU; src2 = srcV;
  816. for(j = 0; j < 9; j++) {
  817. for(i = 0; i < 9; i++) {
  818. src[i] = ((src[i] - 128) >> 1) + 128;
  819. src2[i] = ((src2[i] - 128) >> 1) + 128;
  820. }
  821. src += s->uvlinesize;
  822. src2 += s->uvlinesize;
  823. }
  824. }
  825. srcY += s->mspel * (1 + s->linesize);
  826. }
  827. if(s->mspel) {
  828. dxy = ((my & 3) << 2) | (mx & 3);
  829. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  830. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  831. srcY += s->linesize * 8;
  832. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  833. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  834. } else { // hpel mc
  835. dxy = (my & 2) | ((mx & 2) >> 1);
  836. if(!v->rnd)
  837. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  838. else
  839. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  840. }
  841. if(s->flags & CODEC_FLAG_GRAY) return;
  842. /* Chroma MC always uses qpel blilinear */
  843. uvmx = (uvmx&3)<<1;
  844. uvmy = (uvmy&3)<<1;
  845. if(!v->rnd){
  846. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  847. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  848. }else{
  849. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  850. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  851. }
  852. }
  853. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  854. {
  855. int n = bfrac;
  856. #if B_FRACTION_DEN==256
  857. if(inv)
  858. n -= 256;
  859. if(!qs)
  860. return 2 * ((value * n + 255) >> 9);
  861. return (value * n + 128) >> 8;
  862. #else
  863. if(inv)
  864. n -= B_FRACTION_DEN;
  865. if(!qs)
  866. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  867. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  868. #endif
  869. }
  870. /** Reconstruct motion vector for B-frame and do motion compensation
  871. */
  872. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  873. {
  874. if(v->use_ic) {
  875. v->mv_mode2 = v->mv_mode;
  876. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  877. }
  878. if(direct) {
  879. vc1_mc_1mv(v, 0);
  880. vc1_interp_mc(v);
  881. if(v->use_ic) v->mv_mode = v->mv_mode2;
  882. return;
  883. }
  884. if(mode == BMV_TYPE_INTERPOLATED) {
  885. vc1_mc_1mv(v, 0);
  886. vc1_interp_mc(v);
  887. if(v->use_ic) v->mv_mode = v->mv_mode2;
  888. return;
  889. }
  890. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  891. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  892. if(v->use_ic) v->mv_mode = v->mv_mode2;
  893. }
  894. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  895. {
  896. MpegEncContext *s = &v->s;
  897. int xy, wrap, off = 0;
  898. int16_t *A, *B, *C;
  899. int px, py;
  900. int sum;
  901. int r_x, r_y;
  902. const uint8_t *is_intra = v->mb_type[0];
  903. r_x = v->range_x;
  904. r_y = v->range_y;
  905. /* scale MV difference to be quad-pel */
  906. dmv_x[0] <<= 1 - s->quarter_sample;
  907. dmv_y[0] <<= 1 - s->quarter_sample;
  908. dmv_x[1] <<= 1 - s->quarter_sample;
  909. dmv_y[1] <<= 1 - s->quarter_sample;
  910. wrap = s->b8_stride;
  911. xy = s->block_index[0];
  912. if(s->mb_intra) {
  913. s->current_picture.motion_val[0][xy][0] =
  914. s->current_picture.motion_val[0][xy][1] =
  915. s->current_picture.motion_val[1][xy][0] =
  916. s->current_picture.motion_val[1][xy][1] = 0;
  917. return;
  918. }
  919. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  920. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  921. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  922. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  923. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  924. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  925. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  926. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  927. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  928. if(direct) {
  929. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  930. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  931. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  932. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  933. return;
  934. }
  935. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  936. C = s->current_picture.motion_val[0][xy - 2];
  937. A = s->current_picture.motion_val[0][xy - wrap*2];
  938. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  939. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  940. if(!s->mb_x) C[0] = C[1] = 0;
  941. if(!s->first_slice_line) { // predictor A is not out of bounds
  942. if(s->mb_width == 1) {
  943. px = A[0];
  944. py = A[1];
  945. } else {
  946. px = mid_pred(A[0], B[0], C[0]);
  947. py = mid_pred(A[1], B[1], C[1]);
  948. }
  949. } else if(s->mb_x) { // predictor C is not out of bounds
  950. px = C[0];
  951. py = C[1];
  952. } else {
  953. px = py = 0;
  954. }
  955. /* Pullback MV as specified in 8.3.5.3.4 */
  956. {
  957. int qx, qy, X, Y;
  958. if(v->profile < PROFILE_ADVANCED) {
  959. qx = (s->mb_x << 5);
  960. qy = (s->mb_y << 5);
  961. X = (s->mb_width << 5) - 4;
  962. Y = (s->mb_height << 5) - 4;
  963. if(qx + px < -28) px = -28 - qx;
  964. if(qy + py < -28) py = -28 - qy;
  965. if(qx + px > X) px = X - qx;
  966. if(qy + py > Y) py = Y - qy;
  967. } else {
  968. qx = (s->mb_x << 6);
  969. qy = (s->mb_y << 6);
  970. X = (s->mb_width << 6) - 4;
  971. Y = (s->mb_height << 6) - 4;
  972. if(qx + px < -60) px = -60 - qx;
  973. if(qy + py < -60) py = -60 - qy;
  974. if(qx + px > X) px = X - qx;
  975. if(qy + py > Y) py = Y - qy;
  976. }
  977. }
  978. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  979. if(0 && !s->first_slice_line && s->mb_x) {
  980. if(is_intra[xy - wrap])
  981. sum = FFABS(px) + FFABS(py);
  982. else
  983. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  984. if(sum > 32) {
  985. if(get_bits1(&s->gb)) {
  986. px = A[0];
  987. py = A[1];
  988. } else {
  989. px = C[0];
  990. py = C[1];
  991. }
  992. } else {
  993. if(is_intra[xy - 2])
  994. sum = FFABS(px) + FFABS(py);
  995. else
  996. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  997. if(sum > 32) {
  998. if(get_bits1(&s->gb)) {
  999. px = A[0];
  1000. py = A[1];
  1001. } else {
  1002. px = C[0];
  1003. py = C[1];
  1004. }
  1005. }
  1006. }
  1007. }
  1008. /* store MV using signed modulus of MV range defined in 4.11 */
  1009. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1010. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1011. }
  1012. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1013. C = s->current_picture.motion_val[1][xy - 2];
  1014. A = s->current_picture.motion_val[1][xy - wrap*2];
  1015. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1016. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1017. if(!s->mb_x) C[0] = C[1] = 0;
  1018. if(!s->first_slice_line) { // predictor A is not out of bounds
  1019. if(s->mb_width == 1) {
  1020. px = A[0];
  1021. py = A[1];
  1022. } else {
  1023. px = mid_pred(A[0], B[0], C[0]);
  1024. py = mid_pred(A[1], B[1], C[1]);
  1025. }
  1026. } else if(s->mb_x) { // predictor C is not out of bounds
  1027. px = C[0];
  1028. py = C[1];
  1029. } else {
  1030. px = py = 0;
  1031. }
  1032. /* Pullback MV as specified in 8.3.5.3.4 */
  1033. {
  1034. int qx, qy, X, Y;
  1035. if(v->profile < PROFILE_ADVANCED) {
  1036. qx = (s->mb_x << 5);
  1037. qy = (s->mb_y << 5);
  1038. X = (s->mb_width << 5) - 4;
  1039. Y = (s->mb_height << 5) - 4;
  1040. if(qx + px < -28) px = -28 - qx;
  1041. if(qy + py < -28) py = -28 - qy;
  1042. if(qx + px > X) px = X - qx;
  1043. if(qy + py > Y) py = Y - qy;
  1044. } else {
  1045. qx = (s->mb_x << 6);
  1046. qy = (s->mb_y << 6);
  1047. X = (s->mb_width << 6) - 4;
  1048. Y = (s->mb_height << 6) - 4;
  1049. if(qx + px < -60) px = -60 - qx;
  1050. if(qy + py < -60) py = -60 - qy;
  1051. if(qx + px > X) px = X - qx;
  1052. if(qy + py > Y) py = Y - qy;
  1053. }
  1054. }
  1055. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1056. if(0 && !s->first_slice_line && s->mb_x) {
  1057. if(is_intra[xy - wrap])
  1058. sum = FFABS(px) + FFABS(py);
  1059. else
  1060. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1061. if(sum > 32) {
  1062. if(get_bits1(&s->gb)) {
  1063. px = A[0];
  1064. py = A[1];
  1065. } else {
  1066. px = C[0];
  1067. py = C[1];
  1068. }
  1069. } else {
  1070. if(is_intra[xy - 2])
  1071. sum = FFABS(px) + FFABS(py);
  1072. else
  1073. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1074. if(sum > 32) {
  1075. if(get_bits1(&s->gb)) {
  1076. px = A[0];
  1077. py = A[1];
  1078. } else {
  1079. px = C[0];
  1080. py = C[1];
  1081. }
  1082. }
  1083. }
  1084. }
  1085. /* store MV using signed modulus of MV range defined in 4.11 */
  1086. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1087. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1088. }
  1089. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1090. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1091. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1092. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1093. }
  1094. /** Get predicted DC value for I-frames only
  1095. * prediction dir: left=0, top=1
  1096. * @param s MpegEncContext
  1097. * @param overlap flag indicating that overlap filtering is used
  1098. * @param pq integer part of picture quantizer
  1099. * @param[in] n block index in the current MB
  1100. * @param dc_val_ptr Pointer to DC predictor
  1101. * @param dir_ptr Prediction direction for use in AC prediction
  1102. */
  1103. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1104. int16_t **dc_val_ptr, int *dir_ptr)
  1105. {
  1106. int a, b, c, wrap, pred, scale;
  1107. int16_t *dc_val;
  1108. static const uint16_t dcpred[32] = {
  1109. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1110. 114, 102, 93, 85, 79, 73, 68, 64,
  1111. 60, 57, 54, 51, 49, 47, 45, 43,
  1112. 41, 39, 38, 37, 35, 34, 33
  1113. };
  1114. /* find prediction - wmv3_dc_scale always used here in fact */
  1115. if (n < 4) scale = s->y_dc_scale;
  1116. else scale = s->c_dc_scale;
  1117. wrap = s->block_wrap[n];
  1118. dc_val= s->dc_val[0] + s->block_index[n];
  1119. /* B A
  1120. * C X
  1121. */
  1122. c = dc_val[ - 1];
  1123. b = dc_val[ - 1 - wrap];
  1124. a = dc_val[ - wrap];
  1125. if (pq < 9 || !overlap)
  1126. {
  1127. /* Set outer values */
  1128. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1129. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1130. }
  1131. else
  1132. {
  1133. /* Set outer values */
  1134. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1135. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1136. }
  1137. if (abs(a - b) <= abs(b - c)) {
  1138. pred = c;
  1139. *dir_ptr = 1;//left
  1140. } else {
  1141. pred = a;
  1142. *dir_ptr = 0;//top
  1143. }
  1144. /* update predictor */
  1145. *dc_val_ptr = &dc_val[0];
  1146. return pred;
  1147. }
  1148. /** Get predicted DC value
  1149. * prediction dir: left=0, top=1
  1150. * @param s MpegEncContext
  1151. * @param overlap flag indicating that overlap filtering is used
  1152. * @param pq integer part of picture quantizer
  1153. * @param[in] n block index in the current MB
  1154. * @param a_avail flag indicating top block availability
  1155. * @param c_avail flag indicating left block availability
  1156. * @param dc_val_ptr Pointer to DC predictor
  1157. * @param dir_ptr Prediction direction for use in AC prediction
  1158. */
  1159. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1160. int a_avail, int c_avail,
  1161. int16_t **dc_val_ptr, int *dir_ptr)
  1162. {
  1163. int a, b, c, wrap, pred;
  1164. int16_t *dc_val;
  1165. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1166. int q1, q2 = 0;
  1167. wrap = s->block_wrap[n];
  1168. dc_val= s->dc_val[0] + s->block_index[n];
  1169. /* B A
  1170. * C X
  1171. */
  1172. c = dc_val[ - 1];
  1173. b = dc_val[ - 1 - wrap];
  1174. a = dc_val[ - wrap];
  1175. /* scale predictors if needed */
  1176. q1 = s->current_picture.qscale_table[mb_pos];
  1177. if(c_avail && (n!= 1 && n!=3)) {
  1178. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1179. if(q2 && q2 != q1)
  1180. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1181. }
  1182. if(a_avail && (n!= 2 && n!=3)) {
  1183. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1184. if(q2 && q2 != q1)
  1185. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1186. }
  1187. if(a_avail && c_avail && (n!=3)) {
  1188. int off = mb_pos;
  1189. if(n != 1) off--;
  1190. if(n != 2) off -= s->mb_stride;
  1191. q2 = s->current_picture.qscale_table[off];
  1192. if(q2 && q2 != q1)
  1193. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1194. }
  1195. if(a_avail && c_avail) {
  1196. if(abs(a - b) <= abs(b - c)) {
  1197. pred = c;
  1198. *dir_ptr = 1;//left
  1199. } else {
  1200. pred = a;
  1201. *dir_ptr = 0;//top
  1202. }
  1203. } else if(a_avail) {
  1204. pred = a;
  1205. *dir_ptr = 0;//top
  1206. } else if(c_avail) {
  1207. pred = c;
  1208. *dir_ptr = 1;//left
  1209. } else {
  1210. pred = 0;
  1211. *dir_ptr = 1;//left
  1212. }
  1213. /* update predictor */
  1214. *dc_val_ptr = &dc_val[0];
  1215. return pred;
  1216. }
  1217. /** @} */ // Block group
  1218. /**
  1219. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1220. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1221. * @{
  1222. */
  1223. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1224. {
  1225. int xy, wrap, pred, a, b, c;
  1226. xy = s->block_index[n];
  1227. wrap = s->b8_stride;
  1228. /* B C
  1229. * A X
  1230. */
  1231. a = s->coded_block[xy - 1 ];
  1232. b = s->coded_block[xy - 1 - wrap];
  1233. c = s->coded_block[xy - wrap];
  1234. if (b == c) {
  1235. pred = a;
  1236. } else {
  1237. pred = c;
  1238. }
  1239. /* store value */
  1240. *coded_block_ptr = &s->coded_block[xy];
  1241. return pred;
  1242. }
  1243. /**
  1244. * Decode one AC coefficient
  1245. * @param v The VC1 context
  1246. * @param last Last coefficient
  1247. * @param skip How much zero coefficients to skip
  1248. * @param value Decoded AC coefficient value
  1249. * @param codingset set of VLC to decode data
  1250. * @see 8.1.3.4
  1251. */
  1252. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1253. {
  1254. GetBitContext *gb = &v->s.gb;
  1255. int index, escape, run = 0, level = 0, lst = 0;
  1256. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1257. if (index != vc1_ac_sizes[codingset] - 1) {
  1258. run = vc1_index_decode_table[codingset][index][0];
  1259. level = vc1_index_decode_table[codingset][index][1];
  1260. lst = index >= vc1_last_decode_table[codingset];
  1261. if(get_bits1(gb))
  1262. level = -level;
  1263. } else {
  1264. escape = decode210(gb);
  1265. if (escape != 2) {
  1266. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1267. run = vc1_index_decode_table[codingset][index][0];
  1268. level = vc1_index_decode_table[codingset][index][1];
  1269. lst = index >= vc1_last_decode_table[codingset];
  1270. if(escape == 0) {
  1271. if(lst)
  1272. level += vc1_last_delta_level_table[codingset][run];
  1273. else
  1274. level += vc1_delta_level_table[codingset][run];
  1275. } else {
  1276. if(lst)
  1277. run += vc1_last_delta_run_table[codingset][level] + 1;
  1278. else
  1279. run += vc1_delta_run_table[codingset][level] + 1;
  1280. }
  1281. if(get_bits1(gb))
  1282. level = -level;
  1283. } else {
  1284. int sign;
  1285. lst = get_bits1(gb);
  1286. if(v->s.esc3_level_length == 0) {
  1287. if(v->pq < 8 || v->dquantfrm) { // table 59
  1288. v->s.esc3_level_length = get_bits(gb, 3);
  1289. if(!v->s.esc3_level_length)
  1290. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1291. } else { //table 60
  1292. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1293. }
  1294. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1295. }
  1296. run = get_bits(gb, v->s.esc3_run_length);
  1297. sign = get_bits1(gb);
  1298. level = get_bits(gb, v->s.esc3_level_length);
  1299. if(sign)
  1300. level = -level;
  1301. }
  1302. }
  1303. *last = lst;
  1304. *skip = run;
  1305. *value = level;
  1306. }
  1307. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1308. * @param v VC1Context
  1309. * @param block block to decode
  1310. * @param[in] n subblock index
  1311. * @param coded are AC coeffs present or not
  1312. * @param codingset set of VLC to decode data
  1313. */
  1314. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1315. {
  1316. GetBitContext *gb = &v->s.gb;
  1317. MpegEncContext *s = &v->s;
  1318. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1319. int i;
  1320. int16_t *dc_val;
  1321. int16_t *ac_val, *ac_val2;
  1322. int dcdiff;
  1323. /* Get DC differential */
  1324. if (n < 4) {
  1325. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1326. } else {
  1327. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1328. }
  1329. if (dcdiff < 0){
  1330. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1331. return -1;
  1332. }
  1333. if (dcdiff)
  1334. {
  1335. if (dcdiff == 119 /* ESC index value */)
  1336. {
  1337. /* TODO: Optimize */
  1338. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1339. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1340. else dcdiff = get_bits(gb, 8);
  1341. }
  1342. else
  1343. {
  1344. if (v->pq == 1)
  1345. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1346. else if (v->pq == 2)
  1347. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1348. }
  1349. if (get_bits1(gb))
  1350. dcdiff = -dcdiff;
  1351. }
  1352. /* Prediction */
  1353. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1354. *dc_val = dcdiff;
  1355. /* Store the quantized DC coeff, used for prediction */
  1356. if (n < 4) {
  1357. block[0] = dcdiff * s->y_dc_scale;
  1358. } else {
  1359. block[0] = dcdiff * s->c_dc_scale;
  1360. }
  1361. /* Skip ? */
  1362. if (!coded) {
  1363. goto not_coded;
  1364. }
  1365. //AC Decoding
  1366. i = 1;
  1367. {
  1368. int last = 0, skip, value;
  1369. const uint8_t *zz_table;
  1370. int scale;
  1371. int k;
  1372. scale = v->pq * 2 + v->halfpq;
  1373. if(v->s.ac_pred) {
  1374. if(!dc_pred_dir)
  1375. zz_table = wmv1_scantable[2];
  1376. else
  1377. zz_table = wmv1_scantable[3];
  1378. } else
  1379. zz_table = wmv1_scantable[1];
  1380. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1381. ac_val2 = ac_val;
  1382. if(dc_pred_dir) //left
  1383. ac_val -= 16;
  1384. else //top
  1385. ac_val -= 16 * s->block_wrap[n];
  1386. while (!last) {
  1387. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1388. i += skip;
  1389. if(i > 63)
  1390. break;
  1391. block[zz_table[i++]] = value;
  1392. }
  1393. /* apply AC prediction if needed */
  1394. if(s->ac_pred) {
  1395. if(dc_pred_dir) { //left
  1396. for(k = 1; k < 8; k++)
  1397. block[k << 3] += ac_val[k];
  1398. } else { //top
  1399. for(k = 1; k < 8; k++)
  1400. block[k] += ac_val[k + 8];
  1401. }
  1402. }
  1403. /* save AC coeffs for further prediction */
  1404. for(k = 1; k < 8; k++) {
  1405. ac_val2[k] = block[k << 3];
  1406. ac_val2[k + 8] = block[k];
  1407. }
  1408. /* scale AC coeffs */
  1409. for(k = 1; k < 64; k++)
  1410. if(block[k]) {
  1411. block[k] *= scale;
  1412. if(!v->pquantizer)
  1413. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1414. }
  1415. if(s->ac_pred) i = 63;
  1416. }
  1417. not_coded:
  1418. if(!coded) {
  1419. int k, scale;
  1420. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1421. ac_val2 = ac_val;
  1422. i = 0;
  1423. scale = v->pq * 2 + v->halfpq;
  1424. memset(ac_val2, 0, 16 * 2);
  1425. if(dc_pred_dir) {//left
  1426. ac_val -= 16;
  1427. if(s->ac_pred)
  1428. memcpy(ac_val2, ac_val, 8 * 2);
  1429. } else {//top
  1430. ac_val -= 16 * s->block_wrap[n];
  1431. if(s->ac_pred)
  1432. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1433. }
  1434. /* apply AC prediction if needed */
  1435. if(s->ac_pred) {
  1436. if(dc_pred_dir) { //left
  1437. for(k = 1; k < 8; k++) {
  1438. block[k << 3] = ac_val[k] * scale;
  1439. if(!v->pquantizer && block[k << 3])
  1440. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1441. }
  1442. } else { //top
  1443. for(k = 1; k < 8; k++) {
  1444. block[k] = ac_val[k + 8] * scale;
  1445. if(!v->pquantizer && block[k])
  1446. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1447. }
  1448. }
  1449. i = 63;
  1450. }
  1451. }
  1452. s->block_last_index[n] = i;
  1453. return 0;
  1454. }
  1455. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1456. * @param v VC1Context
  1457. * @param block block to decode
  1458. * @param[in] n subblock number
  1459. * @param coded are AC coeffs present or not
  1460. * @param codingset set of VLC to decode data
  1461. * @param mquant quantizer value for this macroblock
  1462. */
  1463. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1464. {
  1465. GetBitContext *gb = &v->s.gb;
  1466. MpegEncContext *s = &v->s;
  1467. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1468. int i;
  1469. int16_t *dc_val;
  1470. int16_t *ac_val, *ac_val2;
  1471. int dcdiff;
  1472. int a_avail = v->a_avail, c_avail = v->c_avail;
  1473. int use_pred = s->ac_pred;
  1474. int scale;
  1475. int q1, q2 = 0;
  1476. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1477. /* Get DC differential */
  1478. if (n < 4) {
  1479. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1480. } else {
  1481. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1482. }
  1483. if (dcdiff < 0){
  1484. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1485. return -1;
  1486. }
  1487. if (dcdiff)
  1488. {
  1489. if (dcdiff == 119 /* ESC index value */)
  1490. {
  1491. /* TODO: Optimize */
  1492. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1493. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1494. else dcdiff = get_bits(gb, 8);
  1495. }
  1496. else
  1497. {
  1498. if (mquant == 1)
  1499. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1500. else if (mquant == 2)
  1501. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1502. }
  1503. if (get_bits1(gb))
  1504. dcdiff = -dcdiff;
  1505. }
  1506. /* Prediction */
  1507. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1508. *dc_val = dcdiff;
  1509. /* Store the quantized DC coeff, used for prediction */
  1510. if (n < 4) {
  1511. block[0] = dcdiff * s->y_dc_scale;
  1512. } else {
  1513. block[0] = dcdiff * s->c_dc_scale;
  1514. }
  1515. //AC Decoding
  1516. i = 1;
  1517. /* check if AC is needed at all */
  1518. if(!a_avail && !c_avail) use_pred = 0;
  1519. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1520. ac_val2 = ac_val;
  1521. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1522. if(dc_pred_dir) //left
  1523. ac_val -= 16;
  1524. else //top
  1525. ac_val -= 16 * s->block_wrap[n];
  1526. q1 = s->current_picture.qscale_table[mb_pos];
  1527. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1528. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1529. if(dc_pred_dir && n==1) q2 = q1;
  1530. if(!dc_pred_dir && n==2) q2 = q1;
  1531. if(n==3) q2 = q1;
  1532. if(coded) {
  1533. int last = 0, skip, value;
  1534. const uint8_t *zz_table;
  1535. int k;
  1536. if(v->s.ac_pred) {
  1537. if(!dc_pred_dir)
  1538. zz_table = wmv1_scantable[2];
  1539. else
  1540. zz_table = wmv1_scantable[3];
  1541. } else
  1542. zz_table = wmv1_scantable[1];
  1543. while (!last) {
  1544. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1545. i += skip;
  1546. if(i > 63)
  1547. break;
  1548. block[zz_table[i++]] = value;
  1549. }
  1550. /* apply AC prediction if needed */
  1551. if(use_pred) {
  1552. /* scale predictors if needed*/
  1553. if(q2 && q1!=q2) {
  1554. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1555. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1556. if(dc_pred_dir) { //left
  1557. for(k = 1; k < 8; k++)
  1558. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1559. } else { //top
  1560. for(k = 1; k < 8; k++)
  1561. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1562. }
  1563. } else {
  1564. if(dc_pred_dir) { //left
  1565. for(k = 1; k < 8; k++)
  1566. block[k << 3] += ac_val[k];
  1567. } else { //top
  1568. for(k = 1; k < 8; k++)
  1569. block[k] += ac_val[k + 8];
  1570. }
  1571. }
  1572. }
  1573. /* save AC coeffs for further prediction */
  1574. for(k = 1; k < 8; k++) {
  1575. ac_val2[k] = block[k << 3];
  1576. ac_val2[k + 8] = block[k];
  1577. }
  1578. /* scale AC coeffs */
  1579. for(k = 1; k < 64; k++)
  1580. if(block[k]) {
  1581. block[k] *= scale;
  1582. if(!v->pquantizer)
  1583. block[k] += (block[k] < 0) ? -mquant : mquant;
  1584. }
  1585. if(use_pred) i = 63;
  1586. } else { // no AC coeffs
  1587. int k;
  1588. memset(ac_val2, 0, 16 * 2);
  1589. if(dc_pred_dir) {//left
  1590. if(use_pred) {
  1591. memcpy(ac_val2, ac_val, 8 * 2);
  1592. if(q2 && q1!=q2) {
  1593. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1594. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1595. for(k = 1; k < 8; k++)
  1596. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1597. }
  1598. }
  1599. } else {//top
  1600. if(use_pred) {
  1601. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1602. if(q2 && q1!=q2) {
  1603. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1604. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1605. for(k = 1; k < 8; k++)
  1606. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1607. }
  1608. }
  1609. }
  1610. /* apply AC prediction if needed */
  1611. if(use_pred) {
  1612. if(dc_pred_dir) { //left
  1613. for(k = 1; k < 8; k++) {
  1614. block[k << 3] = ac_val2[k] * scale;
  1615. if(!v->pquantizer && block[k << 3])
  1616. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1617. }
  1618. } else { //top
  1619. for(k = 1; k < 8; k++) {
  1620. block[k] = ac_val2[k + 8] * scale;
  1621. if(!v->pquantizer && block[k])
  1622. block[k] += (block[k] < 0) ? -mquant : mquant;
  1623. }
  1624. }
  1625. i = 63;
  1626. }
  1627. }
  1628. s->block_last_index[n] = i;
  1629. return 0;
  1630. }
  1631. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1632. * @param v VC1Context
  1633. * @param block block to decode
  1634. * @param[in] n subblock index
  1635. * @param coded are AC coeffs present or not
  1636. * @param mquant block quantizer
  1637. * @param codingset set of VLC to decode data
  1638. */
  1639. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1640. {
  1641. GetBitContext *gb = &v->s.gb;
  1642. MpegEncContext *s = &v->s;
  1643. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1644. int i;
  1645. int16_t *dc_val;
  1646. int16_t *ac_val, *ac_val2;
  1647. int dcdiff;
  1648. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1649. int a_avail = v->a_avail, c_avail = v->c_avail;
  1650. int use_pred = s->ac_pred;
  1651. int scale;
  1652. int q1, q2 = 0;
  1653. s->dsp.clear_block(block);
  1654. /* XXX: Guard against dumb values of mquant */
  1655. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1656. /* Set DC scale - y and c use the same */
  1657. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1658. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1659. /* Get DC differential */
  1660. if (n < 4) {
  1661. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1662. } else {
  1663. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1664. }
  1665. if (dcdiff < 0){
  1666. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1667. return -1;
  1668. }
  1669. if (dcdiff)
  1670. {
  1671. if (dcdiff == 119 /* ESC index value */)
  1672. {
  1673. /* TODO: Optimize */
  1674. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1675. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1676. else dcdiff = get_bits(gb, 8);
  1677. }
  1678. else
  1679. {
  1680. if (mquant == 1)
  1681. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1682. else if (mquant == 2)
  1683. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1684. }
  1685. if (get_bits1(gb))
  1686. dcdiff = -dcdiff;
  1687. }
  1688. /* Prediction */
  1689. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1690. *dc_val = dcdiff;
  1691. /* Store the quantized DC coeff, used for prediction */
  1692. if (n < 4) {
  1693. block[0] = dcdiff * s->y_dc_scale;
  1694. } else {
  1695. block[0] = dcdiff * s->c_dc_scale;
  1696. }
  1697. //AC Decoding
  1698. i = 1;
  1699. /* check if AC is needed at all and adjust direction if needed */
  1700. if(!a_avail) dc_pred_dir = 1;
  1701. if(!c_avail) dc_pred_dir = 0;
  1702. if(!a_avail && !c_avail) use_pred = 0;
  1703. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1704. ac_val2 = ac_val;
  1705. scale = mquant * 2 + v->halfpq;
  1706. if(dc_pred_dir) //left
  1707. ac_val -= 16;
  1708. else //top
  1709. ac_val -= 16 * s->block_wrap[n];
  1710. q1 = s->current_picture.qscale_table[mb_pos];
  1711. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1712. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1713. if(dc_pred_dir && n==1) q2 = q1;
  1714. if(!dc_pred_dir && n==2) q2 = q1;
  1715. if(n==3) q2 = q1;
  1716. if(coded) {
  1717. int last = 0, skip, value;
  1718. const uint8_t *zz_table;
  1719. int k;
  1720. zz_table = wmv1_scantable[0];
  1721. while (!last) {
  1722. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1723. i += skip;
  1724. if(i > 63)
  1725. break;
  1726. block[zz_table[i++]] = value;
  1727. }
  1728. /* apply AC prediction if needed */
  1729. if(use_pred) {
  1730. /* scale predictors if needed*/
  1731. if(q2 && q1!=q2) {
  1732. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1733. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1734. if(dc_pred_dir) { //left
  1735. for(k = 1; k < 8; k++)
  1736. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1737. } else { //top
  1738. for(k = 1; k < 8; k++)
  1739. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1740. }
  1741. } else {
  1742. if(dc_pred_dir) { //left
  1743. for(k = 1; k < 8; k++)
  1744. block[k << 3] += ac_val[k];
  1745. } else { //top
  1746. for(k = 1; k < 8; k++)
  1747. block[k] += ac_val[k + 8];
  1748. }
  1749. }
  1750. }
  1751. /* save AC coeffs for further prediction */
  1752. for(k = 1; k < 8; k++) {
  1753. ac_val2[k] = block[k << 3];
  1754. ac_val2[k + 8] = block[k];
  1755. }
  1756. /* scale AC coeffs */
  1757. for(k = 1; k < 64; k++)
  1758. if(block[k]) {
  1759. block[k] *= scale;
  1760. if(!v->pquantizer)
  1761. block[k] += (block[k] < 0) ? -mquant : mquant;
  1762. }
  1763. if(use_pred) i = 63;
  1764. } else { // no AC coeffs
  1765. int k;
  1766. memset(ac_val2, 0, 16 * 2);
  1767. if(dc_pred_dir) {//left
  1768. if(use_pred) {
  1769. memcpy(ac_val2, ac_val, 8 * 2);
  1770. if(q2 && q1!=q2) {
  1771. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1772. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1773. for(k = 1; k < 8; k++)
  1774. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1775. }
  1776. }
  1777. } else {//top
  1778. if(use_pred) {
  1779. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1780. if(q2 && q1!=q2) {
  1781. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1782. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1783. for(k = 1; k < 8; k++)
  1784. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1785. }
  1786. }
  1787. }
  1788. /* apply AC prediction if needed */
  1789. if(use_pred) {
  1790. if(dc_pred_dir) { //left
  1791. for(k = 1; k < 8; k++) {
  1792. block[k << 3] = ac_val2[k] * scale;
  1793. if(!v->pquantizer && block[k << 3])
  1794. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1795. }
  1796. } else { //top
  1797. for(k = 1; k < 8; k++) {
  1798. block[k] = ac_val2[k + 8] * scale;
  1799. if(!v->pquantizer && block[k])
  1800. block[k] += (block[k] < 0) ? -mquant : mquant;
  1801. }
  1802. }
  1803. i = 63;
  1804. }
  1805. }
  1806. s->block_last_index[n] = i;
  1807. return 0;
  1808. }
  1809. /** Decode P block
  1810. */
  1811. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1812. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  1813. {
  1814. MpegEncContext *s = &v->s;
  1815. GetBitContext *gb = &s->gb;
  1816. int i, j;
  1817. int subblkpat = 0;
  1818. int scale, off, idx, last, skip, value;
  1819. int ttblk = ttmb & 7;
  1820. int pat = 0;
  1821. s->dsp.clear_block(block);
  1822. if(ttmb == -1) {
  1823. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1824. }
  1825. if(ttblk == TT_4X4) {
  1826. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1827. }
  1828. if((ttblk != TT_8X8 && ttblk != TT_4X4)
  1829. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1830. || (!v->res_rtm_flag && !first_block))) {
  1831. subblkpat = decode012(gb);
  1832. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1833. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1834. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1835. }
  1836. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1837. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1838. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1839. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1840. ttblk = TT_8X4;
  1841. }
  1842. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1843. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1844. ttblk = TT_4X8;
  1845. }
  1846. switch(ttblk) {
  1847. case TT_8X8:
  1848. pat = 0xF;
  1849. i = 0;
  1850. last = 0;
  1851. while (!last) {
  1852. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1853. i += skip;
  1854. if(i > 63)
  1855. break;
  1856. idx = wmv1_scantable[0][i++];
  1857. block[idx] = value * scale;
  1858. if(!v->pquantizer)
  1859. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1860. }
  1861. if(!skip_block){
  1862. if(i==1)
  1863. s->dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1864. else{
  1865. s->dsp.vc1_inv_trans_8x8(block);
  1866. s->dsp.add_pixels_clamped(block, dst, linesize);
  1867. }
  1868. if(apply_filter && cbp_top & 0xC)
  1869. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1870. if(apply_filter && cbp_left & 0xA)
  1871. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  1872. }
  1873. break;
  1874. case TT_4X4:
  1875. pat = ~subblkpat & 0xF;
  1876. for(j = 0; j < 4; j++) {
  1877. last = subblkpat & (1 << (3 - j));
  1878. i = 0;
  1879. off = (j & 1) * 4 + (j & 2) * 16;
  1880. while (!last) {
  1881. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1882. i += skip;
  1883. if(i > 15)
  1884. break;
  1885. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1886. block[idx + off] = value * scale;
  1887. if(!v->pquantizer)
  1888. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1889. }
  1890. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  1891. if(i==1)
  1892. s->dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1893. else
  1894. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1895. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  1896. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1897. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  1898. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1899. }
  1900. }
  1901. break;
  1902. case TT_8X4:
  1903. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  1904. for(j = 0; j < 2; j++) {
  1905. last = subblkpat & (1 << (1 - j));
  1906. i = 0;
  1907. off = j * 32;
  1908. while (!last) {
  1909. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1910. i += skip;
  1911. if(i > 31)
  1912. break;
  1913. idx = v->zz_8x4[i++]+off;
  1914. block[idx] = value * scale;
  1915. if(!v->pquantizer)
  1916. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1917. }
  1918. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1919. if(i==1)
  1920. s->dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  1921. else
  1922. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  1923. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  1924. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  1925. if(apply_filter && cbp_left & (2 << j))
  1926. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  1927. }
  1928. }
  1929. break;
  1930. case TT_4X8:
  1931. pat = ~(subblkpat*5) & 0xF;
  1932. for(j = 0; j < 2; j++) {
  1933. last = subblkpat & (1 << (1 - j));
  1934. i = 0;
  1935. off = j * 4;
  1936. while (!last) {
  1937. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1938. i += skip;
  1939. if(i > 31)
  1940. break;
  1941. idx = v->zz_4x8[i++]+off;
  1942. block[idx] = value * scale;
  1943. if(!v->pquantizer)
  1944. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1945. }
  1946. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1947. if(i==1)
  1948. s->dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  1949. else
  1950. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1951. if(apply_filter && cbp_top & (2 << j))
  1952. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  1953. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  1954. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  1955. }
  1956. }
  1957. break;
  1958. }
  1959. return pat;
  1960. }
  1961. /** @} */ // Macroblock group
  1962. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  1963. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1964. /** Decode one P-frame MB (in Simple/Main profile)
  1965. */
  1966. static int vc1_decode_p_mb(VC1Context *v)
  1967. {
  1968. MpegEncContext *s = &v->s;
  1969. GetBitContext *gb = &s->gb;
  1970. int i, j;
  1971. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1972. int cbp; /* cbp decoding stuff */
  1973. int mqdiff, mquant; /* MB quantization */
  1974. int ttmb = v->ttfrm; /* MB Transform type */
  1975. int mb_has_coeffs = 1; /* last_flag */
  1976. int dmv_x, dmv_y; /* Differential MV components */
  1977. int index, index1; /* LUT indexes */
  1978. int val, sign; /* temp values */
  1979. int first_block = 1;
  1980. int dst_idx, off;
  1981. int skipped, fourmv;
  1982. int block_cbp = 0, pat;
  1983. int apply_loop_filter;
  1984. mquant = v->pq; /* Loosy initialization */
  1985. if (v->mv_type_is_raw)
  1986. fourmv = get_bits1(gb);
  1987. else
  1988. fourmv = v->mv_type_mb_plane[mb_pos];
  1989. if (v->skip_is_raw)
  1990. skipped = get_bits1(gb);
  1991. else
  1992. skipped = v->s.mbskip_table[mb_pos];
  1993. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  1994. if (!fourmv) /* 1MV mode */
  1995. {
  1996. if (!skipped)
  1997. {
  1998. GET_MVDATA(dmv_x, dmv_y);
  1999. if (s->mb_intra) {
  2000. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2001. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2002. }
  2003. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2004. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2005. /* FIXME Set DC val for inter block ? */
  2006. if (s->mb_intra && !mb_has_coeffs)
  2007. {
  2008. GET_MQUANT();
  2009. s->ac_pred = get_bits1(gb);
  2010. cbp = 0;
  2011. }
  2012. else if (mb_has_coeffs)
  2013. {
  2014. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2015. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2016. GET_MQUANT();
  2017. }
  2018. else
  2019. {
  2020. mquant = v->pq;
  2021. cbp = 0;
  2022. }
  2023. s->current_picture.qscale_table[mb_pos] = mquant;
  2024. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2025. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2026. VC1_TTMB_VLC_BITS, 2);
  2027. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2028. dst_idx = 0;
  2029. for (i=0; i<6; i++)
  2030. {
  2031. s->dc_val[0][s->block_index[i]] = 0;
  2032. dst_idx += i >> 2;
  2033. val = ((cbp >> (5 - i)) & 1);
  2034. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2035. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2036. if(s->mb_intra) {
  2037. /* check if prediction blocks A and C are available */
  2038. v->a_avail = v->c_avail = 0;
  2039. if(i == 2 || i == 3 || !s->first_slice_line)
  2040. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2041. if(i == 1 || i == 3 || s->mb_x)
  2042. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2043. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2044. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2045. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2046. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2047. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2048. if(v->pq >= 9 && v->overlap) {
  2049. if(v->c_avail)
  2050. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2051. if(v->a_avail)
  2052. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2053. }
  2054. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2055. int left_cbp, top_cbp;
  2056. if(i & 4){
  2057. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2058. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2059. }else{
  2060. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2061. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2062. }
  2063. if(left_cbp & 0xC)
  2064. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2065. if(top_cbp & 0xA)
  2066. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2067. }
  2068. block_cbp |= 0xF << (i << 2);
  2069. } else if(val) {
  2070. int left_cbp = 0, top_cbp = 0, filter = 0;
  2071. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2072. filter = 1;
  2073. if(i & 4){
  2074. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2075. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2076. }else{
  2077. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2078. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2079. }
  2080. if(left_cbp & 0xC)
  2081. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2082. if(top_cbp & 0xA)
  2083. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2084. }
  2085. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2086. block_cbp |= pat << (i << 2);
  2087. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2088. first_block = 0;
  2089. }
  2090. }
  2091. }
  2092. else //Skipped
  2093. {
  2094. s->mb_intra = 0;
  2095. for(i = 0; i < 6; i++) {
  2096. v->mb_type[0][s->block_index[i]] = 0;
  2097. s->dc_val[0][s->block_index[i]] = 0;
  2098. }
  2099. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2100. s->current_picture.qscale_table[mb_pos] = 0;
  2101. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2102. vc1_mc_1mv(v, 0);
  2103. return 0;
  2104. }
  2105. } //1MV mode
  2106. else //4MV mode
  2107. {
  2108. if (!skipped /* unskipped MB */)
  2109. {
  2110. int intra_count = 0, coded_inter = 0;
  2111. int is_intra[6], is_coded[6];
  2112. /* Get CBPCY */
  2113. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2114. for (i=0; i<6; i++)
  2115. {
  2116. val = ((cbp >> (5 - i)) & 1);
  2117. s->dc_val[0][s->block_index[i]] = 0;
  2118. s->mb_intra = 0;
  2119. if(i < 4) {
  2120. dmv_x = dmv_y = 0;
  2121. s->mb_intra = 0;
  2122. mb_has_coeffs = 0;
  2123. if(val) {
  2124. GET_MVDATA(dmv_x, dmv_y);
  2125. }
  2126. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2127. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2128. intra_count += s->mb_intra;
  2129. is_intra[i] = s->mb_intra;
  2130. is_coded[i] = mb_has_coeffs;
  2131. }
  2132. if(i&4){
  2133. is_intra[i] = (intra_count >= 3);
  2134. is_coded[i] = val;
  2135. }
  2136. if(i == 4) vc1_mc_4mv_chroma(v);
  2137. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2138. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2139. }
  2140. // if there are no coded blocks then don't do anything more
  2141. if(!intra_count && !coded_inter) return 0;
  2142. dst_idx = 0;
  2143. GET_MQUANT();
  2144. s->current_picture.qscale_table[mb_pos] = mquant;
  2145. /* test if block is intra and has pred */
  2146. {
  2147. int intrapred = 0;
  2148. for(i=0; i<6; i++)
  2149. if(is_intra[i]) {
  2150. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2151. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2152. intrapred = 1;
  2153. break;
  2154. }
  2155. }
  2156. if(intrapred)s->ac_pred = get_bits1(gb);
  2157. else s->ac_pred = 0;
  2158. }
  2159. if (!v->ttmbf && coded_inter)
  2160. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2161. for (i=0; i<6; i++)
  2162. {
  2163. dst_idx += i >> 2;
  2164. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2165. s->mb_intra = is_intra[i];
  2166. if (is_intra[i]) {
  2167. /* check if prediction blocks A and C are available */
  2168. v->a_avail = v->c_avail = 0;
  2169. if(i == 2 || i == 3 || !s->first_slice_line)
  2170. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2171. if(i == 1 || i == 3 || s->mb_x)
  2172. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2173. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2174. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2175. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2176. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2177. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2178. if(v->pq >= 9 && v->overlap) {
  2179. if(v->c_avail)
  2180. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2181. if(v->a_avail)
  2182. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2183. }
  2184. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2185. int left_cbp, top_cbp;
  2186. if(i & 4){
  2187. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2188. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2189. }else{
  2190. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2191. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2192. }
  2193. if(left_cbp & 0xC)
  2194. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2195. if(top_cbp & 0xA)
  2196. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2197. }
  2198. block_cbp |= 0xF << (i << 2);
  2199. } else if(is_coded[i]) {
  2200. int left_cbp = 0, top_cbp = 0, filter = 0;
  2201. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2202. filter = 1;
  2203. if(i & 4){
  2204. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2205. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2206. }else{
  2207. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2208. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2209. }
  2210. if(left_cbp & 0xC)
  2211. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2212. if(top_cbp & 0xA)
  2213. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2214. }
  2215. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2216. block_cbp |= pat << (i << 2);
  2217. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2218. first_block = 0;
  2219. }
  2220. }
  2221. return 0;
  2222. }
  2223. else //Skipped MB
  2224. {
  2225. s->mb_intra = 0;
  2226. s->current_picture.qscale_table[mb_pos] = 0;
  2227. for (i=0; i<6; i++) {
  2228. v->mb_type[0][s->block_index[i]] = 0;
  2229. s->dc_val[0][s->block_index[i]] = 0;
  2230. }
  2231. for (i=0; i<4; i++)
  2232. {
  2233. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2234. vc1_mc_4mv_luma(v, i);
  2235. }
  2236. vc1_mc_4mv_chroma(v);
  2237. s->current_picture.qscale_table[mb_pos] = 0;
  2238. return 0;
  2239. }
  2240. }
  2241. v->cbp[s->mb_x] = block_cbp;
  2242. /* Should never happen */
  2243. return -1;
  2244. }
  2245. /** Decode one B-frame MB (in Main profile)
  2246. */
  2247. static void vc1_decode_b_mb(VC1Context *v)
  2248. {
  2249. MpegEncContext *s = &v->s;
  2250. GetBitContext *gb = &s->gb;
  2251. int i, j;
  2252. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2253. int cbp = 0; /* cbp decoding stuff */
  2254. int mqdiff, mquant; /* MB quantization */
  2255. int ttmb = v->ttfrm; /* MB Transform type */
  2256. int mb_has_coeffs = 0; /* last_flag */
  2257. int index, index1; /* LUT indexes */
  2258. int val, sign; /* temp values */
  2259. int first_block = 1;
  2260. int dst_idx, off;
  2261. int skipped, direct;
  2262. int dmv_x[2], dmv_y[2];
  2263. int bmvtype = BMV_TYPE_BACKWARD;
  2264. mquant = v->pq; /* Loosy initialization */
  2265. s->mb_intra = 0;
  2266. if (v->dmb_is_raw)
  2267. direct = get_bits1(gb);
  2268. else
  2269. direct = v->direct_mb_plane[mb_pos];
  2270. if (v->skip_is_raw)
  2271. skipped = get_bits1(gb);
  2272. else
  2273. skipped = v->s.mbskip_table[mb_pos];
  2274. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2275. for(i = 0; i < 6; i++) {
  2276. v->mb_type[0][s->block_index[i]] = 0;
  2277. s->dc_val[0][s->block_index[i]] = 0;
  2278. }
  2279. s->current_picture.qscale_table[mb_pos] = 0;
  2280. if (!direct) {
  2281. if (!skipped) {
  2282. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2283. dmv_x[1] = dmv_x[0];
  2284. dmv_y[1] = dmv_y[0];
  2285. }
  2286. if(skipped || !s->mb_intra) {
  2287. bmvtype = decode012(gb);
  2288. switch(bmvtype) {
  2289. case 0:
  2290. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2291. break;
  2292. case 1:
  2293. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2294. break;
  2295. case 2:
  2296. bmvtype = BMV_TYPE_INTERPOLATED;
  2297. dmv_x[0] = dmv_y[0] = 0;
  2298. }
  2299. }
  2300. }
  2301. for(i = 0; i < 6; i++)
  2302. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2303. if (skipped) {
  2304. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2305. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2306. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2307. return;
  2308. }
  2309. if (direct) {
  2310. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2311. GET_MQUANT();
  2312. s->mb_intra = 0;
  2313. s->current_picture.qscale_table[mb_pos] = mquant;
  2314. if(!v->ttmbf)
  2315. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2316. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2317. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2318. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2319. } else {
  2320. if(!mb_has_coeffs && !s->mb_intra) {
  2321. /* no coded blocks - effectively skipped */
  2322. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2323. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2324. return;
  2325. }
  2326. if(s->mb_intra && !mb_has_coeffs) {
  2327. GET_MQUANT();
  2328. s->current_picture.qscale_table[mb_pos] = mquant;
  2329. s->ac_pred = get_bits1(gb);
  2330. cbp = 0;
  2331. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2332. } else {
  2333. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2334. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2335. if(!mb_has_coeffs) {
  2336. /* interpolated skipped block */
  2337. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2338. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2339. return;
  2340. }
  2341. }
  2342. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2343. if(!s->mb_intra) {
  2344. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2345. }
  2346. if(s->mb_intra)
  2347. s->ac_pred = get_bits1(gb);
  2348. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2349. GET_MQUANT();
  2350. s->current_picture.qscale_table[mb_pos] = mquant;
  2351. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2352. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2353. }
  2354. }
  2355. dst_idx = 0;
  2356. for (i=0; i<6; i++)
  2357. {
  2358. s->dc_val[0][s->block_index[i]] = 0;
  2359. dst_idx += i >> 2;
  2360. val = ((cbp >> (5 - i)) & 1);
  2361. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2362. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2363. if(s->mb_intra) {
  2364. /* check if prediction blocks A and C are available */
  2365. v->a_avail = v->c_avail = 0;
  2366. if(i == 2 || i == 3 || !s->first_slice_line)
  2367. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2368. if(i == 1 || i == 3 || s->mb_x)
  2369. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2370. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2371. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2372. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2373. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2374. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2375. } else if(val) {
  2376. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  2377. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2378. first_block = 0;
  2379. }
  2380. }
  2381. }
  2382. /** Decode blocks of I-frame
  2383. */
  2384. static void vc1_decode_i_blocks(VC1Context *v)
  2385. {
  2386. int k, j;
  2387. MpegEncContext *s = &v->s;
  2388. int cbp, val;
  2389. uint8_t *coded_val;
  2390. int mb_pos;
  2391. /* select codingmode used for VLC tables selection */
  2392. switch(v->y_ac_table_index){
  2393. case 0:
  2394. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2395. break;
  2396. case 1:
  2397. v->codingset = CS_HIGH_MOT_INTRA;
  2398. break;
  2399. case 2:
  2400. v->codingset = CS_MID_RATE_INTRA;
  2401. break;
  2402. }
  2403. switch(v->c_ac_table_index){
  2404. case 0:
  2405. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2406. break;
  2407. case 1:
  2408. v->codingset2 = CS_HIGH_MOT_INTER;
  2409. break;
  2410. case 2:
  2411. v->codingset2 = CS_MID_RATE_INTER;
  2412. break;
  2413. }
  2414. /* Set DC scale - y and c use the same */
  2415. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2416. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2417. //do frame decode
  2418. s->mb_x = s->mb_y = 0;
  2419. s->mb_intra = 1;
  2420. s->first_slice_line = 1;
  2421. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2422. s->mb_x = 0;
  2423. ff_init_block_index(s);
  2424. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2425. ff_update_block_index(s);
  2426. s->dsp.clear_blocks(s->block[0]);
  2427. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2428. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2429. s->current_picture.qscale_table[mb_pos] = v->pq;
  2430. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2431. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2432. // do actual MB decoding and displaying
  2433. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2434. v->s.ac_pred = get_bits1(&v->s.gb);
  2435. for(k = 0; k < 6; k++) {
  2436. val = ((cbp >> (5 - k)) & 1);
  2437. if (k < 4) {
  2438. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2439. val = val ^ pred;
  2440. *coded_val = val;
  2441. }
  2442. cbp |= val << (5 - k);
  2443. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2444. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2445. if(v->pq >= 9 && v->overlap) {
  2446. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2447. }
  2448. }
  2449. vc1_put_block(v, s->block);
  2450. if(v->pq >= 9 && v->overlap) {
  2451. if(s->mb_x) {
  2452. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2453. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2454. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2455. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2456. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2457. }
  2458. }
  2459. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2460. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2461. if(!s->first_slice_line) {
  2462. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2463. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2464. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2465. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2466. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2467. }
  2468. }
  2469. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2470. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2471. }
  2472. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2473. if(get_bits_count(&s->gb) > v->bits) {
  2474. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2475. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2476. return;
  2477. }
  2478. }
  2479. if (!v->s.loop_filter)
  2480. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2481. else if (s->mb_y)
  2482. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2483. s->first_slice_line = 0;
  2484. }
  2485. if (v->s.loop_filter)
  2486. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2487. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2488. }
  2489. /** Decode blocks of I-frame for advanced profile
  2490. */
  2491. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2492. {
  2493. int k, j;
  2494. MpegEncContext *s = &v->s;
  2495. int cbp, val;
  2496. uint8_t *coded_val;
  2497. int mb_pos;
  2498. int mquant = v->pq;
  2499. int mqdiff;
  2500. int overlap;
  2501. GetBitContext *gb = &s->gb;
  2502. /* select codingmode used for VLC tables selection */
  2503. switch(v->y_ac_table_index){
  2504. case 0:
  2505. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2506. break;
  2507. case 1:
  2508. v->codingset = CS_HIGH_MOT_INTRA;
  2509. break;
  2510. case 2:
  2511. v->codingset = CS_MID_RATE_INTRA;
  2512. break;
  2513. }
  2514. switch(v->c_ac_table_index){
  2515. case 0:
  2516. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2517. break;
  2518. case 1:
  2519. v->codingset2 = CS_HIGH_MOT_INTER;
  2520. break;
  2521. case 2:
  2522. v->codingset2 = CS_MID_RATE_INTER;
  2523. break;
  2524. }
  2525. //do frame decode
  2526. s->mb_x = s->mb_y = 0;
  2527. s->mb_intra = 1;
  2528. s->first_slice_line = 1;
  2529. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2530. s->mb_x = 0;
  2531. ff_init_block_index(s);
  2532. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2533. ff_update_block_index(s);
  2534. s->dsp.clear_blocks(s->block[0]);
  2535. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2536. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2537. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2538. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2539. // do actual MB decoding and displaying
  2540. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2541. if(v->acpred_is_raw)
  2542. v->s.ac_pred = get_bits1(&v->s.gb);
  2543. else
  2544. v->s.ac_pred = v->acpred_plane[mb_pos];
  2545. if(v->condover == CONDOVER_SELECT) {
  2546. if(v->overflg_is_raw)
  2547. overlap = get_bits1(&v->s.gb);
  2548. else
  2549. overlap = v->over_flags_plane[mb_pos];
  2550. } else
  2551. overlap = (v->condover == CONDOVER_ALL);
  2552. GET_MQUANT();
  2553. s->current_picture.qscale_table[mb_pos] = mquant;
  2554. /* Set DC scale - y and c use the same */
  2555. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2556. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2557. for(k = 0; k < 6; k++) {
  2558. val = ((cbp >> (5 - k)) & 1);
  2559. if (k < 4) {
  2560. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2561. val = val ^ pred;
  2562. *coded_val = val;
  2563. }
  2564. cbp |= val << (5 - k);
  2565. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2566. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2567. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2568. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2569. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2570. }
  2571. vc1_put_block(v, s->block);
  2572. if(overlap) {
  2573. if(s->mb_x) {
  2574. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2575. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2576. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2577. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2578. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2579. }
  2580. }
  2581. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2582. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2583. if(!s->first_slice_line) {
  2584. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2585. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2586. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2587. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2588. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2589. }
  2590. }
  2591. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2592. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2593. }
  2594. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2595. if(get_bits_count(&s->gb) > v->bits) {
  2596. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2597. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2598. return;
  2599. }
  2600. }
  2601. if (!v->s.loop_filter)
  2602. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2603. else if (s->mb_y)
  2604. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2605. s->first_slice_line = 0;
  2606. }
  2607. if (v->s.loop_filter)
  2608. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2609. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2610. }
  2611. static void vc1_decode_p_blocks(VC1Context *v)
  2612. {
  2613. MpegEncContext *s = &v->s;
  2614. /* select codingmode used for VLC tables selection */
  2615. switch(v->c_ac_table_index){
  2616. case 0:
  2617. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2618. break;
  2619. case 1:
  2620. v->codingset = CS_HIGH_MOT_INTRA;
  2621. break;
  2622. case 2:
  2623. v->codingset = CS_MID_RATE_INTRA;
  2624. break;
  2625. }
  2626. switch(v->c_ac_table_index){
  2627. case 0:
  2628. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2629. break;
  2630. case 1:
  2631. v->codingset2 = CS_HIGH_MOT_INTER;
  2632. break;
  2633. case 2:
  2634. v->codingset2 = CS_MID_RATE_INTER;
  2635. break;
  2636. }
  2637. s->first_slice_line = 1;
  2638. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2639. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2640. s->mb_x = 0;
  2641. ff_init_block_index(s);
  2642. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2643. ff_update_block_index(s);
  2644. vc1_decode_p_mb(v);
  2645. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2646. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2647. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2648. return;
  2649. }
  2650. }
  2651. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2652. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2653. s->first_slice_line = 0;
  2654. }
  2655. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2656. }
  2657. static void vc1_decode_b_blocks(VC1Context *v)
  2658. {
  2659. MpegEncContext *s = &v->s;
  2660. /* select codingmode used for VLC tables selection */
  2661. switch(v->c_ac_table_index){
  2662. case 0:
  2663. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2664. break;
  2665. case 1:
  2666. v->codingset = CS_HIGH_MOT_INTRA;
  2667. break;
  2668. case 2:
  2669. v->codingset = CS_MID_RATE_INTRA;
  2670. break;
  2671. }
  2672. switch(v->c_ac_table_index){
  2673. case 0:
  2674. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2675. break;
  2676. case 1:
  2677. v->codingset2 = CS_HIGH_MOT_INTER;
  2678. break;
  2679. case 2:
  2680. v->codingset2 = CS_MID_RATE_INTER;
  2681. break;
  2682. }
  2683. s->first_slice_line = 1;
  2684. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2685. s->mb_x = 0;
  2686. ff_init_block_index(s);
  2687. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2688. ff_update_block_index(s);
  2689. vc1_decode_b_mb(v);
  2690. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2691. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2692. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2693. return;
  2694. }
  2695. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  2696. }
  2697. if (!v->s.loop_filter)
  2698. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2699. else if (s->mb_y)
  2700. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2701. s->first_slice_line = 0;
  2702. }
  2703. if (v->s.loop_filter)
  2704. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2705. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2706. }
  2707. static void vc1_decode_skip_blocks(VC1Context *v)
  2708. {
  2709. MpegEncContext *s = &v->s;
  2710. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2711. s->first_slice_line = 1;
  2712. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2713. s->mb_x = 0;
  2714. ff_init_block_index(s);
  2715. ff_update_block_index(s);
  2716. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2717. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2718. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2719. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2720. s->first_slice_line = 0;
  2721. }
  2722. s->pict_type = FF_P_TYPE;
  2723. }
  2724. static void vc1_decode_blocks(VC1Context *v)
  2725. {
  2726. v->s.esc3_level_length = 0;
  2727. if(v->x8_type){
  2728. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2729. }else{
  2730. switch(v->s.pict_type) {
  2731. case FF_I_TYPE:
  2732. if(v->profile == PROFILE_ADVANCED)
  2733. vc1_decode_i_blocks_adv(v);
  2734. else
  2735. vc1_decode_i_blocks(v);
  2736. break;
  2737. case FF_P_TYPE:
  2738. if(v->p_frame_skipped)
  2739. vc1_decode_skip_blocks(v);
  2740. else
  2741. vc1_decode_p_blocks(v);
  2742. break;
  2743. case FF_B_TYPE:
  2744. if(v->bi_type){
  2745. if(v->profile == PROFILE_ADVANCED)
  2746. vc1_decode_i_blocks_adv(v);
  2747. else
  2748. vc1_decode_i_blocks(v);
  2749. }else
  2750. vc1_decode_b_blocks(v);
  2751. break;
  2752. }
  2753. }
  2754. }
  2755. /** Initialize a VC1/WMV3 decoder
  2756. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2757. * @todo TODO: Decypher remaining bits in extra_data
  2758. */
  2759. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  2760. {
  2761. VC1Context *v = avctx->priv_data;
  2762. MpegEncContext *s = &v->s;
  2763. GetBitContext gb;
  2764. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2765. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2766. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  2767. else
  2768. avctx->pix_fmt = PIX_FMT_GRAY8;
  2769. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  2770. v->s.avctx = avctx;
  2771. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2772. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2773. if(avctx->idct_algo==FF_IDCT_AUTO){
  2774. avctx->idct_algo=FF_IDCT_WMV2;
  2775. }
  2776. if(ff_msmpeg4_decode_init(avctx) < 0)
  2777. return -1;
  2778. if (vc1_init_common(v) < 0) return -1;
  2779. avctx->coded_width = avctx->width;
  2780. avctx->coded_height = avctx->height;
  2781. if (avctx->codec_id == CODEC_ID_WMV3)
  2782. {
  2783. int count = 0;
  2784. // looks like WMV3 has a sequence header stored in the extradata
  2785. // advanced sequence header may be before the first frame
  2786. // the last byte of the extradata is a version number, 1 for the
  2787. // samples we can decode
  2788. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2789. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  2790. return -1;
  2791. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2792. if (count>0)
  2793. {
  2794. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2795. count, get_bits(&gb, count));
  2796. }
  2797. else if (count < 0)
  2798. {
  2799. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2800. }
  2801. } else { // VC1/WVC1
  2802. const uint8_t *start = avctx->extradata;
  2803. uint8_t *end = avctx->extradata + avctx->extradata_size;
  2804. const uint8_t *next;
  2805. int size, buf2_size;
  2806. uint8_t *buf2 = NULL;
  2807. int seq_initialized = 0, ep_initialized = 0;
  2808. if(avctx->extradata_size < 16) {
  2809. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  2810. return -1;
  2811. }
  2812. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2813. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  2814. next = start;
  2815. for(; next < end; start = next){
  2816. next = find_next_marker(start + 4, end);
  2817. size = next - start - 4;
  2818. if(size <= 0) continue;
  2819. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  2820. init_get_bits(&gb, buf2, buf2_size * 8);
  2821. switch(AV_RB32(start)){
  2822. case VC1_CODE_SEQHDR:
  2823. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  2824. av_free(buf2);
  2825. return -1;
  2826. }
  2827. seq_initialized = 1;
  2828. break;
  2829. case VC1_CODE_ENTRYPOINT:
  2830. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  2831. av_free(buf2);
  2832. return -1;
  2833. }
  2834. ep_initialized = 1;
  2835. break;
  2836. }
  2837. }
  2838. av_free(buf2);
  2839. if(!seq_initialized || !ep_initialized){
  2840. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  2841. return -1;
  2842. }
  2843. }
  2844. avctx->has_b_frames= !!(avctx->max_b_frames);
  2845. s->low_delay = !avctx->has_b_frames;
  2846. s->mb_width = (avctx->coded_width+15)>>4;
  2847. s->mb_height = (avctx->coded_height+15)>>4;
  2848. /* Allocate mb bitplanes */
  2849. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2850. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2851. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  2852. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  2853. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2854. v->cbp = v->cbp_base + s->mb_stride;
  2855. /* allocate block type info in that way so it could be used with s->block_index[] */
  2856. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2857. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2858. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2859. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2860. /* Init coded blocks info */
  2861. if (v->profile == PROFILE_ADVANCED)
  2862. {
  2863. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2864. // return -1;
  2865. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2866. // return -1;
  2867. }
  2868. ff_intrax8_common_init(&v->x8,s);
  2869. return 0;
  2870. }
  2871. /** Decode a VC1/WMV3 frame
  2872. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2873. */
  2874. static int vc1_decode_frame(AVCodecContext *avctx,
  2875. void *data, int *data_size,
  2876. AVPacket *avpkt)
  2877. {
  2878. const uint8_t *buf = avpkt->data;
  2879. int buf_size = avpkt->size;
  2880. VC1Context *v = avctx->priv_data;
  2881. MpegEncContext *s = &v->s;
  2882. AVFrame *pict = data;
  2883. uint8_t *buf2 = NULL;
  2884. const uint8_t *buf_start = buf;
  2885. /* no supplementary picture */
  2886. if (buf_size == 0) {
  2887. /* special case for last picture */
  2888. if (s->low_delay==0 && s->next_picture_ptr) {
  2889. *pict= *(AVFrame*)s->next_picture_ptr;
  2890. s->next_picture_ptr= NULL;
  2891. *data_size = sizeof(AVFrame);
  2892. }
  2893. return 0;
  2894. }
  2895. /* We need to set current_picture_ptr before reading the header,
  2896. * otherwise we cannot store anything in there. */
  2897. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2898. int i= ff_find_unused_picture(s, 0);
  2899. s->current_picture_ptr= &s->picture[i];
  2900. }
  2901. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2902. if (v->profile < PROFILE_ADVANCED)
  2903. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  2904. else
  2905. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  2906. }
  2907. //for advanced profile we may need to parse and unescape data
  2908. if (avctx->codec_id == CODEC_ID_VC1) {
  2909. int buf_size2 = 0;
  2910. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2911. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  2912. const uint8_t *start, *end, *next;
  2913. int size;
  2914. next = buf;
  2915. for(start = buf, end = buf + buf_size; next < end; start = next){
  2916. next = find_next_marker(start + 4, end);
  2917. size = next - start - 4;
  2918. if(size <= 0) continue;
  2919. switch(AV_RB32(start)){
  2920. case VC1_CODE_FRAME:
  2921. if (avctx->hwaccel ||
  2922. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2923. buf_start = start;
  2924. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2925. break;
  2926. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  2927. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2928. init_get_bits(&s->gb, buf2, buf_size2*8);
  2929. vc1_decode_entry_point(avctx, v, &s->gb);
  2930. break;
  2931. case VC1_CODE_SLICE:
  2932. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  2933. av_free(buf2);
  2934. return -1;
  2935. }
  2936. }
  2937. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  2938. const uint8_t *divider;
  2939. divider = find_next_marker(buf, buf + buf_size);
  2940. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  2941. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  2942. av_free(buf2);
  2943. return -1;
  2944. }
  2945. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  2946. // TODO
  2947. if(!v->warn_interlaced++)
  2948. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  2949. av_free(buf2);return -1;
  2950. }else{
  2951. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  2952. }
  2953. init_get_bits(&s->gb, buf2, buf_size2*8);
  2954. } else
  2955. init_get_bits(&s->gb, buf, buf_size*8);
  2956. // do parse frame header
  2957. if(v->profile < PROFILE_ADVANCED) {
  2958. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  2959. av_free(buf2);
  2960. return -1;
  2961. }
  2962. } else {
  2963. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  2964. av_free(buf2);
  2965. return -1;
  2966. }
  2967. }
  2968. // for hurry_up==5
  2969. s->current_picture.pict_type= s->pict_type;
  2970. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  2971. /* skip B-frames if we don't have reference frames */
  2972. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  2973. av_free(buf2);
  2974. return -1;//buf_size;
  2975. }
  2976. /* skip b frames if we are in a hurry */
  2977. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  2978. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  2979. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  2980. || avctx->skip_frame >= AVDISCARD_ALL) {
  2981. av_free(buf2);
  2982. return buf_size;
  2983. }
  2984. /* skip everything if we are in a hurry>=5 */
  2985. if(avctx->hurry_up>=5) {
  2986. av_free(buf2);
  2987. return -1;//buf_size;
  2988. }
  2989. if(s->next_p_frame_damaged){
  2990. if(s->pict_type==FF_B_TYPE)
  2991. return buf_size;
  2992. else
  2993. s->next_p_frame_damaged=0;
  2994. }
  2995. if(MPV_frame_start(s, avctx) < 0) {
  2996. av_free(buf2);
  2997. return -1;
  2998. }
  2999. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3000. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3001. if ((CONFIG_VC1_VDPAU_DECODER)
  3002. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3003. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3004. else if (avctx->hwaccel) {
  3005. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3006. return -1;
  3007. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3008. return -1;
  3009. if (avctx->hwaccel->end_frame(avctx) < 0)
  3010. return -1;
  3011. } else {
  3012. ff_er_frame_start(s);
  3013. v->bits = buf_size * 8;
  3014. vc1_decode_blocks(v);
  3015. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3016. // if(get_bits_count(&s->gb) > buf_size * 8)
  3017. // return -1;
  3018. ff_er_frame_end(s);
  3019. }
  3020. MPV_frame_end(s);
  3021. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3022. assert(s->current_picture.pict_type == s->pict_type);
  3023. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3024. *pict= *(AVFrame*)s->current_picture_ptr;
  3025. } else if (s->last_picture_ptr != NULL) {
  3026. *pict= *(AVFrame*)s->last_picture_ptr;
  3027. }
  3028. if(s->last_picture_ptr || s->low_delay){
  3029. *data_size = sizeof(AVFrame);
  3030. ff_print_debug_info(s, pict);
  3031. }
  3032. av_free(buf2);
  3033. return buf_size;
  3034. }
  3035. /** Close a VC1/WMV3 decoder
  3036. * @warning Initial try at using MpegEncContext stuff
  3037. */
  3038. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3039. {
  3040. VC1Context *v = avctx->priv_data;
  3041. av_freep(&v->hrd_rate);
  3042. av_freep(&v->hrd_buffer);
  3043. MPV_common_end(&v->s);
  3044. av_freep(&v->mv_type_mb_plane);
  3045. av_freep(&v->direct_mb_plane);
  3046. av_freep(&v->acpred_plane);
  3047. av_freep(&v->over_flags_plane);
  3048. av_freep(&v->mb_type_base);
  3049. av_freep(&v->cbp_base);
  3050. ff_intrax8_common_end(&v->x8);
  3051. return 0;
  3052. }
  3053. AVCodec vc1_decoder = {
  3054. "vc1",
  3055. AVMEDIA_TYPE_VIDEO,
  3056. CODEC_ID_VC1,
  3057. sizeof(VC1Context),
  3058. vc1_decode_init,
  3059. NULL,
  3060. vc1_decode_end,
  3061. vc1_decode_frame,
  3062. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3063. NULL,
  3064. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3065. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3066. };
  3067. #if CONFIG_WMV3_DECODER
  3068. AVCodec wmv3_decoder = {
  3069. "wmv3",
  3070. AVMEDIA_TYPE_VIDEO,
  3071. CODEC_ID_WMV3,
  3072. sizeof(VC1Context),
  3073. vc1_decode_init,
  3074. NULL,
  3075. vc1_decode_end,
  3076. vc1_decode_frame,
  3077. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3078. NULL,
  3079. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3080. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3081. };
  3082. #endif
  3083. #if CONFIG_WMV3_VDPAU_DECODER
  3084. AVCodec wmv3_vdpau_decoder = {
  3085. "wmv3_vdpau",
  3086. AVMEDIA_TYPE_VIDEO,
  3087. CODEC_ID_WMV3,
  3088. sizeof(VC1Context),
  3089. vc1_decode_init,
  3090. NULL,
  3091. vc1_decode_end,
  3092. vc1_decode_frame,
  3093. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3094. NULL,
  3095. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3096. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3097. };
  3098. #endif
  3099. #if CONFIG_VC1_VDPAU_DECODER
  3100. AVCodec vc1_vdpau_decoder = {
  3101. "vc1_vdpau",
  3102. AVMEDIA_TYPE_VIDEO,
  3103. CODEC_ID_VC1,
  3104. sizeof(VC1Context),
  3105. vc1_decode_init,
  3106. NULL,
  3107. vc1_decode_end,
  3108. vc1_decode_frame,
  3109. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3110. NULL,
  3111. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3112. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3113. };
  3114. #endif