You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1134 lines
37KB

  1. /*
  2. * TwinVQ decoder
  3. * Copyright (c) 2009 Vitor Sessak
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "get_bits.h"
  23. #include "dsputil.h"
  24. #include "fft.h"
  25. #include "lsp.h"
  26. #include <math.h>
  27. #include <stdint.h>
  28. #include "twinvq_data.h"
  29. enum FrameType {
  30. FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
  31. FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
  32. FT_LONG, ///< Long frame (single sub-block + PPC)
  33. FT_PPC, ///< Periodic Peak Component (part of the long frame)
  34. };
  35. /**
  36. * Parameters and tables that are different for each frame type
  37. */
  38. struct FrameMode {
  39. uint8_t sub; ///< Number subblocks in each frame
  40. const uint16_t *bark_tab;
  41. /** number of distinct bark scale envelope values */
  42. uint8_t bark_env_size;
  43. const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
  44. uint8_t bark_n_coef;///< number of BSE CB coefficients to read
  45. uint8_t bark_n_bit; ///< number of bits of the BSE coefs
  46. //@{
  47. /** main codebooks for spectrum data */
  48. const int16_t *cb0;
  49. const int16_t *cb1;
  50. //@}
  51. uint8_t cb_len_read; ///< number of spectrum coefficients to read
  52. };
  53. /**
  54. * Parameters and tables that are different for every combination of
  55. * bitrate/sample rate
  56. */
  57. typedef struct {
  58. struct FrameMode fmode[3]; ///< frame type-dependant parameters
  59. uint16_t size; ///< frame size in samples
  60. uint8_t n_lsp; ///< number of lsp coefficients
  61. const float *lspcodebook;
  62. /* number of bits of the different LSP CB coefficients */
  63. uint8_t lsp_bit0;
  64. uint8_t lsp_bit1;
  65. uint8_t lsp_bit2;
  66. uint8_t lsp_split; ///< number of CB entries for the LSP decoding
  67. const int16_t *ppc_shape_cb; ///< PPC shape CB
  68. /** number of the bits for the PPC period value */
  69. uint8_t ppc_period_bit;
  70. uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
  71. uint8_t ppc_shape_len; ///< size of PPC shape CB
  72. uint8_t pgain_bit; ///< bits for PPC gain
  73. /** constant for peak period to peak width conversion */
  74. uint16_t peak_per2wid;
  75. } ModeTab;
  76. static const ModeTab mode_08_08 = {
  77. {
  78. { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
  79. { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
  80. { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
  81. },
  82. 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
  83. };
  84. static const ModeTab mode_11_08 = {
  85. {
  86. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
  87. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
  88. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
  89. },
  90. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  91. };
  92. static const ModeTab mode_11_10 = {
  93. {
  94. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
  95. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
  96. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
  97. },
  98. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  99. };
  100. static const ModeTab mode_16_16 = {
  101. {
  102. { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
  103. { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
  104. { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
  105. },
  106. 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
  107. };
  108. static const ModeTab mode_22_20 = {
  109. {
  110. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
  111. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
  112. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
  113. },
  114. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  115. };
  116. static const ModeTab mode_22_24 = {
  117. {
  118. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
  119. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
  120. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
  121. },
  122. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  123. };
  124. static const ModeTab mode_22_32 = {
  125. {
  126. { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
  127. { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
  128. { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
  129. },
  130. 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
  131. };
  132. static const ModeTab mode_44_40 = {
  133. {
  134. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
  135. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
  136. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
  137. },
  138. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  139. };
  140. static const ModeTab mode_44_48 = {
  141. {
  142. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
  143. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
  144. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
  145. },
  146. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  147. };
  148. typedef struct TwinContext {
  149. AVCodecContext *avctx;
  150. DSPContext dsp;
  151. FFTContext mdct_ctx[3];
  152. const ModeTab *mtab;
  153. // history
  154. float lsp_hist[2][20]; ///< LSP coefficients of the last frame
  155. float bark_hist[3][2][40]; ///< BSE coefficients of last frame
  156. // bitstream parameters
  157. int16_t permut[4][4096];
  158. uint8_t length[4][2]; ///< main codebook stride
  159. uint8_t length_change[4];
  160. uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
  161. int bits_main_spec_change[4];
  162. int n_div[4];
  163. float *spectrum;
  164. float *curr_frame; ///< non-interleaved output
  165. float *prev_frame; ///< non-interleaved previous frame
  166. int last_block_pos[2];
  167. float *cos_tabs[3];
  168. // scratch buffers
  169. float *tmp_buf;
  170. } TwinContext;
  171. #define PPC_SHAPE_CB_SIZE 64
  172. #define PPC_SHAPE_LEN_MAX 60
  173. #define SUB_AMP_MAX 4500.0
  174. #define MULAW_MU 100.0
  175. #define GAIN_BITS 8
  176. #define AMP_MAX 13000.0
  177. #define SUB_GAIN_BITS 5
  178. #define WINDOW_TYPE_BITS 4
  179. #define PGAIN_MU 200
  180. #define LSP_COEFS_MAX 20
  181. #define LSP_SPLIT_MAX 4
  182. #define CHANNELS_MAX 2
  183. #define SUBBLOCKS_MAX 16
  184. #define BARK_N_COEF_MAX 4
  185. /** @note not speed critical, hence not optimized */
  186. static void memset_float(float *buf, float val, int size)
  187. {
  188. while (size--)
  189. *buf++ = val;
  190. }
  191. /**
  192. * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
  193. * spectrum pairs.
  194. *
  195. * @param lsp a vector of the cosinus of the LSP values
  196. * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
  197. * @param order the order of the LSP (and the size of the *lsp buffer). Must
  198. * be a multiple of four.
  199. * @return the LPC value
  200. *
  201. * @todo reuse code from vorbis_dec.c: vorbis_floor0_decode
  202. */
  203. static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
  204. {
  205. int j;
  206. float p = 0.5f;
  207. float q = 0.5f;
  208. float two_cos_w = 2.0f*cos_val;
  209. for (j = 0; j + 1 < order; j += 2*2) {
  210. // Unroll the loop once since order is a multiple of four
  211. q *= lsp[j ] - two_cos_w;
  212. p *= lsp[j+1] - two_cos_w;
  213. q *= lsp[j+2] - two_cos_w;
  214. p *= lsp[j+3] - two_cos_w;
  215. }
  216. p *= p * (2.0f - two_cos_w);
  217. q *= q * (2.0f + two_cos_w);
  218. return 0.5 / (p + q);
  219. }
  220. /**
  221. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  222. */
  223. static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
  224. {
  225. int i;
  226. const ModeTab *mtab = tctx->mtab;
  227. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  228. for (i = 0; i < size_s/2; i++) {
  229. float cos_i = tctx->cos_tabs[0][i];
  230. lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
  231. lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
  232. }
  233. }
  234. static void interpolate(float *out, float v1, float v2, int size)
  235. {
  236. int i;
  237. float step = (v1 - v2)/(size + 1);
  238. for (i = 0; i < size; i++) {
  239. v2 += step;
  240. out[i] = v2;
  241. }
  242. }
  243. static inline float get_cos(int idx, int part, const float *cos_tab, int size)
  244. {
  245. return part ? -cos_tab[size - idx - 1] :
  246. cos_tab[ idx ];
  247. }
  248. /**
  249. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  250. * Probably for speed reasons, the coefficients are evaluated as
  251. * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
  252. * where s is an evaluated value, i is a value interpolated from the others
  253. * and b might be either calculated or interpolated, depending on an
  254. * unexplained condition.
  255. *
  256. * @param step the size of a block "siiiibiiii"
  257. * @param in the cosinus of the LSP data
  258. * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
  259. (negative cossinus values)
  260. * @param size the size of the whole output
  261. */
  262. static inline void eval_lpcenv_or_interp(TwinContext *tctx,
  263. enum FrameType ftype,
  264. float *out, const float *in,
  265. int size, int step, int part)
  266. {
  267. int i;
  268. const ModeTab *mtab = tctx->mtab;
  269. const float *cos_tab = tctx->cos_tabs[ftype];
  270. // Fill the 's'
  271. for (i = 0; i < size; i += step)
  272. out[i] =
  273. eval_lpc_spectrum(in,
  274. get_cos(i, part, cos_tab, size),
  275. mtab->n_lsp);
  276. // Fill the 'iiiibiiii'
  277. for (i = step; i <= size - 2*step; i += step) {
  278. if (out[i + step] + out[i - step] > 1.95*out[i] ||
  279. out[i + step] >= out[i - step]) {
  280. interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
  281. } else {
  282. out[i - step/2] =
  283. eval_lpc_spectrum(in,
  284. get_cos(i-step/2, part, cos_tab, size),
  285. mtab->n_lsp);
  286. interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
  287. interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
  288. }
  289. }
  290. interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
  291. }
  292. static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
  293. const float *buf, float *lpc,
  294. int size, int step)
  295. {
  296. eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
  297. eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
  298. interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
  299. memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
  300. }
  301. /**
  302. * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
  303. * bitstream, sum the corresponding vectors and write the result to *out
  304. * after permutation.
  305. */
  306. static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
  307. enum FrameType ftype,
  308. const int16_t *cb0, const int16_t *cb1, int cb_len)
  309. {
  310. int pos = 0;
  311. int i, j;
  312. for (i = 0; i < tctx->n_div[ftype]; i++) {
  313. int tmp0, tmp1;
  314. int sign0 = 1;
  315. int sign1 = 1;
  316. const int16_t *tab0, *tab1;
  317. int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
  318. int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
  319. int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
  320. if (bits == 7) {
  321. if (get_bits1(gb))
  322. sign0 = -1;
  323. bits = 6;
  324. }
  325. tmp0 = get_bits(gb, bits);
  326. bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
  327. if (bits == 7) {
  328. if (get_bits1(gb))
  329. sign1 = -1;
  330. bits = 6;
  331. }
  332. tmp1 = get_bits(gb, bits);
  333. tab0 = cb0 + tmp0*cb_len;
  334. tab1 = cb1 + tmp1*cb_len;
  335. for (j = 0; j < length; j++)
  336. out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
  337. pos += length;
  338. }
  339. }
  340. static inline float mulawinv(float y, float clip, float mu)
  341. {
  342. y = av_clipf(y/clip, -1, 1);
  343. return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
  344. }
  345. /**
  346. * Evaluate a*b/400 rounded to the nearest integer. When, for example,
  347. * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
  348. * the following broken float-based implementation used by the binary decoder:
  349. *
  350. * \code
  351. * static int very_broken_op(int a, int b)
  352. * {
  353. * static float test; // Ugh, force gcc to do the division first...
  354. *
  355. * test = a/400.;
  356. * return b * test + 0.5;
  357. * }
  358. * \endcode
  359. *
  360. * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
  361. * between the original file (before encoding with Yamaha encoder) and the
  362. * decoded output increases, which leads one to believe that the encoder expects
  363. * exactly this broken calculation.
  364. */
  365. static int very_broken_op(int a, int b)
  366. {
  367. int x = a*b + 200;
  368. int size;
  369. const uint8_t *rtab;
  370. if (x%400 || b%5)
  371. return x/400;
  372. x /= 400;
  373. size = tabs[b/5].size;
  374. rtab = tabs[b/5].tab;
  375. return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
  376. }
  377. /**
  378. * Sum to data a periodic peak of a given period, width and shape.
  379. *
  380. * @param period the period of the peak divised by 400.0
  381. */
  382. static void add_peak(int period, int width, const float *shape,
  383. float ppc_gain, float *speech, int len)
  384. {
  385. int i, j;
  386. const float *shape_end = shape + len;
  387. int center;
  388. // First peak centered around zero
  389. for (i = 0; i < width/2; i++)
  390. speech[i] += ppc_gain * *shape++;
  391. for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
  392. center = very_broken_op(period, i);
  393. for (j = -width/2; j < (width+1)/2; j++)
  394. speech[j+center] += ppc_gain * *shape++;
  395. }
  396. // For the last block, be careful not to go beyond the end of the buffer
  397. center = very_broken_op(period, i);
  398. for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
  399. speech[j+center] += ppc_gain * *shape++;
  400. }
  401. static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
  402. float ppc_gain, float *speech)
  403. {
  404. const ModeTab *mtab = tctx->mtab;
  405. int isampf = tctx->avctx->sample_rate/1000;
  406. int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
  407. int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
  408. int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
  409. int period_range = max_period - min_period;
  410. // This is actually the period multiplied by 400. It is just linearly coded
  411. // between its maximum and minimum value.
  412. int period = min_period +
  413. ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
  414. int width;
  415. if (isampf == 22 && ibps == 32) {
  416. // For some unknown reason, NTT decided to code this case differently...
  417. width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
  418. } else
  419. width = (period )* mtab->peak_per2wid/(400*mtab->size);
  420. add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
  421. }
  422. static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
  423. float *out)
  424. {
  425. const ModeTab *mtab = tctx->mtab;
  426. int i, j;
  427. int sub = mtab->fmode[ftype].sub;
  428. float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
  429. float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
  430. if (ftype == FT_LONG) {
  431. for (i = 0; i < tctx->avctx->channels; i++)
  432. out[i] = (1./(1<<13)) *
  433. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  434. AMP_MAX, MULAW_MU);
  435. } else {
  436. for (i = 0; i < tctx->avctx->channels; i++) {
  437. float val = (1./(1<<23)) *
  438. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  439. AMP_MAX, MULAW_MU);
  440. for (j = 0; j < sub; j++) {
  441. out[i*sub + j] =
  442. val*mulawinv(sub_step* 0.5 +
  443. sub_step* get_bits(gb, SUB_GAIN_BITS),
  444. SUB_AMP_MAX, MULAW_MU);
  445. }
  446. }
  447. }
  448. }
  449. /**
  450. * Rearrange the LSP coefficients so that they have a minimum distance of
  451. * min_dist. This function does it exactly as described in section of 3.2.4
  452. * of the G.729 specification (but interestingly is different from what the
  453. * reference decoder actually does).
  454. */
  455. static void rearrange_lsp(int order, float *lsp, float min_dist)
  456. {
  457. int i;
  458. float min_dist2 = min_dist * 0.5;
  459. for (i = 1; i < order; i++)
  460. if (lsp[i] - lsp[i-1] < min_dist) {
  461. float avg = (lsp[i] + lsp[i-1]) * 0.5;
  462. lsp[i-1] = avg - min_dist2;
  463. lsp[i ] = avg + min_dist2;
  464. }
  465. }
  466. static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
  467. int lpc_hist_idx, float *lsp, float *hist)
  468. {
  469. const ModeTab *mtab = tctx->mtab;
  470. int i, j;
  471. const float *cb = mtab->lspcodebook;
  472. const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
  473. const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
  474. const int8_t funny_rounding[4] = {
  475. -2,
  476. mtab->lsp_split == 4 ? -2 : 1,
  477. mtab->lsp_split == 4 ? -2 : 1,
  478. 0
  479. };
  480. j = 0;
  481. for (i = 0; i < mtab->lsp_split; i++) {
  482. int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
  483. for (; j < chunk_end; j++)
  484. lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
  485. cb2[lpc_idx2[i] * mtab->n_lsp + j];
  486. }
  487. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  488. for (i = 0; i < mtab->n_lsp; i++) {
  489. float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
  490. float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
  491. hist[i] = lsp[i];
  492. lsp[i] = lsp[i] * tmp1 + tmp2;
  493. }
  494. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  495. rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
  496. ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
  497. }
  498. static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
  499. enum FrameType ftype, float *lpc)
  500. {
  501. int i;
  502. int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
  503. for (i = 0; i < tctx->mtab->n_lsp; i++)
  504. lsp[i] = 2*cos(lsp[i]);
  505. switch (ftype) {
  506. case FT_LONG:
  507. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
  508. break;
  509. case FT_MEDIUM:
  510. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
  511. break;
  512. case FT_SHORT:
  513. eval_lpcenv(tctx, lsp, lpc);
  514. break;
  515. }
  516. }
  517. static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
  518. float *in, float *prev, int ch)
  519. {
  520. const ModeTab *mtab = tctx->mtab;
  521. int bsize = mtab->size / mtab->fmode[ftype].sub;
  522. int size = mtab->size;
  523. float *buf1 = tctx->tmp_buf;
  524. int j;
  525. int wsize; // Window size
  526. float *out = tctx->curr_frame + 2*ch*mtab->size;
  527. float *out2 = out;
  528. float *prev_buf;
  529. int first_wsize;
  530. static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
  531. int types_sizes[] = {
  532. mtab->size / mtab->fmode[FT_LONG ].sub,
  533. mtab->size / mtab->fmode[FT_MEDIUM].sub,
  534. mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
  535. };
  536. wsize = types_sizes[wtype_to_wsize[wtype]];
  537. first_wsize = wsize;
  538. prev_buf = prev + (size - bsize)/2;
  539. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  540. int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
  541. if (!j && wtype == 4)
  542. sub_wtype = 4;
  543. else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
  544. sub_wtype = 7;
  545. wsize = types_sizes[wtype_to_wsize[sub_wtype]];
  546. ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j);
  547. tctx->dsp.vector_fmul_window(out2,
  548. prev_buf + (bsize-wsize)/2,
  549. buf1 + bsize*j,
  550. ff_sine_windows[av_log2(wsize)],
  551. 0.0,
  552. wsize/2);
  553. out2 += wsize;
  554. memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
  555. out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
  556. prev_buf = buf1 + bsize*j + bsize/2;
  557. }
  558. tctx->last_block_pos[ch] = (size + first_wsize)/2;
  559. }
  560. static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
  561. float *out)
  562. {
  563. const ModeTab *mtab = tctx->mtab;
  564. float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
  565. int i, j;
  566. for (i = 0; i < tctx->avctx->channels; i++) {
  567. imdct_and_window(tctx, ftype, wtype,
  568. tctx->spectrum + i*mtab->size,
  569. prev_buf + 2*i*mtab->size,
  570. i);
  571. }
  572. if (tctx->avctx->channels == 2) {
  573. for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) {
  574. float f1 = prev_buf[ i];
  575. float f2 = prev_buf[2*mtab->size + i];
  576. out[2*i ] = f1 + f2;
  577. out[2*i + 1] = f1 - f2;
  578. }
  579. for (j = 0; i < mtab->size; j++,i++) {
  580. float f1 = tctx->curr_frame[ j];
  581. float f2 = tctx->curr_frame[2*mtab->size + j];
  582. out[2*i ] = f1 + f2;
  583. out[2*i + 1] = f1 - f2;
  584. }
  585. } else {
  586. memcpy(out, prev_buf,
  587. (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
  588. out += mtab->size - tctx->last_block_pos[0];
  589. memcpy(out, tctx->curr_frame,
  590. (tctx->last_block_pos[0]) * sizeof(*out));
  591. }
  592. }
  593. static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
  594. int ch, float *out, float gain, enum FrameType ftype)
  595. {
  596. const ModeTab *mtab = tctx->mtab;
  597. int i,j;
  598. float *hist = tctx->bark_hist[ftype][ch];
  599. float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
  600. int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
  601. int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
  602. int idx = 0;
  603. for (i = 0; i < fw_cb_len; i++)
  604. for (j = 0; j < bark_n_coef; j++, idx++) {
  605. float tmp2 =
  606. mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
  607. float st = use_hist ?
  608. (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
  609. hist[idx] = tmp2;
  610. if (st < -1.) st = 1.;
  611. memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
  612. out += mtab->fmode[ftype].bark_tab[idx];
  613. }
  614. }
  615. static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
  616. float *out, enum FrameType ftype)
  617. {
  618. const ModeTab *mtab = tctx->mtab;
  619. int channels = tctx->avctx->channels;
  620. int sub = mtab->fmode[ftype].sub;
  621. int block_size = mtab->size / sub;
  622. float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
  623. float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
  624. uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
  625. uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
  626. uint8_t lpc_idx1[CHANNELS_MAX];
  627. uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
  628. uint8_t lpc_hist_idx[CHANNELS_MAX];
  629. int i, j, k;
  630. dequant(tctx, gb, out, ftype,
  631. mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
  632. mtab->fmode[ftype].cb_len_read);
  633. for (i = 0; i < channels; i++)
  634. for (j = 0; j < sub; j++)
  635. for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
  636. bark1[i][j][k] =
  637. get_bits(gb, mtab->fmode[ftype].bark_n_bit);
  638. for (i = 0; i < channels; i++)
  639. for (j = 0; j < sub; j++)
  640. bark_use_hist[i][j] = get_bits1(gb);
  641. dec_gain(tctx, gb, ftype, gain);
  642. for (i = 0; i < channels; i++) {
  643. lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
  644. lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
  645. for (j = 0; j < tctx->mtab->lsp_split; j++)
  646. lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
  647. }
  648. if (ftype == FT_LONG) {
  649. int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
  650. tctx->n_div[3];
  651. dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
  652. mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
  653. }
  654. for (i = 0; i < channels; i++) {
  655. float *chunk = out + mtab->size * i;
  656. float lsp[LSP_COEFS_MAX];
  657. for (j = 0; j < sub; j++) {
  658. dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
  659. tctx->tmp_buf, gain[sub*i+j], ftype);
  660. tctx->dsp.vector_fmul(chunk + block_size*j, tctx->tmp_buf,
  661. block_size);
  662. }
  663. if (ftype == FT_LONG) {
  664. float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
  665. int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
  666. int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
  667. float v = 1./8192*
  668. mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
  669. decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
  670. chunk);
  671. }
  672. decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
  673. tctx->lsp_hist[i]);
  674. dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
  675. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  676. tctx->dsp.vector_fmul(chunk, tctx->tmp_buf, block_size);
  677. chunk += block_size;
  678. }
  679. }
  680. }
  681. static int twin_decode_frame(AVCodecContext * avctx, void *data,
  682. int *data_size, AVPacket *avpkt)
  683. {
  684. const uint8_t *buf = avpkt->data;
  685. int buf_size = avpkt->size;
  686. TwinContext *tctx = avctx->priv_data;
  687. GetBitContext gb;
  688. const ModeTab *mtab = tctx->mtab;
  689. float *out = data;
  690. enum FrameType ftype;
  691. int window_type;
  692. static const enum FrameType wtype_to_ftype_table[] = {
  693. FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
  694. FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
  695. };
  696. if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
  697. av_log(avctx, AV_LOG_ERROR,
  698. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  699. *data_size = 0;
  700. return buf_size;
  701. }
  702. init_get_bits(&gb, buf, buf_size * 8);
  703. skip_bits(&gb, get_bits(&gb, 8));
  704. window_type = get_bits(&gb, WINDOW_TYPE_BITS);
  705. if (window_type > 8) {
  706. av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
  707. return -1;
  708. }
  709. ftype = wtype_to_ftype_table[window_type];
  710. read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
  711. imdct_output(tctx, ftype, window_type, out);
  712. FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
  713. if (tctx->avctx->frame_number < 2) {
  714. *data_size=0;
  715. return buf_size;
  716. }
  717. *data_size = mtab->size*avctx->channels*4;
  718. return buf_size;
  719. }
  720. /**
  721. * Init IMDCT and windowing tables
  722. */
  723. static av_cold void init_mdct_win(TwinContext *tctx)
  724. {
  725. int i,j;
  726. const ModeTab *mtab = tctx->mtab;
  727. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  728. int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
  729. int channels = tctx->avctx->channels;
  730. float norm = channels == 1 ? 2. : 1.;
  731. for (i = 0; i < 3; i++) {
  732. int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
  733. ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
  734. -sqrt(norm/bsize) / (1<<15));
  735. }
  736. tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf));
  737. tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float));
  738. tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  739. tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  740. for (i = 0; i < 3; i++) {
  741. int m = 4*mtab->size/mtab->fmode[i].sub;
  742. double freq = 2*M_PI/m;
  743. tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
  744. for (j = 0; j <= m/8; j++)
  745. tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
  746. for (j = 1; j < m/8; j++)
  747. tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
  748. }
  749. ff_init_ff_sine_windows(av_log2(size_m));
  750. ff_init_ff_sine_windows(av_log2(size_s/2));
  751. ff_init_ff_sine_windows(av_log2(mtab->size));
  752. }
  753. /**
  754. * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
  755. * each line do a cyclic permutation, i.e.
  756. * abcdefghijklm -> defghijklmabc
  757. * where the amount to be shifted is evaluated depending on the column.
  758. */
  759. static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
  760. int block_size,
  761. const uint8_t line_len[2], int length_div,
  762. enum FrameType ftype)
  763. {
  764. int i,j;
  765. for (i = 0; i < line_len[0]; i++) {
  766. int shift;
  767. if (num_blocks == 1 ||
  768. (ftype == FT_LONG && num_vect % num_blocks) ||
  769. (ftype != FT_LONG && num_vect & 1 ) ||
  770. i == line_len[1]) {
  771. shift = 0;
  772. } else if (ftype == FT_LONG) {
  773. shift = i;
  774. } else
  775. shift = i*i;
  776. for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
  777. tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
  778. }
  779. }
  780. /**
  781. * Interpret the input data as in the following table:
  782. *
  783. * \verbatim
  784. *
  785. * abcdefgh
  786. * ijklmnop
  787. * qrstuvw
  788. * x123456
  789. *
  790. * \endverbatim
  791. *
  792. * and transpose it, giving the output
  793. * aiqxbjr1cks2dlt3emu4fvn5gow6hp
  794. */
  795. static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
  796. const uint8_t line_len[2], int length_div)
  797. {
  798. int i,j;
  799. int cont= 0;
  800. for (i = 0; i < num_vect; i++)
  801. for (j = 0; j < line_len[i >= length_div]; j++)
  802. out[cont++] = in[j*num_vect + i];
  803. }
  804. static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
  805. {
  806. int block_size = size/n_blocks;
  807. int i;
  808. for (i = 0; i < size; i++)
  809. out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
  810. }
  811. static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
  812. {
  813. int block_size;
  814. const ModeTab *mtab = tctx->mtab;
  815. int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
  816. int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
  817. if (ftype == FT_PPC) {
  818. size = tctx->avctx->channels;
  819. block_size = mtab->ppc_shape_len;
  820. } else
  821. block_size = mtab->size / mtab->fmode[ftype].sub;
  822. permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
  823. block_size, tctx->length[ftype],
  824. tctx->length_change[ftype], ftype);
  825. transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
  826. tctx->length[ftype], tctx->length_change[ftype]);
  827. linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
  828. size*block_size);
  829. }
  830. static av_cold void init_bitstream_params(TwinContext *tctx)
  831. {
  832. const ModeTab *mtab = tctx->mtab;
  833. int n_ch = tctx->avctx->channels;
  834. int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
  835. tctx->avctx->sample_rate;
  836. int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
  837. mtab->lsp_split*mtab->lsp_bit2);
  838. int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
  839. mtab->ppc_period_bit);
  840. int bsize_no_main_cb[3];
  841. int bse_bits[3];
  842. int i;
  843. enum FrameType frametype;
  844. for (i = 0; i < 3; i++)
  845. // +1 for history usage switch
  846. bse_bits[i] = n_ch *
  847. (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
  848. bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
  849. WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
  850. for (i = 0; i < 2; i++)
  851. bsize_no_main_cb[i] =
  852. lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
  853. mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
  854. // The remaining bits are all used for the main spectrum coefficients
  855. for (i = 0; i < 4; i++) {
  856. int bit_size;
  857. int vect_size;
  858. int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
  859. if (i == 3) {
  860. bit_size = n_ch * mtab->ppc_shape_bit;
  861. vect_size = n_ch * mtab->ppc_shape_len;
  862. } else {
  863. bit_size = total_fr_bits - bsize_no_main_cb[i];
  864. vect_size = n_ch * mtab->size;
  865. }
  866. tctx->n_div[i] = (bit_size + 13) / 14;
  867. rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  868. rounded_down = (bit_size )/tctx->n_div[i];
  869. num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
  870. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  871. tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
  872. tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
  873. tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
  874. tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
  875. tctx->bits_main_spec_change[i] = num_rounded_up;
  876. rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  877. rounded_down = (vect_size )/tctx->n_div[i];
  878. num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
  879. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  880. tctx->length[i][0] = rounded_up;
  881. tctx->length[i][1] = rounded_down;
  882. tctx->length_change[i] = num_rounded_up;
  883. }
  884. for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
  885. construct_perm_table(tctx, frametype);
  886. }
  887. static av_cold int twin_decode_init(AVCodecContext *avctx)
  888. {
  889. TwinContext *tctx = avctx->priv_data;
  890. int isampf = avctx->sample_rate/1000;
  891. int ibps = avctx->bit_rate/(1000 * avctx->channels);
  892. tctx->avctx = avctx;
  893. avctx->sample_fmt = SAMPLE_FMT_FLT;
  894. if (avctx->channels > CHANNELS_MAX) {
  895. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
  896. avctx->channels);
  897. return -1;
  898. }
  899. switch ((isampf << 8) + ibps) {
  900. case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
  901. case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
  902. case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
  903. case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
  904. case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
  905. case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
  906. case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
  907. case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
  908. case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
  909. default:
  910. av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
  911. return -1;
  912. }
  913. dsputil_init(&tctx->dsp, avctx);
  914. init_mdct_win(tctx);
  915. init_bitstream_params(tctx);
  916. memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
  917. return 0;
  918. }
  919. static av_cold int twin_decode_close(AVCodecContext *avctx)
  920. {
  921. TwinContext *tctx = avctx->priv_data;
  922. int i;
  923. for (i = 0; i < 3; i++) {
  924. ff_mdct_end(&tctx->mdct_ctx[i]);
  925. av_free(tctx->cos_tabs[i]);
  926. }
  927. av_free(tctx->curr_frame);
  928. av_free(tctx->spectrum);
  929. av_free(tctx->prev_frame);
  930. av_free(tctx->tmp_buf);
  931. return 0;
  932. }
  933. AVCodec twinvq_decoder =
  934. {
  935. "twinvq",
  936. AVMEDIA_TYPE_AUDIO,
  937. CODEC_ID_TWINVQ,
  938. sizeof(TwinContext),
  939. twin_decode_init,
  940. NULL,
  941. twin_decode_close,
  942. twin_decode_frame,
  943. .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
  944. };