|
- /*
- * AAC encoder psychoacoustic model
- * Copyright (C) 2008 Konstantin Shishkov
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
-
- /**
- * @file
- * AAC encoder psychoacoustic model
- */
-
- #include "avcodec.h"
- #include "aactab.h"
- #include "psymodel.h"
-
- /***********************************
- * TODOs:
- * thresholds linearization after their modifications for attaining given bitrate
- * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
- * control quality for quality-based output
- **********************************/
-
- /**
- * constants for 3GPP AAC psychoacoustic model
- * @{
- */
- #define PSY_3GPP_SPREAD_LOW 1.5f // spreading factor for ascending threshold spreading (15 dB/Bark)
- #define PSY_3GPP_SPREAD_HI 3.0f // spreading factor for descending threshold spreading (30 dB/Bark)
-
- #define PSY_3GPP_RPEMIN 0.01f
- #define PSY_3GPP_RPELEV 2.0f
-
- /* LAME psy model constants */
- #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
- #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
- #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size
- #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence
- #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block
-
- /**
- * @}
- */
-
- /**
- * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
- */
- typedef struct AacPsyBand{
- float energy; ///< band energy
- float ffac; ///< form factor
- float thr; ///< energy threshold
- float min_snr; ///< minimal SNR
- float thr_quiet; ///< threshold in quiet
- }AacPsyBand;
-
- /**
- * single/pair channel context for psychoacoustic model
- */
- typedef struct AacPsyChannel{
- AacPsyBand band[128]; ///< bands information
- AacPsyBand prev_band[128]; ///< bands information from the previous frame
-
- float win_energy; ///< sliding average of channel energy
- float iir_state[2]; ///< hi-pass IIR filter state
- uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
- enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
- /* LAME psy model specific members */
- float attack_threshold; ///< attack threshold for this channel
- float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
- int prev_attack; ///< attack value for the last short block in the previous sequence
- }AacPsyChannel;
-
- /**
- * psychoacoustic model frame type-dependent coefficients
- */
- typedef struct AacPsyCoeffs{
- float ath [64]; ///< absolute threshold of hearing per bands
- float barks [64]; ///< Bark value for each spectral band in long frame
- float spread_low[64]; ///< spreading factor for low-to-high threshold spreading in long frame
- float spread_hi [64]; ///< spreading factor for high-to-low threshold spreading in long frame
- }AacPsyCoeffs;
-
- /**
- * 3GPP TS26.403-inspired psychoacoustic model specific data
- */
- typedef struct AacPsyContext{
- AacPsyCoeffs psy_coef[2];
- AacPsyChannel *ch;
- }AacPsyContext;
-
- /**
- * LAME psy model preset struct
- */
- typedef struct {
- int quality; ///< Quality to map the rest of the vaules to.
- /* This is overloaded to be both kbps per channel in ABR mode, and
- * requested quality in constant quality mode.
- */
- float st_lrm; ///< short threshold for L, R, and M channels
- } PsyLamePreset;
-
- /**
- * LAME psy model preset table for ABR
- */
- static const PsyLamePreset psy_abr_map[] = {
- /* TODO: Tuning. These were taken from LAME. */
- /* kbps/ch st_lrm */
- { 8, 6.60},
- { 16, 6.60},
- { 24, 6.60},
- { 32, 6.60},
- { 40, 6.60},
- { 48, 6.60},
- { 56, 6.60},
- { 64, 6.40},
- { 80, 6.00},
- { 96, 5.60},
- {112, 5.20},
- {128, 5.20},
- {160, 5.20}
- };
-
- /**
- * LAME psy model preset table for constant quality
- */
- static const PsyLamePreset psy_vbr_map[] = {
- /* vbr_q st_lrm */
- { 0, 4.20},
- { 1, 4.20},
- { 2, 4.20},
- { 3, 4.20},
- { 4, 4.20},
- { 5, 4.20},
- { 6, 4.20},
- { 7, 4.20},
- { 8, 4.20},
- { 9, 4.20},
- {10, 4.20}
- };
-
- /**
- * LAME psy model FIR coefficient table
- */
- static const float psy_fir_coeffs[] = {
- -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
- -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
- -5.52212e-17 * 2, -0.313819 * 2
- };
-
- /**
- * calculates the attack threshold for ABR from the above table for the LAME psy model
- */
- static float lame_calc_attack_threshold(int bitrate)
- {
- /* Assume max bitrate to start with */
- int lower_range = 12, upper_range = 12;
- int lower_range_kbps = psy_abr_map[12].quality;
- int upper_range_kbps = psy_abr_map[12].quality;
- int i;
-
- /* Determine which bitrates the value specified falls between.
- * If the loop ends without breaking our above assumption of 320kbps was correct.
- */
- for (i = 1; i < 13; i++) {
- if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
- upper_range = i;
- upper_range_kbps = psy_abr_map[i ].quality;
- lower_range = i - 1;
- lower_range_kbps = psy_abr_map[i - 1].quality;
- break; /* Upper range found */
- }
- }
-
- /* Determine which range the value specified is closer to */
- if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
- return psy_abr_map[lower_range].st_lrm;
- return psy_abr_map[upper_range].st_lrm;
- }
-
- /**
- * LAME psy model specific initialization
- */
- static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) {
- int i;
-
- for (i = 0; i < avctx->channels; i++) {
- AacPsyChannel *pch = &ctx->ch[i];
-
- if (avctx->flags & CODEC_FLAG_QSCALE)
- pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm;
- else
- pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000);
-
- for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++)
- pch->prev_energy_subshort[i] = 10.0f;
- }
- }
-
- /**
- * Calculate Bark value for given line.
- */
- static av_cold float calc_bark(float f)
- {
- return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
- }
-
- #define ATH_ADD 4
- /**
- * Calculate ATH value for given frequency.
- * Borrowed from Lame.
- */
- static av_cold float ath(float f, float add)
- {
- f /= 1000.0f;
- return 3.64 * pow(f, -0.8)
- - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
- + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
- + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
- }
-
- static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
- AacPsyContext *pctx;
- float bark;
- int i, j, g, start;
- float prev, minscale, minath;
-
- ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
- pctx = (AacPsyContext*) ctx->model_priv_data;
-
- minath = ath(3410, ATH_ADD);
- for (j = 0; j < 2; j++) {
- AacPsyCoeffs *coeffs = &pctx->psy_coef[j];
- float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
- i = 0;
- prev = 0.0;
- for (g = 0; g < ctx->num_bands[j]; g++) {
- i += ctx->bands[j][g];
- bark = calc_bark((i-1) * line_to_frequency);
- coeffs->barks[g] = (bark + prev) / 2.0;
- prev = bark;
- }
- for (g = 0; g < ctx->num_bands[j] - 1; g++) {
- coeffs->spread_low[g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_LOW);
- coeffs->spread_hi [g] = pow(10.0, -(coeffs->barks[g+1] - coeffs->barks[g]) * PSY_3GPP_SPREAD_HI);
- }
- start = 0;
- for (g = 0; g < ctx->num_bands[j]; g++) {
- minscale = ath(start * line_to_frequency, ATH_ADD);
- for (i = 1; i < ctx->bands[j][g]; i++)
- minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
- coeffs->ath[g] = minscale - minath;
- start += ctx->bands[j][g];
- }
- }
-
- pctx->ch = av_mallocz(sizeof(AacPsyChannel) * ctx->avctx->channels);
-
- lame_window_init(pctx, ctx->avctx);
-
- return 0;
- }
-
- /**
- * IIR filter used in block switching decision
- */
- static float iir_filter(int in, float state[2])
- {
- float ret;
-
- ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
- state[0] = in;
- state[1] = ret;
- return ret;
- }
-
- /**
- * window grouping information stored as bits (0 - new group, 1 - group continues)
- */
- static const uint8_t window_grouping[9] = {
- 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
- };
-
- /**
- * Tell encoder which window types to use.
- * @see 3GPP TS26.403 5.4.1 "Blockswitching"
- */
- static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
- const int16_t *audio, const int16_t *la,
- int channel, int prev_type)
- {
- int i, j;
- int br = ctx->avctx->bit_rate / ctx->avctx->channels;
- int attack_ratio = br <= 16000 ? 18 : 10;
- AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
- AacPsyChannel *pch = &pctx->ch[channel];
- uint8_t grouping = 0;
- int next_type = pch->next_window_seq;
- FFPsyWindowInfo wi;
-
- memset(&wi, 0, sizeof(wi));
- if (la) {
- float s[8], v;
- int switch_to_eight = 0;
- float sum = 0.0, sum2 = 0.0;
- int attack_n = 0;
- int stay_short = 0;
- for (i = 0; i < 8; i++) {
- for (j = 0; j < 128; j++) {
- v = iir_filter(la[(i*128+j)*ctx->avctx->channels], pch->iir_state);
- sum += v*v;
- }
- s[i] = sum;
- sum2 += sum;
- }
- for (i = 0; i < 8; i++) {
- if (s[i] > pch->win_energy * attack_ratio) {
- attack_n = i + 1;
- switch_to_eight = 1;
- break;
- }
- }
- pch->win_energy = pch->win_energy*7/8 + sum2/64;
-
- wi.window_type[1] = prev_type;
- switch (prev_type) {
- case ONLY_LONG_SEQUENCE:
- wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
- break;
- case LONG_START_SEQUENCE:
- wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
- grouping = pch->next_grouping;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
- break;
- case LONG_STOP_SEQUENCE:
- wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
- break;
- case EIGHT_SHORT_SEQUENCE:
- stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
- wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
- grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
- next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
- break;
- }
-
- pch->next_grouping = window_grouping[attack_n];
- pch->next_window_seq = next_type;
- } else {
- for (i = 0; i < 3; i++)
- wi.window_type[i] = prev_type;
- grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
- }
-
- wi.window_shape = 1;
- if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
- wi.num_windows = 1;
- wi.grouping[0] = 1;
- } else {
- int lastgrp = 0;
- wi.num_windows = 8;
- for (i = 0; i < 8; i++) {
- if (!((grouping >> i) & 1))
- lastgrp = i;
- wi.grouping[lastgrp]++;
- }
- }
-
- return wi;
- }
-
- /**
- * Calculate band thresholds as suggested in 3GPP TS26.403
- */
- static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
- const float *coefs, FFPsyWindowInfo *wi)
- {
- AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
- AacPsyChannel *pch = &pctx->ch[channel];
- int start = 0;
- int i, w, g;
- const int num_bands = ctx->num_bands[wi->num_windows == 8];
- const uint8_t* band_sizes = ctx->bands[wi->num_windows == 8];
- AacPsyCoeffs *coeffs = &pctx->psy_coef[wi->num_windows == 8];
-
- //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
- for (w = 0; w < wi->num_windows*16; w += 16) {
- for (g = 0; g < num_bands; g++) {
- AacPsyBand *band = &pch->band[w+g];
- band->energy = 0.0f;
- for (i = 0; i < band_sizes[g]; i++)
- band->energy += coefs[start+i] * coefs[start+i];
- band->energy *= 1.0f / (512*512);
- band->thr = band->energy * 0.001258925f;
- start += band_sizes[g];
-
- ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].energy = band->energy;
- }
- }
- //modify thresholds - spread, threshold in quiet - 5.4.3 "Spreaded Energy Calculation"
- for (w = 0; w < wi->num_windows*16; w += 16) {
- AacPsyBand *band = &pch->band[w];
- for (g = 1; g < num_bands; g++)
- band[g].thr = FFMAX(band[g].thr, band[g-1].thr * coeffs->spread_low[g-1]);
- for (g = num_bands - 2; g >= 0; g--)
- band[g].thr = FFMAX(band[g].thr, band[g+1].thr * coeffs->spread_hi [g]);
- for (g = 0; g < num_bands; g++) {
- band[g].thr_quiet = FFMAX(band[g].thr, coeffs->ath[g]);
- if (wi->num_windows != 8 && wi->window_type[1] != EIGHT_SHORT_SEQUENCE)
- band[g].thr_quiet = FFMAX(PSY_3GPP_RPEMIN*band[g].thr_quiet,
- FFMIN(band[g].thr_quiet,
- PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
- band[g].thr = FFMAX(band[g].thr, band[g].thr_quiet * 0.25);
-
- ctx->psy_bands[channel*PSY_MAX_BANDS+w+g].threshold = band[g].thr;
- }
- }
- memcpy(pch->prev_band, pch->band, sizeof(pch->band));
- }
-
- static av_cold void psy_3gpp_end(FFPsyContext *apc)
- {
- AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
- av_freep(&pctx->ch);
- av_freep(&apc->model_priv_data);
- }
-
- static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
- {
- int blocktype = ONLY_LONG_SEQUENCE;
- if (uselongblock) {
- if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
- blocktype = LONG_STOP_SEQUENCE;
- } else {
- blocktype = EIGHT_SHORT_SEQUENCE;
- if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
- ctx->next_window_seq = LONG_START_SEQUENCE;
- if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
- ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
- }
-
- wi->window_type[0] = ctx->next_window_seq;
- ctx->next_window_seq = blocktype;
- }
-
- static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx,
- const int16_t *audio, const int16_t *la,
- int channel, int prev_type)
- {
- AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
- AacPsyChannel *pch = &pctx->ch[channel];
- int grouping = 0;
- int uselongblock = 1;
- int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
- int i;
- FFPsyWindowInfo wi;
-
- memset(&wi, 0, sizeof(wi));
- if (la) {
- float hpfsmpl[AAC_BLOCK_SIZE_LONG];
- float const *pf = hpfsmpl;
- float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
- float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
- float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
- int chans = ctx->avctx->channels;
- const int16_t *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN) * chans;
- int j, att_sum = 0;
-
- /* LAME comment: apply high pass filter of fs/4 */
- for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
- float sum1, sum2;
- sum1 = firbuf[(i + ((PSY_LAME_FIR_LEN - 1) / 2)) * chans];
- sum2 = 0.0;
- for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
- sum1 += psy_fir_coeffs[j] * (firbuf[(i + j) * chans] + firbuf[(i + PSY_LAME_FIR_LEN - j) * chans]);
- sum2 += psy_fir_coeffs[j + 1] * (firbuf[(i + j + 1) * chans] + firbuf[(i + PSY_LAME_FIR_LEN - j - 1) * chans]);
- }
- hpfsmpl[i] = sum1 + sum2;
- }
-
- /* Calculate the energies of each sub-shortblock */
- for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
- energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
- assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
- attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
- energy_short[0] += energy_subshort[i];
- }
-
- for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
- float const *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
- float p = 1.0f;
- for (; pf < pfe; pf++)
- if (p < fabsf(*pf))
- p = fabsf(*pf);
- pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
- energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
- /* FIXME: The indexes below are [i + 3 - 2] in the LAME source.
- * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
- * (which is what we use here). What the 3 stands for is ambigious, as it is both
- * number of short blocks, and the number of sub-short blocks.
- * It seems that LAME is comparing each sub-block to sub-block + 1 in the
- * previous block.
- */
- if (p > energy_subshort[i + 1])
- p = p / energy_subshort[i + 1];
- else if (energy_subshort[i + 1] > p * 10.0f)
- p = energy_subshort[i + 1] / (p * 10.0f);
- else
- p = 0.0;
- attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
- }
-
- /* compare energy between sub-short blocks */
- for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
- if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
- if (attack_intensity[i] > pch->attack_threshold)
- attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
-
- /* should have energy change between short blocks, in order to avoid periodic signals */
- /* Good samples to show the effect are Trumpet test songs */
- /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
- /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
- for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
- float const u = energy_short[i - 1];
- float const v = energy_short[i];
- float const m = FFMAX(u, v);
- if (m < 40000) { /* (2) */
- if (u < 1.7f * v && v < 1.7f * u) { /* (1) */
- if (i == 1 && attacks[0] < attacks[i])
- attacks[0] = 0;
- attacks[i] = 0;
- }
- }
- att_sum += attacks[i];
- }
-
- if (attacks[0] <= pch->prev_attack)
- attacks[0] = 0;
-
- att_sum += attacks[0];
- /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
- if (pch->prev_attack == 3 || att_sum) {
- uselongblock = 0;
-
- if (attacks[1] && attacks[0])
- attacks[1] = 0;
- if (attacks[2] && attacks[1])
- attacks[2] = 0;
- if (attacks[3] && attacks[2])
- attacks[3] = 0;
- if (attacks[4] && attacks[3])
- attacks[4] = 0;
- if (attacks[5] && attacks[4])
- attacks[5] = 0;
- if (attacks[6] && attacks[5])
- attacks[6] = 0;
- if (attacks[7] && attacks[6])
- attacks[7] = 0;
- if (attacks[8] && attacks[7])
- attacks[8] = 0;
- }
- } else {
- /* We have no lookahead info, so just use same type as the previous sequence. */
- uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
- }
-
- lame_apply_block_type(pch, &wi, uselongblock);
-
- wi.window_type[1] = prev_type;
- if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
- wi.num_windows = 1;
- wi.grouping[0] = 1;
- if (wi.window_type[0] == LONG_START_SEQUENCE)
- wi.window_shape = 0;
- else
- wi.window_shape = 1;
- } else {
- int lastgrp = 0;
-
- wi.num_windows = 8;
- wi.window_shape = 0;
- for (i = 0; i < 8; i++) {
- if (!((pch->next_grouping >> i) & 1))
- lastgrp = i;
- wi.grouping[lastgrp]++;
- }
- }
-
- /* Determine grouping, based on the location of the first attack, and save for
- * the next frame.
- * FIXME: Move this to analysis.
- * TODO: Tune groupings depending on attack location
- * TODO: Handle more than one attack in a group
- */
- for (i = 0; i < 9; i++) {
- if (attacks[i]) {
- grouping = i;
- break;
- }
- }
- pch->next_grouping = window_grouping[grouping];
-
- pch->prev_attack = attacks[8];
-
- return wi;
- }
-
- const FFPsyModel ff_aac_psy_model =
- {
- .name = "3GPP TS 26.403-inspired model",
- .init = psy_3gpp_init,
- .window = psy_lame_window,
- .analyze = psy_3gpp_analyze,
- .end = psy_3gpp_end,
- };
|