You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2006 lines
66KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file libavcodec/qdm2.c
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. * The decoder is not perfect yet, there are still some distortions
  29. * especially on files encoded with 16 or 8 subbands.
  30. */
  31. #include <math.h>
  32. #include <stddef.h>
  33. #include <stdio.h>
  34. #define ALT_BITSTREAM_READER_LE
  35. #include "avcodec.h"
  36. #include "bitstream.h"
  37. #include "dsputil.h"
  38. #include "mpegaudio.h"
  39. #include "qdm2data.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define SOFTCLIP_THRESHOLD 27600
  43. #define HARDCLIP_THRESHOLD 35716
  44. #define QDM2_LIST_ADD(list, size, packet) \
  45. do { \
  46. if (size > 0) { \
  47. list[size - 1].next = &list[size]; \
  48. } \
  49. list[size].packet = packet; \
  50. list[size].next = NULL; \
  51. size++; \
  52. } while(0)
  53. // Result is 8, 16 or 30
  54. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  55. #define FIX_NOISE_IDX(noise_idx) \
  56. if ((noise_idx) >= 3840) \
  57. (noise_idx) -= 3840; \
  58. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  59. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  60. #define SAMPLES_NEEDED \
  61. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  62. #define SAMPLES_NEEDED_2(why) \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  64. typedef int8_t sb_int8_array[2][30][64];
  65. /**
  66. * Subpacket
  67. */
  68. typedef struct {
  69. int type; ///< subpacket type
  70. unsigned int size; ///< subpacket size
  71. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  72. } QDM2SubPacket;
  73. /**
  74. * A node in the subpacket list
  75. */
  76. typedef struct QDM2SubPNode {
  77. QDM2SubPacket *packet; ///< packet
  78. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  79. } QDM2SubPNode;
  80. typedef struct {
  81. float re;
  82. float im;
  83. } QDM2Complex;
  84. typedef struct {
  85. float level;
  86. QDM2Complex *complex;
  87. const float *table;
  88. int phase;
  89. int phase_shift;
  90. int duration;
  91. short time_index;
  92. short cutoff;
  93. } FFTTone;
  94. typedef struct {
  95. int16_t sub_packet;
  96. uint8_t channel;
  97. int16_t offset;
  98. int16_t exp;
  99. uint8_t phase;
  100. } FFTCoefficient;
  101. typedef struct {
  102. DECLARE_ALIGNED_16(QDM2Complex, complex[MPA_MAX_CHANNELS][256]);
  103. } QDM2FFT;
  104. /**
  105. * QDM2 decoder context
  106. */
  107. typedef struct {
  108. /// Parameters from codec header, do not change during playback
  109. int nb_channels; ///< number of channels
  110. int channels; ///< number of channels
  111. int group_size; ///< size of frame group (16 frames per group)
  112. int fft_size; ///< size of FFT, in complex numbers
  113. int checksum_size; ///< size of data block, used also for checksum
  114. /// Parameters built from header parameters, do not change during playback
  115. int group_order; ///< order of frame group
  116. int fft_order; ///< order of FFT (actually fftorder+1)
  117. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  118. int frame_size; ///< size of data frame
  119. int frequency_range;
  120. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  121. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  122. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  123. /// Packets and packet lists
  124. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  125. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  126. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  127. int sub_packets_B; ///< number of packets on 'B' list
  128. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  129. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  130. /// FFT and tones
  131. FFTTone fft_tones[1000];
  132. int fft_tone_start;
  133. int fft_tone_end;
  134. FFTCoefficient fft_coefs[1000];
  135. int fft_coefs_index;
  136. int fft_coefs_min_index[5];
  137. int fft_coefs_max_index[5];
  138. int fft_level_exp[6];
  139. RDFTContext rdft_ctx;
  140. QDM2FFT fft;
  141. /// I/O data
  142. const uint8_t *compressed_data;
  143. int compressed_size;
  144. float output_buffer[1024];
  145. /// Synthesis filter
  146. DECLARE_ALIGNED_16(MPA_INT, synth_buf[MPA_MAX_CHANNELS][512*2]);
  147. int synth_buf_offset[MPA_MAX_CHANNELS];
  148. DECLARE_ALIGNED_16(int32_t, sb_samples[MPA_MAX_CHANNELS][128][SBLIMIT]);
  149. /// Mixed temporary data used in decoding
  150. float tone_level[MPA_MAX_CHANNELS][30][64];
  151. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  152. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  153. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  154. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  155. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  156. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  157. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  158. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  159. // Flags
  160. int has_errors; ///< packet has errors
  161. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  162. int do_synth_filter; ///< used to perform or skip synthesis filter
  163. int sub_packet;
  164. int noise_idx; ///< index for dithering noise table
  165. } QDM2Context;
  166. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  167. static VLC vlc_tab_level;
  168. static VLC vlc_tab_diff;
  169. static VLC vlc_tab_run;
  170. static VLC fft_level_exp_alt_vlc;
  171. static VLC fft_level_exp_vlc;
  172. static VLC fft_stereo_exp_vlc;
  173. static VLC fft_stereo_phase_vlc;
  174. static VLC vlc_tab_tone_level_idx_hi1;
  175. static VLC vlc_tab_tone_level_idx_mid;
  176. static VLC vlc_tab_tone_level_idx_hi2;
  177. static VLC vlc_tab_type30;
  178. static VLC vlc_tab_type34;
  179. static VLC vlc_tab_fft_tone_offset[5];
  180. static uint16_t softclip_table[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
  181. static float noise_table[4096];
  182. static uint8_t random_dequant_index[256][5];
  183. static uint8_t random_dequant_type24[128][3];
  184. static float noise_samples[128];
  185. static DECLARE_ALIGNED_16(MPA_INT, mpa_window[512]);
  186. static av_cold void softclip_table_init(void) {
  187. int i;
  188. double dfl = SOFTCLIP_THRESHOLD - 32767;
  189. float delta = 1.0 / -dfl;
  190. for (i = 0; i < HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1; i++)
  191. softclip_table[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
  192. }
  193. // random generated table
  194. static av_cold void rnd_table_init(void) {
  195. int i,j;
  196. uint32_t ldw,hdw;
  197. uint64_t tmp64_1;
  198. uint64_t random_seed = 0;
  199. float delta = 1.0 / 16384.0;
  200. for(i = 0; i < 4096 ;i++) {
  201. random_seed = random_seed * 214013 + 2531011;
  202. noise_table[i] = (delta * (float)(((int32_t)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
  203. }
  204. for (i = 0; i < 256 ;i++) {
  205. random_seed = 81;
  206. ldw = i;
  207. for (j = 0; j < 5 ;j++) {
  208. random_dequant_index[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  209. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  210. tmp64_1 = (random_seed * 0x55555556);
  211. hdw = (uint32_t)(tmp64_1 >> 32);
  212. random_seed = (uint64_t)(hdw + (ldw >> 31));
  213. }
  214. }
  215. for (i = 0; i < 128 ;i++) {
  216. random_seed = 25;
  217. ldw = i;
  218. for (j = 0; j < 3 ;j++) {
  219. random_dequant_type24[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  220. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  221. tmp64_1 = (random_seed * 0x66666667);
  222. hdw = (uint32_t)(tmp64_1 >> 33);
  223. random_seed = hdw + (ldw >> 31);
  224. }
  225. }
  226. }
  227. static av_cold void init_noise_samples(void) {
  228. int i;
  229. int random_seed = 0;
  230. float delta = 1.0 / 16384.0;
  231. for (i = 0; i < 128;i++) {
  232. random_seed = random_seed * 214013 + 2531011;
  233. noise_samples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
  234. }
  235. }
  236. static av_cold void qdm2_init_vlc(void)
  237. {
  238. init_vlc (&vlc_tab_level, 8, 24,
  239. vlc_tab_level_huffbits, 1, 1,
  240. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  241. init_vlc (&vlc_tab_diff, 8, 37,
  242. vlc_tab_diff_huffbits, 1, 1,
  243. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  244. init_vlc (&vlc_tab_run, 5, 6,
  245. vlc_tab_run_huffbits, 1, 1,
  246. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  247. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  248. fft_level_exp_alt_huffbits, 1, 1,
  249. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  250. init_vlc (&fft_level_exp_vlc, 8, 20,
  251. fft_level_exp_huffbits, 1, 1,
  252. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  253. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  254. fft_stereo_exp_huffbits, 1, 1,
  255. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  256. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  257. fft_stereo_phase_huffbits, 1, 1,
  258. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  259. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  260. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  261. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  262. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  263. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  264. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  265. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  266. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  267. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  268. init_vlc (&vlc_tab_type30, 6, 9,
  269. vlc_tab_type30_huffbits, 1, 1,
  270. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  271. init_vlc (&vlc_tab_type34, 5, 10,
  272. vlc_tab_type34_huffbits, 1, 1,
  273. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  274. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  275. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  276. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  277. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  278. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  279. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  280. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  281. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  282. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  283. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  284. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  285. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  286. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  287. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  288. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  289. }
  290. /* for floating point to fixed point conversion */
  291. static const float f2i_scale = (float) (1 << (FRAC_BITS - 15));
  292. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  293. {
  294. int value;
  295. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  296. /* stage-2, 3 bits exponent escape sequence */
  297. if (value-- == 0)
  298. value = get_bits (gb, get_bits (gb, 3) + 1);
  299. /* stage-3, optional */
  300. if (flag) {
  301. int tmp = vlc_stage3_values[value];
  302. if ((value & ~3) > 0)
  303. tmp += get_bits (gb, (value >> 2));
  304. value = tmp;
  305. }
  306. return value;
  307. }
  308. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  309. {
  310. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  311. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  312. }
  313. /**
  314. * QDM2 checksum
  315. *
  316. * @param data pointer to data to be checksum'ed
  317. * @param length data length
  318. * @param value checksum value
  319. *
  320. * @return 0 if checksum is OK
  321. */
  322. static uint16_t qdm2_packet_checksum (const uint8_t *data, int length, int value) {
  323. int i;
  324. for (i=0; i < length; i++)
  325. value -= data[i];
  326. return (uint16_t)(value & 0xffff);
  327. }
  328. /**
  329. * Fills a QDM2SubPacket structure with packet type, size, and data pointer.
  330. *
  331. * @param gb bitreader context
  332. * @param sub_packet packet under analysis
  333. */
  334. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  335. {
  336. sub_packet->type = get_bits (gb, 8);
  337. if (sub_packet->type == 0) {
  338. sub_packet->size = 0;
  339. sub_packet->data = NULL;
  340. } else {
  341. sub_packet->size = get_bits (gb, 8);
  342. if (sub_packet->type & 0x80) {
  343. sub_packet->size <<= 8;
  344. sub_packet->size |= get_bits (gb, 8);
  345. sub_packet->type &= 0x7f;
  346. }
  347. if (sub_packet->type == 0x7f)
  348. sub_packet->type |= (get_bits (gb, 8) << 8);
  349. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  350. }
  351. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  352. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  353. }
  354. /**
  355. * Return node pointer to first packet of requested type in list.
  356. *
  357. * @param list list of subpackets to be scanned
  358. * @param type type of searched subpacket
  359. * @return node pointer for subpacket if found, else NULL
  360. */
  361. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  362. {
  363. while (list != NULL && list->packet != NULL) {
  364. if (list->packet->type == type)
  365. return list;
  366. list = list->next;
  367. }
  368. return NULL;
  369. }
  370. /**
  371. * Replaces 8 elements with their average value.
  372. * Called by qdm2_decode_superblock before starting subblock decoding.
  373. *
  374. * @param q context
  375. */
  376. static void average_quantized_coeffs (QDM2Context *q)
  377. {
  378. int i, j, n, ch, sum;
  379. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  380. for (ch = 0; ch < q->nb_channels; ch++)
  381. for (i = 0; i < n; i++) {
  382. sum = 0;
  383. for (j = 0; j < 8; j++)
  384. sum += q->quantized_coeffs[ch][i][j];
  385. sum /= 8;
  386. if (sum > 0)
  387. sum--;
  388. for (j=0; j < 8; j++)
  389. q->quantized_coeffs[ch][i][j] = sum;
  390. }
  391. }
  392. /**
  393. * Build subband samples with noise weighted by q->tone_level.
  394. * Called by synthfilt_build_sb_samples.
  395. *
  396. * @param q context
  397. * @param sb subband index
  398. */
  399. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  400. {
  401. int ch, j;
  402. FIX_NOISE_IDX(q->noise_idx);
  403. if (!q->nb_channels)
  404. return;
  405. for (ch = 0; ch < q->nb_channels; ch++)
  406. for (j = 0; j < 64; j++) {
  407. q->sb_samples[ch][j * 2][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  408. q->sb_samples[ch][j * 2 + 1][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  409. }
  410. }
  411. /**
  412. * Called while processing data from subpackets 11 and 12.
  413. * Used after making changes to coding_method array.
  414. *
  415. * @param sb subband index
  416. * @param channels number of channels
  417. * @param coding_method q->coding_method[0][0][0]
  418. */
  419. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  420. {
  421. int j,k;
  422. int ch;
  423. int run, case_val;
  424. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  425. for (ch = 0; ch < channels; ch++) {
  426. for (j = 0; j < 64; ) {
  427. if((coding_method[ch][sb][j] - 8) > 22) {
  428. run = 1;
  429. case_val = 8;
  430. } else {
  431. switch (switchtable[coding_method[ch][sb][j]-8]) {
  432. case 0: run = 10; case_val = 10; break;
  433. case 1: run = 1; case_val = 16; break;
  434. case 2: run = 5; case_val = 24; break;
  435. case 3: run = 3; case_val = 30; break;
  436. case 4: run = 1; case_val = 30; break;
  437. case 5: run = 1; case_val = 8; break;
  438. default: run = 1; case_val = 8; break;
  439. }
  440. }
  441. for (k = 0; k < run; k++)
  442. if (j + k < 128)
  443. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  444. if (k > 0) {
  445. SAMPLES_NEEDED
  446. //not debugged, almost never used
  447. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  448. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  449. }
  450. j += run;
  451. }
  452. }
  453. }
  454. /**
  455. * Related to synthesis filter
  456. * Called by process_subpacket_10
  457. *
  458. * @param q context
  459. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  460. */
  461. static void fill_tone_level_array (QDM2Context *q, int flag)
  462. {
  463. int i, sb, ch, sb_used;
  464. int tmp, tab;
  465. // This should never happen
  466. if (q->nb_channels <= 0)
  467. return;
  468. for (ch = 0; ch < q->nb_channels; ch++)
  469. for (sb = 0; sb < 30; sb++)
  470. for (i = 0; i < 8; i++) {
  471. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  472. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  473. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  474. else
  475. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  476. if(tmp < 0)
  477. tmp += 0xff;
  478. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  479. }
  480. sb_used = QDM2_SB_USED(q->sub_sampling);
  481. if ((q->superblocktype_2_3 != 0) && !flag) {
  482. for (sb = 0; sb < sb_used; sb++)
  483. for (ch = 0; ch < q->nb_channels; ch++)
  484. for (i = 0; i < 64; i++) {
  485. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  486. if (q->tone_level_idx[ch][sb][i] < 0)
  487. q->tone_level[ch][sb][i] = 0;
  488. else
  489. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  490. }
  491. } else {
  492. tab = q->superblocktype_2_3 ? 0 : 1;
  493. for (sb = 0; sb < sb_used; sb++) {
  494. if ((sb >= 4) && (sb <= 23)) {
  495. for (ch = 0; ch < q->nb_channels; ch++)
  496. for (i = 0; i < 64; i++) {
  497. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  498. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  499. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  500. q->tone_level_idx_hi2[ch][sb - 4];
  501. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  502. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  503. q->tone_level[ch][sb][i] = 0;
  504. else
  505. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  506. }
  507. } else {
  508. if (sb > 4) {
  509. for (ch = 0; ch < q->nb_channels; ch++)
  510. for (i = 0; i < 64; i++) {
  511. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  512. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  513. q->tone_level_idx_hi2[ch][sb - 4];
  514. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  515. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  516. q->tone_level[ch][sb][i] = 0;
  517. else
  518. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  519. }
  520. } else {
  521. for (ch = 0; ch < q->nb_channels; ch++)
  522. for (i = 0; i < 64; i++) {
  523. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  524. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  525. q->tone_level[ch][sb][i] = 0;
  526. else
  527. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  528. }
  529. }
  530. }
  531. }
  532. }
  533. return;
  534. }
  535. /**
  536. * Related to synthesis filter
  537. * Called by process_subpacket_11
  538. * c is built with data from subpacket 11
  539. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  540. *
  541. * @param tone_level_idx
  542. * @param tone_level_idx_temp
  543. * @param coding_method q->coding_method[0][0][0]
  544. * @param nb_channels number of channels
  545. * @param c coming from subpacket 11, passed as 8*c
  546. * @param superblocktype_2_3 flag based on superblock packet type
  547. * @param cm_table_select q->cm_table_select
  548. */
  549. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  550. sb_int8_array coding_method, int nb_channels,
  551. int c, int superblocktype_2_3, int cm_table_select)
  552. {
  553. int ch, sb, j;
  554. int tmp, acc, esp_40, comp;
  555. int add1, add2, add3, add4;
  556. int64_t multres;
  557. // This should never happen
  558. if (nb_channels <= 0)
  559. return;
  560. if (!superblocktype_2_3) {
  561. /* This case is untested, no samples available */
  562. SAMPLES_NEEDED
  563. for (ch = 0; ch < nb_channels; ch++)
  564. for (sb = 0; sb < 30; sb++) {
  565. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  566. add1 = tone_level_idx[ch][sb][j] - 10;
  567. if (add1 < 0)
  568. add1 = 0;
  569. add2 = add3 = add4 = 0;
  570. if (sb > 1) {
  571. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  572. if (add2 < 0)
  573. add2 = 0;
  574. }
  575. if (sb > 0) {
  576. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  577. if (add3 < 0)
  578. add3 = 0;
  579. }
  580. if (sb < 29) {
  581. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  582. if (add4 < 0)
  583. add4 = 0;
  584. }
  585. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  586. if (tmp < 0)
  587. tmp = 0;
  588. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  589. }
  590. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  591. }
  592. acc = 0;
  593. for (ch = 0; ch < nb_channels; ch++)
  594. for (sb = 0; sb < 30; sb++)
  595. for (j = 0; j < 64; j++)
  596. acc += tone_level_idx_temp[ch][sb][j];
  597. if (acc)
  598. tmp = c * 256 / (acc & 0xffff);
  599. multres = 0x66666667 * (acc * 10);
  600. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  601. for (ch = 0; ch < nb_channels; ch++)
  602. for (sb = 0; sb < 30; sb++)
  603. for (j = 0; j < 64; j++) {
  604. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  605. if (comp < 0)
  606. comp += 0xff;
  607. comp /= 256; // signed shift
  608. switch(sb) {
  609. case 0:
  610. if (comp < 30)
  611. comp = 30;
  612. comp += 15;
  613. break;
  614. case 1:
  615. if (comp < 24)
  616. comp = 24;
  617. comp += 10;
  618. break;
  619. case 2:
  620. case 3:
  621. case 4:
  622. if (comp < 16)
  623. comp = 16;
  624. }
  625. if (comp <= 5)
  626. tmp = 0;
  627. else if (comp <= 10)
  628. tmp = 10;
  629. else if (comp <= 16)
  630. tmp = 16;
  631. else if (comp <= 24)
  632. tmp = -1;
  633. else
  634. tmp = 0;
  635. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  636. }
  637. for (sb = 0; sb < 30; sb++)
  638. fix_coding_method_array(sb, nb_channels, coding_method);
  639. for (ch = 0; ch < nb_channels; ch++)
  640. for (sb = 0; sb < 30; sb++)
  641. for (j = 0; j < 64; j++)
  642. if (sb >= 10) {
  643. if (coding_method[ch][sb][j] < 10)
  644. coding_method[ch][sb][j] = 10;
  645. } else {
  646. if (sb >= 2) {
  647. if (coding_method[ch][sb][j] < 16)
  648. coding_method[ch][sb][j] = 16;
  649. } else {
  650. if (coding_method[ch][sb][j] < 30)
  651. coding_method[ch][sb][j] = 30;
  652. }
  653. }
  654. } else { // superblocktype_2_3 != 0
  655. for (ch = 0; ch < nb_channels; ch++)
  656. for (sb = 0; sb < 30; sb++)
  657. for (j = 0; j < 64; j++)
  658. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  659. }
  660. return;
  661. }
  662. /**
  663. *
  664. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  665. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  666. *
  667. * @param q context
  668. * @param gb bitreader context
  669. * @param length packet length in bits
  670. * @param sb_min lower subband processed (sb_min included)
  671. * @param sb_max higher subband processed (sb_max excluded)
  672. */
  673. static void synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  674. {
  675. int sb, j, k, n, ch, run, channels;
  676. int joined_stereo, zero_encoding, chs;
  677. int type34_first;
  678. float type34_div = 0;
  679. float type34_predictor;
  680. float samples[10], sign_bits[16];
  681. if (length == 0) {
  682. // If no data use noise
  683. for (sb=sb_min; sb < sb_max; sb++)
  684. build_sb_samples_from_noise (q, sb);
  685. return;
  686. }
  687. for (sb = sb_min; sb < sb_max; sb++) {
  688. FIX_NOISE_IDX(q->noise_idx);
  689. channels = q->nb_channels;
  690. if (q->nb_channels <= 1 || sb < 12)
  691. joined_stereo = 0;
  692. else if (sb >= 24)
  693. joined_stereo = 1;
  694. else
  695. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  696. if (joined_stereo) {
  697. if (BITS_LEFT(length,gb) >= 16)
  698. for (j = 0; j < 16; j++)
  699. sign_bits[j] = get_bits1 (gb);
  700. for (j = 0; j < 64; j++)
  701. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  702. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  703. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  704. channels = 1;
  705. }
  706. for (ch = 0; ch < channels; ch++) {
  707. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  708. type34_predictor = 0.0;
  709. type34_first = 1;
  710. for (j = 0; j < 128; ) {
  711. switch (q->coding_method[ch][sb][j / 2]) {
  712. case 8:
  713. if (BITS_LEFT(length,gb) >= 10) {
  714. if (zero_encoding) {
  715. for (k = 0; k < 5; k++) {
  716. if ((j + 2 * k) >= 128)
  717. break;
  718. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  719. }
  720. } else {
  721. n = get_bits(gb, 8);
  722. for (k = 0; k < 5; k++)
  723. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  724. }
  725. for (k = 0; k < 5; k++)
  726. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  727. } else {
  728. for (k = 0; k < 10; k++)
  729. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  730. }
  731. run = 10;
  732. break;
  733. case 10:
  734. if (BITS_LEFT(length,gb) >= 1) {
  735. float f = 0.81;
  736. if (get_bits1(gb))
  737. f = -f;
  738. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  739. samples[0] = f;
  740. } else {
  741. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  742. }
  743. run = 1;
  744. break;
  745. case 16:
  746. if (BITS_LEFT(length,gb) >= 10) {
  747. if (zero_encoding) {
  748. for (k = 0; k < 5; k++) {
  749. if ((j + k) >= 128)
  750. break;
  751. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  752. }
  753. } else {
  754. n = get_bits (gb, 8);
  755. for (k = 0; k < 5; k++)
  756. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  757. }
  758. } else {
  759. for (k = 0; k < 5; k++)
  760. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  761. }
  762. run = 5;
  763. break;
  764. case 24:
  765. if (BITS_LEFT(length,gb) >= 7) {
  766. n = get_bits(gb, 7);
  767. for (k = 0; k < 3; k++)
  768. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  769. } else {
  770. for (k = 0; k < 3; k++)
  771. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  772. }
  773. run = 3;
  774. break;
  775. case 30:
  776. if (BITS_LEFT(length,gb) >= 4)
  777. samples[0] = type30_dequant[qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1)];
  778. else
  779. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  780. run = 1;
  781. break;
  782. case 34:
  783. if (BITS_LEFT(length,gb) >= 7) {
  784. if (type34_first) {
  785. type34_div = (float)(1 << get_bits(gb, 2));
  786. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  787. type34_predictor = samples[0];
  788. type34_first = 0;
  789. } else {
  790. samples[0] = type34_delta[qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1)] / type34_div + type34_predictor;
  791. type34_predictor = samples[0];
  792. }
  793. } else {
  794. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  795. }
  796. run = 1;
  797. break;
  798. default:
  799. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  800. run = 1;
  801. break;
  802. }
  803. if (joined_stereo) {
  804. float tmp[10][MPA_MAX_CHANNELS];
  805. for (k = 0; k < run; k++) {
  806. tmp[k][0] = samples[k];
  807. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  808. }
  809. for (chs = 0; chs < q->nb_channels; chs++)
  810. for (k = 0; k < run; k++)
  811. if ((j + k) < 128)
  812. q->sb_samples[chs][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
  813. } else {
  814. for (k = 0; k < run; k++)
  815. if ((j + k) < 128)
  816. q->sb_samples[ch][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[ch][sb][(j + k)/2] * samples[k] + .5);
  817. }
  818. j += run;
  819. } // j loop
  820. } // channel loop
  821. } // subband loop
  822. }
  823. /**
  824. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  825. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  826. * same VLC tables as process_subpacket_9 are used.
  827. *
  828. * @param q context
  829. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  830. * @param gb bitreader context
  831. * @param length packet length in bits
  832. */
  833. static void init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  834. {
  835. int i, k, run, level, diff;
  836. if (BITS_LEFT(length,gb) < 16)
  837. return;
  838. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  839. quantized_coeffs[0] = level;
  840. for (i = 0; i < 7; ) {
  841. if (BITS_LEFT(length,gb) < 16)
  842. break;
  843. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  844. if (BITS_LEFT(length,gb) < 16)
  845. break;
  846. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  847. for (k = 1; k <= run; k++)
  848. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  849. level += diff;
  850. i += run;
  851. }
  852. }
  853. /**
  854. * Related to synthesis filter, process data from packet 10
  855. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  856. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  857. *
  858. * @param q context
  859. * @param gb bitreader context
  860. * @param length packet length in bits
  861. */
  862. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  863. {
  864. int sb, j, k, n, ch;
  865. for (ch = 0; ch < q->nb_channels; ch++) {
  866. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  867. if (BITS_LEFT(length,gb) < 16) {
  868. memset(q->quantized_coeffs[ch][0], 0, 8);
  869. break;
  870. }
  871. }
  872. n = q->sub_sampling + 1;
  873. for (sb = 0; sb < n; sb++)
  874. for (ch = 0; ch < q->nb_channels; ch++)
  875. for (j = 0; j < 8; j++) {
  876. if (BITS_LEFT(length,gb) < 1)
  877. break;
  878. if (get_bits1(gb)) {
  879. for (k=0; k < 8; k++) {
  880. if (BITS_LEFT(length,gb) < 16)
  881. break;
  882. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  883. }
  884. } else {
  885. for (k=0; k < 8; k++)
  886. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  887. }
  888. }
  889. n = QDM2_SB_USED(q->sub_sampling) - 4;
  890. for (sb = 0; sb < n; sb++)
  891. for (ch = 0; ch < q->nb_channels; ch++) {
  892. if (BITS_LEFT(length,gb) < 16)
  893. break;
  894. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  895. if (sb > 19)
  896. q->tone_level_idx_hi2[ch][sb] -= 16;
  897. else
  898. for (j = 0; j < 8; j++)
  899. q->tone_level_idx_mid[ch][sb][j] = -16;
  900. }
  901. n = QDM2_SB_USED(q->sub_sampling) - 5;
  902. for (sb = 0; sb < n; sb++)
  903. for (ch = 0; ch < q->nb_channels; ch++)
  904. for (j = 0; j < 8; j++) {
  905. if (BITS_LEFT(length,gb) < 16)
  906. break;
  907. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  908. }
  909. }
  910. /**
  911. * Process subpacket 9, init quantized_coeffs with data from it
  912. *
  913. * @param q context
  914. * @param node pointer to node with packet
  915. */
  916. static void process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  917. {
  918. GetBitContext gb;
  919. int i, j, k, n, ch, run, level, diff;
  920. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  921. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  922. for (i = 1; i < n; i++)
  923. for (ch=0; ch < q->nb_channels; ch++) {
  924. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  925. q->quantized_coeffs[ch][i][0] = level;
  926. for (j = 0; j < (8 - 1); ) {
  927. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  928. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  929. for (k = 1; k <= run; k++)
  930. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  931. level += diff;
  932. j += run;
  933. }
  934. }
  935. for (ch = 0; ch < q->nb_channels; ch++)
  936. for (i = 0; i < 8; i++)
  937. q->quantized_coeffs[ch][0][i] = 0;
  938. }
  939. /**
  940. * Process subpacket 10 if not null, else
  941. *
  942. * @param q context
  943. * @param node pointer to node with packet
  944. * @param length packet length in bits
  945. */
  946. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  947. {
  948. GetBitContext gb;
  949. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  950. if (length != 0) {
  951. init_tone_level_dequantization(q, &gb, length);
  952. fill_tone_level_array(q, 1);
  953. } else {
  954. fill_tone_level_array(q, 0);
  955. }
  956. }
  957. /**
  958. * Process subpacket 11
  959. *
  960. * @param q context
  961. * @param node pointer to node with packet
  962. * @param length packet length in bit
  963. */
  964. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  965. {
  966. GetBitContext gb;
  967. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  968. if (length >= 32) {
  969. int c = get_bits (&gb, 13);
  970. if (c > 3)
  971. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  972. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  973. }
  974. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  975. }
  976. /**
  977. * Process subpacket 12
  978. *
  979. * @param q context
  980. * @param node pointer to node with packet
  981. * @param length packet length in bits
  982. */
  983. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  984. {
  985. GetBitContext gb;
  986. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  987. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  988. }
  989. /*
  990. * Process new subpackets for synthesis filter
  991. *
  992. * @param q context
  993. * @param list list with synthesis filter packets (list D)
  994. */
  995. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  996. {
  997. QDM2SubPNode *nodes[4];
  998. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  999. if (nodes[0] != NULL)
  1000. process_subpacket_9(q, nodes[0]);
  1001. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1002. if (nodes[1] != NULL)
  1003. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1004. else
  1005. process_subpacket_10(q, NULL, 0);
  1006. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1007. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1008. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1009. else
  1010. process_subpacket_11(q, NULL, 0);
  1011. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1012. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1013. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1014. else
  1015. process_subpacket_12(q, NULL, 0);
  1016. }
  1017. /*
  1018. * Decode superblock, fill packet lists.
  1019. *
  1020. * @param q context
  1021. */
  1022. static void qdm2_decode_super_block (QDM2Context *q)
  1023. {
  1024. GetBitContext gb;
  1025. QDM2SubPacket header, *packet;
  1026. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1027. unsigned int next_index = 0;
  1028. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1029. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1030. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1031. q->sub_packets_B = 0;
  1032. sub_packets_D = 0;
  1033. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1034. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1035. qdm2_decode_sub_packet_header(&gb, &header);
  1036. if (header.type < 2 || header.type >= 8) {
  1037. q->has_errors = 1;
  1038. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1039. return;
  1040. }
  1041. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1042. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1043. init_get_bits(&gb, header.data, header.size*8);
  1044. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1045. int csum = 257 * get_bits(&gb, 8) + 2 * get_bits(&gb, 8);
  1046. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1047. if (csum != 0) {
  1048. q->has_errors = 1;
  1049. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1050. return;
  1051. }
  1052. }
  1053. q->sub_packet_list_B[0].packet = NULL;
  1054. q->sub_packet_list_D[0].packet = NULL;
  1055. for (i = 0; i < 6; i++)
  1056. if (--q->fft_level_exp[i] < 0)
  1057. q->fft_level_exp[i] = 0;
  1058. for (i = 0; packet_bytes > 0; i++) {
  1059. int j;
  1060. q->sub_packet_list_A[i].next = NULL;
  1061. if (i > 0) {
  1062. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1063. /* seek to next block */
  1064. init_get_bits(&gb, header.data, header.size*8);
  1065. skip_bits(&gb, next_index*8);
  1066. if (next_index >= header.size)
  1067. break;
  1068. }
  1069. /* decode subpacket */
  1070. packet = &q->sub_packets[i];
  1071. qdm2_decode_sub_packet_header(&gb, packet);
  1072. next_index = packet->size + get_bits_count(&gb) / 8;
  1073. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1074. if (packet->type == 0)
  1075. break;
  1076. if (sub_packet_size > packet_bytes) {
  1077. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1078. break;
  1079. packet->size += packet_bytes - sub_packet_size;
  1080. }
  1081. packet_bytes -= sub_packet_size;
  1082. /* add subpacket to 'all subpackets' list */
  1083. q->sub_packet_list_A[i].packet = packet;
  1084. /* add subpacket to related list */
  1085. if (packet->type == 8) {
  1086. SAMPLES_NEEDED_2("packet type 8");
  1087. return;
  1088. } else if (packet->type >= 9 && packet->type <= 12) {
  1089. /* packets for MPEG Audio like Synthesis Filter */
  1090. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1091. } else if (packet->type == 13) {
  1092. for (j = 0; j < 6; j++)
  1093. q->fft_level_exp[j] = get_bits(&gb, 6);
  1094. } else if (packet->type == 14) {
  1095. for (j = 0; j < 6; j++)
  1096. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1097. } else if (packet->type == 15) {
  1098. SAMPLES_NEEDED_2("packet type 15")
  1099. return;
  1100. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1101. /* packets for FFT */
  1102. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1103. }
  1104. } // Packet bytes loop
  1105. /* **************************************************************** */
  1106. if (q->sub_packet_list_D[0].packet != NULL) {
  1107. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1108. q->do_synth_filter = 1;
  1109. } else if (q->do_synth_filter) {
  1110. process_subpacket_10(q, NULL, 0);
  1111. process_subpacket_11(q, NULL, 0);
  1112. process_subpacket_12(q, NULL, 0);
  1113. }
  1114. /* **************************************************************** */
  1115. }
  1116. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1117. int offset, int duration, int channel,
  1118. int exp, int phase)
  1119. {
  1120. if (q->fft_coefs_min_index[duration] < 0)
  1121. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1122. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1123. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1124. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1125. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1126. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1127. q->fft_coefs_index++;
  1128. }
  1129. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1130. {
  1131. int channel, stereo, phase, exp;
  1132. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1133. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1134. int n, offset;
  1135. local_int_4 = 0;
  1136. local_int_28 = 0;
  1137. local_int_20 = 2;
  1138. local_int_8 = (4 - duration);
  1139. local_int_10 = 1 << (q->group_order - duration - 1);
  1140. offset = 1;
  1141. while (1) {
  1142. if (q->superblocktype_2_3) {
  1143. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1144. offset = 1;
  1145. if (n == 0) {
  1146. local_int_4 += local_int_10;
  1147. local_int_28 += (1 << local_int_8);
  1148. } else {
  1149. local_int_4 += 8*local_int_10;
  1150. local_int_28 += (8 << local_int_8);
  1151. }
  1152. }
  1153. offset += (n - 2);
  1154. } else {
  1155. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1156. while (offset >= (local_int_10 - 1)) {
  1157. offset += (1 - (local_int_10 - 1));
  1158. local_int_4 += local_int_10;
  1159. local_int_28 += (1 << local_int_8);
  1160. }
  1161. }
  1162. if (local_int_4 >= q->group_size)
  1163. return;
  1164. local_int_14 = (offset >> local_int_8);
  1165. if (q->nb_channels > 1) {
  1166. channel = get_bits1(gb);
  1167. stereo = get_bits1(gb);
  1168. } else {
  1169. channel = 0;
  1170. stereo = 0;
  1171. }
  1172. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1173. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1174. exp = (exp < 0) ? 0 : exp;
  1175. phase = get_bits(gb, 3);
  1176. stereo_exp = 0;
  1177. stereo_phase = 0;
  1178. if (stereo) {
  1179. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1180. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1181. if (stereo_phase < 0)
  1182. stereo_phase += 8;
  1183. }
  1184. if (q->frequency_range > (local_int_14 + 1)) {
  1185. int sub_packet = (local_int_20 + local_int_28);
  1186. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1187. if (stereo)
  1188. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1189. }
  1190. offset++;
  1191. }
  1192. }
  1193. static void qdm2_decode_fft_packets (QDM2Context *q)
  1194. {
  1195. int i, j, min, max, value, type, unknown_flag;
  1196. GetBitContext gb;
  1197. if (q->sub_packet_list_B[0].packet == NULL)
  1198. return;
  1199. /* reset minimum indexes for FFT coefficients */
  1200. q->fft_coefs_index = 0;
  1201. for (i=0; i < 5; i++)
  1202. q->fft_coefs_min_index[i] = -1;
  1203. /* process subpackets ordered by type, largest type first */
  1204. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1205. QDM2SubPacket *packet= NULL;
  1206. /* find subpacket with largest type less than max */
  1207. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1208. value = q->sub_packet_list_B[j].packet->type;
  1209. if (value > min && value < max) {
  1210. min = value;
  1211. packet = q->sub_packet_list_B[j].packet;
  1212. }
  1213. }
  1214. max = min;
  1215. /* check for errors (?) */
  1216. if (!packet)
  1217. return;
  1218. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1219. return;
  1220. /* decode FFT tones */
  1221. init_get_bits (&gb, packet->data, packet->size*8);
  1222. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1223. unknown_flag = 1;
  1224. else
  1225. unknown_flag = 0;
  1226. type = packet->type;
  1227. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1228. int duration = q->sub_sampling + 5 - (type & 15);
  1229. if (duration >= 0 && duration < 4)
  1230. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1231. } else if (type == 31) {
  1232. for (j=0; j < 4; j++)
  1233. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1234. } else if (type == 46) {
  1235. for (j=0; j < 6; j++)
  1236. q->fft_level_exp[j] = get_bits(&gb, 6);
  1237. for (j=0; j < 4; j++)
  1238. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1239. }
  1240. } // Loop on B packets
  1241. /* calculate maximum indexes for FFT coefficients */
  1242. for (i = 0, j = -1; i < 5; i++)
  1243. if (q->fft_coefs_min_index[i] >= 0) {
  1244. if (j >= 0)
  1245. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1246. j = i;
  1247. }
  1248. if (j >= 0)
  1249. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1250. }
  1251. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1252. {
  1253. float level, f[6];
  1254. int i;
  1255. QDM2Complex c;
  1256. const double iscale = 2.0*M_PI / 512.0;
  1257. tone->phase += tone->phase_shift;
  1258. /* calculate current level (maximum amplitude) of tone */
  1259. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1260. c.im = level * sin(tone->phase*iscale);
  1261. c.re = level * cos(tone->phase*iscale);
  1262. /* generate FFT coefficients for tone */
  1263. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1264. tone->complex[0].im += c.im;
  1265. tone->complex[0].re += c.re;
  1266. tone->complex[1].im -= c.im;
  1267. tone->complex[1].re -= c.re;
  1268. } else {
  1269. f[1] = -tone->table[4];
  1270. f[0] = tone->table[3] - tone->table[0];
  1271. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1272. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1273. f[4] = tone->table[0] - tone->table[1];
  1274. f[5] = tone->table[2];
  1275. for (i = 0; i < 2; i++) {
  1276. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re += c.re * f[i];
  1277. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1278. }
  1279. for (i = 0; i < 4; i++) {
  1280. tone->complex[i].re += c.re * f[i+2];
  1281. tone->complex[i].im += c.im * f[i+2];
  1282. }
  1283. }
  1284. /* copy the tone if it has not yet died out */
  1285. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1286. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1287. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1288. }
  1289. }
  1290. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1291. {
  1292. int i, j, ch;
  1293. const double iscale = 0.25 * M_PI;
  1294. for (ch = 0; ch < q->channels; ch++) {
  1295. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1296. }
  1297. /* apply FFT tones with duration 4 (1 FFT period) */
  1298. if (q->fft_coefs_min_index[4] >= 0)
  1299. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1300. float level;
  1301. QDM2Complex c;
  1302. if (q->fft_coefs[i].sub_packet != sub_packet)
  1303. break;
  1304. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1305. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1306. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1307. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1308. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1309. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1310. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1311. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1312. }
  1313. /* generate existing FFT tones */
  1314. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1315. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1316. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1317. }
  1318. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1319. for (i = 0; i < 4; i++)
  1320. if (q->fft_coefs_min_index[i] >= 0) {
  1321. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1322. int offset, four_i;
  1323. FFTTone tone;
  1324. if (q->fft_coefs[j].sub_packet != sub_packet)
  1325. break;
  1326. four_i = (4 - i);
  1327. offset = q->fft_coefs[j].offset >> four_i;
  1328. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1329. if (offset < q->frequency_range) {
  1330. if (offset < 2)
  1331. tone.cutoff = offset;
  1332. else
  1333. tone.cutoff = (offset >= 60) ? 3 : 2;
  1334. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1335. tone.complex = &q->fft.complex[ch][offset];
  1336. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1337. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1338. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1339. tone.duration = i;
  1340. tone.time_index = 0;
  1341. qdm2_fft_generate_tone(q, &tone);
  1342. }
  1343. }
  1344. q->fft_coefs_min_index[i] = j;
  1345. }
  1346. }
  1347. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1348. {
  1349. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1350. int i;
  1351. q->fft.complex[channel][0].re *= 2.0f;
  1352. q->fft.complex[channel][0].im = 0.0f;
  1353. ff_rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1354. /* add samples to output buffer */
  1355. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1356. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex[channel])[i] * gain;
  1357. }
  1358. /**
  1359. * @param q context
  1360. * @param index subpacket number
  1361. */
  1362. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1363. {
  1364. OUT_INT samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  1365. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1366. /* copy sb_samples */
  1367. sb_used = QDM2_SB_USED(q->sub_sampling);
  1368. for (ch = 0; ch < q->channels; ch++)
  1369. for (i = 0; i < 8; i++)
  1370. for (k=sb_used; k < SBLIMIT; k++)
  1371. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1372. for (ch = 0; ch < q->nb_channels; ch++) {
  1373. OUT_INT *samples_ptr = samples + ch;
  1374. for (i = 0; i < 8; i++) {
  1375. ff_mpa_synth_filter(q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1376. mpa_window, &dither_state,
  1377. samples_ptr, q->nb_channels,
  1378. q->sb_samples[ch][(8 * index) + i]);
  1379. samples_ptr += 32 * q->nb_channels;
  1380. }
  1381. }
  1382. /* add samples to output buffer */
  1383. sub_sampling = (4 >> q->sub_sampling);
  1384. for (ch = 0; ch < q->channels; ch++)
  1385. for (i = 0; i < q->frame_size; i++)
  1386. q->output_buffer[q->channels * i + ch] += (float)(samples[q->nb_channels * sub_sampling * i + ch] >> (sizeof(OUT_INT)*8-16));
  1387. }
  1388. /**
  1389. * Init static data (does not depend on specific file)
  1390. *
  1391. * @param q context
  1392. */
  1393. static av_cold void qdm2_init(QDM2Context *q) {
  1394. static int initialized = 0;
  1395. if (initialized != 0)
  1396. return;
  1397. initialized = 1;
  1398. qdm2_init_vlc();
  1399. ff_mpa_synth_init(mpa_window);
  1400. softclip_table_init();
  1401. rnd_table_init();
  1402. init_noise_samples();
  1403. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1404. }
  1405. #if 0
  1406. static void dump_context(QDM2Context *q)
  1407. {
  1408. int i;
  1409. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1410. PRINT("compressed_data",q->compressed_data);
  1411. PRINT("compressed_size",q->compressed_size);
  1412. PRINT("frame_size",q->frame_size);
  1413. PRINT("checksum_size",q->checksum_size);
  1414. PRINT("channels",q->channels);
  1415. PRINT("nb_channels",q->nb_channels);
  1416. PRINT("fft_frame_size",q->fft_frame_size);
  1417. PRINT("fft_size",q->fft_size);
  1418. PRINT("sub_sampling",q->sub_sampling);
  1419. PRINT("fft_order",q->fft_order);
  1420. PRINT("group_order",q->group_order);
  1421. PRINT("group_size",q->group_size);
  1422. PRINT("sub_packet",q->sub_packet);
  1423. PRINT("frequency_range",q->frequency_range);
  1424. PRINT("has_errors",q->has_errors);
  1425. PRINT("fft_tone_end",q->fft_tone_end);
  1426. PRINT("fft_tone_start",q->fft_tone_start);
  1427. PRINT("fft_coefs_index",q->fft_coefs_index);
  1428. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1429. PRINT("cm_table_select",q->cm_table_select);
  1430. PRINT("noise_idx",q->noise_idx);
  1431. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1432. {
  1433. FFTTone *t = &q->fft_tones[i];
  1434. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1435. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1436. // PRINT(" level", t->level);
  1437. PRINT(" phase", t->phase);
  1438. PRINT(" phase_shift", t->phase_shift);
  1439. PRINT(" duration", t->duration);
  1440. PRINT(" samples_im", t->samples_im);
  1441. PRINT(" samples_re", t->samples_re);
  1442. PRINT(" table", t->table);
  1443. }
  1444. }
  1445. #endif
  1446. /**
  1447. * Init parameters from codec extradata
  1448. */
  1449. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1450. {
  1451. QDM2Context *s = avctx->priv_data;
  1452. uint8_t *extradata;
  1453. int extradata_size;
  1454. int tmp_val, tmp, size;
  1455. /* extradata parsing
  1456. Structure:
  1457. wave {
  1458. frma (QDM2)
  1459. QDCA
  1460. QDCP
  1461. }
  1462. 32 size (including this field)
  1463. 32 tag (=frma)
  1464. 32 type (=QDM2 or QDMC)
  1465. 32 size (including this field, in bytes)
  1466. 32 tag (=QDCA) // maybe mandatory parameters
  1467. 32 unknown (=1)
  1468. 32 channels (=2)
  1469. 32 samplerate (=44100)
  1470. 32 bitrate (=96000)
  1471. 32 block size (=4096)
  1472. 32 frame size (=256) (for one channel)
  1473. 32 packet size (=1300)
  1474. 32 size (including this field, in bytes)
  1475. 32 tag (=QDCP) // maybe some tuneable parameters
  1476. 32 float1 (=1.0)
  1477. 32 zero ?
  1478. 32 float2 (=1.0)
  1479. 32 float3 (=1.0)
  1480. 32 unknown (27)
  1481. 32 unknown (8)
  1482. 32 zero ?
  1483. */
  1484. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1485. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1486. return -1;
  1487. }
  1488. extradata = avctx->extradata;
  1489. extradata_size = avctx->extradata_size;
  1490. while (extradata_size > 7) {
  1491. if (!memcmp(extradata, "frmaQDM", 7))
  1492. break;
  1493. extradata++;
  1494. extradata_size--;
  1495. }
  1496. if (extradata_size < 12) {
  1497. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1498. extradata_size);
  1499. return -1;
  1500. }
  1501. if (memcmp(extradata, "frmaQDM", 7)) {
  1502. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1503. return -1;
  1504. }
  1505. if (extradata[7] == 'C') {
  1506. // s->is_qdmc = 1;
  1507. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1508. return -1;
  1509. }
  1510. extradata += 8;
  1511. extradata_size -= 8;
  1512. size = AV_RB32(extradata);
  1513. if(size > extradata_size){
  1514. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1515. extradata_size, size);
  1516. return -1;
  1517. }
  1518. extradata += 4;
  1519. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1520. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1521. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1522. return -1;
  1523. }
  1524. extradata += 8;
  1525. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1526. extradata += 4;
  1527. avctx->sample_rate = AV_RB32(extradata);
  1528. extradata += 4;
  1529. avctx->bit_rate = AV_RB32(extradata);
  1530. extradata += 4;
  1531. s->group_size = AV_RB32(extradata);
  1532. extradata += 4;
  1533. s->fft_size = AV_RB32(extradata);
  1534. extradata += 4;
  1535. s->checksum_size = AV_RB32(extradata);
  1536. extradata += 4;
  1537. s->fft_order = av_log2(s->fft_size) + 1;
  1538. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1539. // something like max decodable tones
  1540. s->group_order = av_log2(s->group_size) + 1;
  1541. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1542. s->sub_sampling = s->fft_order - 7;
  1543. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1544. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1545. case 0: tmp = 40; break;
  1546. case 1: tmp = 48; break;
  1547. case 2: tmp = 56; break;
  1548. case 3: tmp = 72; break;
  1549. case 4: tmp = 80; break;
  1550. case 5: tmp = 100;break;
  1551. default: tmp=s->sub_sampling; break;
  1552. }
  1553. tmp_val = 0;
  1554. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1555. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1556. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1557. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1558. s->cm_table_select = tmp_val;
  1559. if (s->sub_sampling == 0)
  1560. tmp = 7999;
  1561. else
  1562. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1563. /*
  1564. 0: 7999 -> 0
  1565. 1: 20000 -> 2
  1566. 2: 28000 -> 2
  1567. */
  1568. if (tmp < 8000)
  1569. s->coeff_per_sb_select = 0;
  1570. else if (tmp <= 16000)
  1571. s->coeff_per_sb_select = 1;
  1572. else
  1573. s->coeff_per_sb_select = 2;
  1574. // Fail on unknown fft order
  1575. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1576. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1577. return -1;
  1578. }
  1579. ff_rdft_init(&s->rdft_ctx, s->fft_order, IRDFT);
  1580. qdm2_init(s);
  1581. avctx->sample_fmt = SAMPLE_FMT_S16;
  1582. // dump_context(s);
  1583. return 0;
  1584. }
  1585. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1586. {
  1587. QDM2Context *s = avctx->priv_data;
  1588. ff_rdft_end(&s->rdft_ctx);
  1589. return 0;
  1590. }
  1591. static void qdm2_decode (QDM2Context *q, const uint8_t *in, int16_t *out)
  1592. {
  1593. int ch, i;
  1594. const int frame_size = (q->frame_size * q->channels);
  1595. /* select input buffer */
  1596. q->compressed_data = in;
  1597. q->compressed_size = q->checksum_size;
  1598. // dump_context(q);
  1599. /* copy old block, clear new block of output samples */
  1600. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1601. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1602. /* decode block of QDM2 compressed data */
  1603. if (q->sub_packet == 0) {
  1604. q->has_errors = 0; // zero it for a new super block
  1605. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1606. qdm2_decode_super_block(q);
  1607. }
  1608. /* parse subpackets */
  1609. if (!q->has_errors) {
  1610. if (q->sub_packet == 2)
  1611. qdm2_decode_fft_packets(q);
  1612. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1613. }
  1614. /* sound synthesis stage 1 (FFT) */
  1615. for (ch = 0; ch < q->channels; ch++) {
  1616. qdm2_calculate_fft(q, ch, q->sub_packet);
  1617. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1618. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1619. return;
  1620. }
  1621. }
  1622. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1623. if (!q->has_errors && q->do_synth_filter)
  1624. qdm2_synthesis_filter(q, q->sub_packet);
  1625. q->sub_packet = (q->sub_packet + 1) % 16;
  1626. /* clip and convert output float[] to 16bit signed samples */
  1627. for (i = 0; i < frame_size; i++) {
  1628. int value = (int)q->output_buffer[i];
  1629. if (value > SOFTCLIP_THRESHOLD)
  1630. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1631. else if (value < -SOFTCLIP_THRESHOLD)
  1632. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1633. out[i] = value;
  1634. }
  1635. }
  1636. static int qdm2_decode_frame(AVCodecContext *avctx,
  1637. void *data, int *data_size,
  1638. const uint8_t *buf, int buf_size)
  1639. {
  1640. QDM2Context *s = avctx->priv_data;
  1641. if(!buf)
  1642. return 0;
  1643. if(buf_size < s->checksum_size)
  1644. return -1;
  1645. *data_size = s->channels * s->frame_size * sizeof(int16_t);
  1646. av_log(avctx, AV_LOG_DEBUG, "decode(%d): %p[%d] -> %p[%d]\n",
  1647. buf_size, buf, s->checksum_size, data, *data_size);
  1648. qdm2_decode(s, buf, data);
  1649. // reading only when next superblock found
  1650. if (s->sub_packet == 0) {
  1651. return s->checksum_size;
  1652. }
  1653. return 0;
  1654. }
  1655. AVCodec qdm2_decoder =
  1656. {
  1657. .name = "qdm2",
  1658. .type = CODEC_TYPE_AUDIO,
  1659. .id = CODEC_ID_QDM2,
  1660. .priv_data_size = sizeof(QDM2Context),
  1661. .init = qdm2_decode_init,
  1662. .close = qdm2_decode_close,
  1663. .decode = qdm2_decode_frame,
  1664. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1665. };