You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1214 lines
39KB

  1. /*
  2. * COOK compatible decoder
  3. * Copyright (c) 2003 Sascha Sommer
  4. * Copyright (c) 2005 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/cook.c
  24. * Cook compatible decoder. Bastardization of the G.722.1 standard.
  25. * This decoder handles RealNetworks, RealAudio G2 data.
  26. * Cook is identified by the codec name cook in RM files.
  27. *
  28. * To use this decoder, a calling application must supply the extradata
  29. * bytes provided from the RM container; 8+ bytes for mono streams and
  30. * 16+ for stereo streams (maybe more).
  31. *
  32. * Codec technicalities (all this assume a buffer length of 1024):
  33. * Cook works with several different techniques to achieve its compression.
  34. * In the timedomain the buffer is divided into 8 pieces and quantized. If
  35. * two neighboring pieces have different quantization index a smooth
  36. * quantization curve is used to get a smooth overlap between the different
  37. * pieces.
  38. * To get to the transformdomain Cook uses a modulated lapped transform.
  39. * The transform domain has 50 subbands with 20 elements each. This
  40. * means only a maximum of 50*20=1000 coefficients are used out of the 1024
  41. * available.
  42. */
  43. #include <math.h>
  44. #include <stddef.h>
  45. #include <stdio.h>
  46. #include "libavutil/lfg.h"
  47. #include "libavutil/random_seed.h"
  48. #include "avcodec.h"
  49. #include "bitstream.h"
  50. #include "dsputil.h"
  51. #include "bytestream.h"
  52. #include "cookdata.h"
  53. /* the different Cook versions */
  54. #define MONO 0x1000001
  55. #define STEREO 0x1000002
  56. #define JOINT_STEREO 0x1000003
  57. #define MC_COOK 0x2000000 //multichannel Cook, not supported
  58. #define SUBBAND_SIZE 20
  59. #define MAX_SUBPACKETS 5
  60. //#define COOKDEBUG
  61. typedef struct {
  62. int *now;
  63. int *previous;
  64. } cook_gains;
  65. typedef struct cook {
  66. /*
  67. * The following 5 functions provide the lowlevel arithmetic on
  68. * the internal audio buffers.
  69. */
  70. void (* scalar_dequant)(struct cook *q, int index, int quant_index,
  71. int* subband_coef_index, int* subband_coef_sign,
  72. float* mlt_p);
  73. void (* decouple) (struct cook *q,
  74. int subband,
  75. float f1, float f2,
  76. float *decode_buffer,
  77. float *mlt_buffer1, float *mlt_buffer2);
  78. void (* imlt_window) (struct cook *q, float *buffer1,
  79. cook_gains *gains_ptr, float *previous_buffer);
  80. void (* interpolate) (struct cook *q, float* buffer,
  81. int gain_index, int gain_index_next);
  82. void (* saturate_output) (struct cook *q, int chan, int16_t *out);
  83. AVCodecContext* avctx;
  84. GetBitContext gb;
  85. /* stream data */
  86. int nb_channels;
  87. int joint_stereo;
  88. int bit_rate;
  89. int sample_rate;
  90. int samples_per_channel;
  91. int samples_per_frame;
  92. int subbands;
  93. int log2_numvector_size;
  94. int numvector_size; //1 << log2_numvector_size;
  95. int js_subband_start;
  96. int total_subbands;
  97. int num_vectors;
  98. int bits_per_subpacket;
  99. int cookversion;
  100. /* states */
  101. AVLFG random_state;
  102. /* transform data */
  103. MDCTContext mdct_ctx;
  104. float* mlt_window;
  105. /* gain buffers */
  106. cook_gains gains1;
  107. cook_gains gains2;
  108. int gain_1[9];
  109. int gain_2[9];
  110. int gain_3[9];
  111. int gain_4[9];
  112. /* VLC data */
  113. int js_vlc_bits;
  114. VLC envelope_quant_index[13];
  115. VLC sqvh[7]; //scalar quantization
  116. VLC ccpl; //channel coupling
  117. /* generatable tables and related variables */
  118. int gain_size_factor;
  119. float gain_table[23];
  120. /* data buffers */
  121. uint8_t* decoded_bytes_buffer;
  122. DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
  123. float mono_previous_buffer1[1024];
  124. float mono_previous_buffer2[1024];
  125. float decode_buffer_1[1024];
  126. float decode_buffer_2[1024];
  127. float decode_buffer_0[1060]; /* static allocation for joint decode */
  128. const float *cplscales[5];
  129. } COOKContext;
  130. static float pow2tab[127];
  131. static float rootpow2tab[127];
  132. /* debug functions */
  133. #ifdef COOKDEBUG
  134. static void dump_float_table(float* table, int size, int delimiter) {
  135. int i=0;
  136. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  137. for (i=0 ; i<size ; i++) {
  138. av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
  139. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  140. }
  141. }
  142. static void dump_int_table(int* table, int size, int delimiter) {
  143. int i=0;
  144. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  145. for (i=0 ; i<size ; i++) {
  146. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  147. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  148. }
  149. }
  150. static void dump_short_table(short* table, int size, int delimiter) {
  151. int i=0;
  152. av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
  153. for (i=0 ; i<size ; i++) {
  154. av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
  155. if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
  156. }
  157. }
  158. #endif
  159. /*************** init functions ***************/
  160. /* table generator */
  161. static av_cold void init_pow2table(void){
  162. int i;
  163. for (i=-63 ; i<64 ; i++){
  164. pow2tab[63+i]= pow(2, i);
  165. rootpow2tab[63+i]=sqrt(pow(2, i));
  166. }
  167. }
  168. /* table generator */
  169. static av_cold void init_gain_table(COOKContext *q) {
  170. int i;
  171. q->gain_size_factor = q->samples_per_channel/8;
  172. for (i=0 ; i<23 ; i++) {
  173. q->gain_table[i] = pow(pow2tab[i+52] ,
  174. (1.0/(double)q->gain_size_factor));
  175. }
  176. }
  177. static av_cold int init_cook_vlc_tables(COOKContext *q) {
  178. int i, result;
  179. result = 0;
  180. for (i=0 ; i<13 ; i++) {
  181. result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
  182. envelope_quant_index_huffbits[i], 1, 1,
  183. envelope_quant_index_huffcodes[i], 2, 2, 0);
  184. }
  185. av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
  186. for (i=0 ; i<7 ; i++) {
  187. result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
  188. cvh_huffbits[i], 1, 1,
  189. cvh_huffcodes[i], 2, 2, 0);
  190. }
  191. if (q->nb_channels==2 && q->joint_stereo==1){
  192. result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
  193. ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
  194. ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
  195. av_log(q->avctx,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
  196. }
  197. av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
  198. return result;
  199. }
  200. static av_cold int init_cook_mlt(COOKContext *q) {
  201. int j;
  202. int mlt_size = q->samples_per_channel;
  203. if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
  204. return -1;
  205. /* Initialize the MLT window: simple sine window. */
  206. ff_sine_window_init(q->mlt_window, mlt_size);
  207. for(j=0 ; j<mlt_size ; j++)
  208. q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
  209. /* Initialize the MDCT. */
  210. if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
  211. av_free(q->mlt_window);
  212. return -1;
  213. }
  214. av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
  215. av_log2(mlt_size)+1);
  216. return 0;
  217. }
  218. static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
  219. {
  220. if (1)
  221. return ptr;
  222. }
  223. static av_cold void init_cplscales_table (COOKContext *q) {
  224. int i;
  225. for (i=0;i<5;i++)
  226. q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
  227. }
  228. /*************** init functions end ***********/
  229. /**
  230. * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
  231. * Why? No idea, some checksum/error detection method maybe.
  232. *
  233. * Out buffer size: extra bytes are needed to cope with
  234. * padding/misalignment.
  235. * Subpackets passed to the decoder can contain two, consecutive
  236. * half-subpackets, of identical but arbitrary size.
  237. * 1234 1234 1234 1234 extraA extraB
  238. * Case 1: AAAA BBBB 0 0
  239. * Case 2: AAAA ABBB BB-- 3 3
  240. * Case 3: AAAA AABB BBBB 2 2
  241. * Case 4: AAAA AAAB BBBB BB-- 1 5
  242. *
  243. * Nice way to waste CPU cycles.
  244. *
  245. * @param inbuffer pointer to byte array of indata
  246. * @param out pointer to byte array of outdata
  247. * @param bytes number of bytes
  248. */
  249. #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
  250. #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
  251. static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
  252. int i, off;
  253. uint32_t c;
  254. const uint32_t* buf;
  255. uint32_t* obuf = (uint32_t*) out;
  256. /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
  257. * I'm too lazy though, should be something like
  258. * for(i=0 ; i<bitamount/64 ; i++)
  259. * (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
  260. * Buffer alignment needs to be checked. */
  261. off = (intptr_t)inbuffer & 3;
  262. buf = (const uint32_t*) (inbuffer - off);
  263. c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
  264. bytes += 3 + off;
  265. for (i = 0; i < bytes/4; i++)
  266. obuf[i] = c ^ buf[i];
  267. return off;
  268. }
  269. /**
  270. * Cook uninit
  271. */
  272. static av_cold int cook_decode_close(AVCodecContext *avctx)
  273. {
  274. int i;
  275. COOKContext *q = avctx->priv_data;
  276. av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
  277. /* Free allocated memory buffers. */
  278. av_free(q->mlt_window);
  279. av_free(q->decoded_bytes_buffer);
  280. /* Free the transform. */
  281. ff_mdct_end(&q->mdct_ctx);
  282. /* Free the VLC tables. */
  283. for (i=0 ; i<13 ; i++) {
  284. free_vlc(&q->envelope_quant_index[i]);
  285. }
  286. for (i=0 ; i<7 ; i++) {
  287. free_vlc(&q->sqvh[i]);
  288. }
  289. if(q->nb_channels==2 && q->joint_stereo==1 ){
  290. free_vlc(&q->ccpl);
  291. }
  292. av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
  293. return 0;
  294. }
  295. /**
  296. * Fill the gain array for the timedomain quantization.
  297. *
  298. * @param q pointer to the COOKContext
  299. * @param gaininfo[9] array of gain indexes
  300. */
  301. static void decode_gain_info(GetBitContext *gb, int *gaininfo)
  302. {
  303. int i, n;
  304. while (get_bits1(gb)) {}
  305. n = get_bits_count(gb) - 1; //amount of elements*2 to update
  306. i = 0;
  307. while (n--) {
  308. int index = get_bits(gb, 3);
  309. int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
  310. while (i <= index) gaininfo[i++] = gain;
  311. }
  312. while (i <= 8) gaininfo[i++] = 0;
  313. }
  314. /**
  315. * Create the quant index table needed for the envelope.
  316. *
  317. * @param q pointer to the COOKContext
  318. * @param quant_index_table pointer to the array
  319. */
  320. static void decode_envelope(COOKContext *q, int* quant_index_table) {
  321. int i,j, vlc_index;
  322. quant_index_table[0]= get_bits(&q->gb,6) - 6; //This is used later in categorize
  323. for (i=1 ; i < q->total_subbands ; i++){
  324. vlc_index=i;
  325. if (i >= q->js_subband_start * 2) {
  326. vlc_index-=q->js_subband_start;
  327. } else {
  328. vlc_index/=2;
  329. if(vlc_index < 1) vlc_index = 1;
  330. }
  331. if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13
  332. j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
  333. q->envelope_quant_index[vlc_index-1].bits,2);
  334. quant_index_table[i] = quant_index_table[i-1] + j - 12; //differential encoding
  335. }
  336. }
  337. /**
  338. * Calculate the category and category_index vector.
  339. *
  340. * @param q pointer to the COOKContext
  341. * @param quant_index_table pointer to the array
  342. * @param category pointer to the category array
  343. * @param category_index pointer to the category_index array
  344. */
  345. static void categorize(COOKContext *q, int* quant_index_table,
  346. int* category, int* category_index){
  347. int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
  348. int exp_index2[102];
  349. int exp_index1[102];
  350. int tmp_categorize_array[128*2];
  351. int tmp_categorize_array1_idx=q->numvector_size;
  352. int tmp_categorize_array2_idx=q->numvector_size;
  353. bits_left = q->bits_per_subpacket - get_bits_count(&q->gb);
  354. if(bits_left > q->samples_per_channel) {
  355. bits_left = q->samples_per_channel +
  356. ((bits_left - q->samples_per_channel)*5)/8;
  357. //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
  358. }
  359. memset(&exp_index1,0,102*sizeof(int));
  360. memset(&exp_index2,0,102*sizeof(int));
  361. memset(&tmp_categorize_array,0,128*2*sizeof(int));
  362. bias=-32;
  363. /* Estimate bias. */
  364. for (i=32 ; i>0 ; i=i/2){
  365. num_bits = 0;
  366. index = 0;
  367. for (j=q->total_subbands ; j>0 ; j--){
  368. exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
  369. index++;
  370. num_bits+=expbits_tab[exp_idx];
  371. }
  372. if(num_bits >= bits_left - 32){
  373. bias+=i;
  374. }
  375. }
  376. /* Calculate total number of bits. */
  377. num_bits=0;
  378. for (i=0 ; i<q->total_subbands ; i++) {
  379. exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
  380. num_bits += expbits_tab[exp_idx];
  381. exp_index1[i] = exp_idx;
  382. exp_index2[i] = exp_idx;
  383. }
  384. tmpbias1 = tmpbias2 = num_bits;
  385. for (j = 1 ; j < q->numvector_size ; j++) {
  386. if (tmpbias1 + tmpbias2 > 2*bits_left) { /* ---> */
  387. int max = -999999;
  388. index=-1;
  389. for (i=0 ; i<q->total_subbands ; i++){
  390. if (exp_index1[i] < 7) {
  391. v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
  392. if ( v >= max) {
  393. max = v;
  394. index = i;
  395. }
  396. }
  397. }
  398. if(index==-1)break;
  399. tmp_categorize_array[tmp_categorize_array1_idx++] = index;
  400. tmpbias1 -= expbits_tab[exp_index1[index]] -
  401. expbits_tab[exp_index1[index]+1];
  402. ++exp_index1[index];
  403. } else { /* <--- */
  404. int min = 999999;
  405. index=-1;
  406. for (i=0 ; i<q->total_subbands ; i++){
  407. if(exp_index2[i] > 0){
  408. v = (-2*exp_index2[i])-quant_index_table[i]+bias;
  409. if ( v < min) {
  410. min = v;
  411. index = i;
  412. }
  413. }
  414. }
  415. if(index == -1)break;
  416. tmp_categorize_array[--tmp_categorize_array2_idx] = index;
  417. tmpbias2 -= expbits_tab[exp_index2[index]] -
  418. expbits_tab[exp_index2[index]-1];
  419. --exp_index2[index];
  420. }
  421. }
  422. for(i=0 ; i<q->total_subbands ; i++)
  423. category[i] = exp_index2[i];
  424. for(i=0 ; i<q->numvector_size-1 ; i++)
  425. category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
  426. }
  427. /**
  428. * Expand the category vector.
  429. *
  430. * @param q pointer to the COOKContext
  431. * @param category pointer to the category array
  432. * @param category_index pointer to the category_index array
  433. */
  434. static inline void expand_category(COOKContext *q, int* category,
  435. int* category_index){
  436. int i;
  437. for(i=0 ; i<q->num_vectors ; i++){
  438. ++category[category_index[i]];
  439. }
  440. }
  441. /**
  442. * The real requantization of the mltcoefs
  443. *
  444. * @param q pointer to the COOKContext
  445. * @param index index
  446. * @param quant_index quantisation index
  447. * @param subband_coef_index array of indexes to quant_centroid_tab
  448. * @param subband_coef_sign signs of coefficients
  449. * @param mlt_p pointer into the mlt buffer
  450. */
  451. static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
  452. int* subband_coef_index, int* subband_coef_sign,
  453. float* mlt_p){
  454. int i;
  455. float f1;
  456. for(i=0 ; i<SUBBAND_SIZE ; i++) {
  457. if (subband_coef_index[i]) {
  458. f1 = quant_centroid_tab[index][subband_coef_index[i]];
  459. if (subband_coef_sign[i]) f1 = -f1;
  460. } else {
  461. /* noise coding if subband_coef_index[i] == 0 */
  462. f1 = dither_tab[index];
  463. if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
  464. }
  465. mlt_p[i] = f1 * rootpow2tab[quant_index+63];
  466. }
  467. }
  468. /**
  469. * Unpack the subband_coef_index and subband_coef_sign vectors.
  470. *
  471. * @param q pointer to the COOKContext
  472. * @param category pointer to the category array
  473. * @param subband_coef_index array of indexes to quant_centroid_tab
  474. * @param subband_coef_sign signs of coefficients
  475. */
  476. static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
  477. int* subband_coef_sign) {
  478. int i,j;
  479. int vlc, vd ,tmp, result;
  480. vd = vd_tab[category];
  481. result = 0;
  482. for(i=0 ; i<vpr_tab[category] ; i++){
  483. vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
  484. if (q->bits_per_subpacket < get_bits_count(&q->gb)){
  485. vlc = 0;
  486. result = 1;
  487. }
  488. for(j=vd-1 ; j>=0 ; j--){
  489. tmp = (vlc * invradix_tab[category])/0x100000;
  490. subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
  491. vlc = tmp;
  492. }
  493. for(j=0 ; j<vd ; j++){
  494. if (subband_coef_index[i*vd + j]) {
  495. if(get_bits_count(&q->gb) < q->bits_per_subpacket){
  496. subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
  497. } else {
  498. result=1;
  499. subband_coef_sign[i*vd+j]=0;
  500. }
  501. } else {
  502. subband_coef_sign[i*vd+j]=0;
  503. }
  504. }
  505. }
  506. return result;
  507. }
  508. /**
  509. * Fill the mlt_buffer with mlt coefficients.
  510. *
  511. * @param q pointer to the COOKContext
  512. * @param category pointer to the category array
  513. * @param quant_index_table pointer to the array
  514. * @param mlt_buffer pointer to mlt coefficients
  515. */
  516. static void decode_vectors(COOKContext* q, int* category,
  517. int *quant_index_table, float* mlt_buffer){
  518. /* A zero in this table means that the subband coefficient is
  519. random noise coded. */
  520. int subband_coef_index[SUBBAND_SIZE];
  521. /* A zero in this table means that the subband coefficient is a
  522. positive multiplicator. */
  523. int subband_coef_sign[SUBBAND_SIZE];
  524. int band, j;
  525. int index=0;
  526. for(band=0 ; band<q->total_subbands ; band++){
  527. index = category[band];
  528. if(category[band] < 7){
  529. if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
  530. index=7;
  531. for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
  532. }
  533. }
  534. if(index>=7) {
  535. memset(subband_coef_index, 0, sizeof(subband_coef_index));
  536. memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
  537. }
  538. q->scalar_dequant(q, index, quant_index_table[band],
  539. subband_coef_index, subband_coef_sign,
  540. &mlt_buffer[band * SUBBAND_SIZE]);
  541. }
  542. if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
  543. return;
  544. } /* FIXME: should this be removed, or moved into loop above? */
  545. }
  546. /**
  547. * function for decoding mono data
  548. *
  549. * @param q pointer to the COOKContext
  550. * @param mlt_buffer pointer to mlt coefficients
  551. */
  552. static void mono_decode(COOKContext *q, float* mlt_buffer) {
  553. int category_index[128];
  554. int quant_index_table[102];
  555. int category[128];
  556. memset(&category, 0, 128*sizeof(int));
  557. memset(&category_index, 0, 128*sizeof(int));
  558. decode_envelope(q, quant_index_table);
  559. q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
  560. categorize(q, quant_index_table, category, category_index);
  561. expand_category(q, category, category_index);
  562. decode_vectors(q, category, quant_index_table, mlt_buffer);
  563. }
  564. /**
  565. * the actual requantization of the timedomain samples
  566. *
  567. * @param q pointer to the COOKContext
  568. * @param buffer pointer to the timedomain buffer
  569. * @param gain_index index for the block multiplier
  570. * @param gain_index_next index for the next block multiplier
  571. */
  572. static void interpolate_float(COOKContext *q, float* buffer,
  573. int gain_index, int gain_index_next){
  574. int i;
  575. float fc1, fc2;
  576. fc1 = pow2tab[gain_index+63];
  577. if(gain_index == gain_index_next){ //static gain
  578. for(i=0 ; i<q->gain_size_factor ; i++){
  579. buffer[i]*=fc1;
  580. }
  581. return;
  582. } else { //smooth gain
  583. fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
  584. for(i=0 ; i<q->gain_size_factor ; i++){
  585. buffer[i]*=fc1;
  586. fc1*=fc2;
  587. }
  588. return;
  589. }
  590. }
  591. /**
  592. * Apply transform window, overlap buffers.
  593. *
  594. * @param q pointer to the COOKContext
  595. * @param inbuffer pointer to the mltcoefficients
  596. * @param gains_ptr current and previous gains
  597. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  598. */
  599. static void imlt_window_float (COOKContext *q, float *buffer1,
  600. cook_gains *gains_ptr, float *previous_buffer)
  601. {
  602. const float fc = pow2tab[gains_ptr->previous[0] + 63];
  603. int i;
  604. /* The weird thing here, is that the two halves of the time domain
  605. * buffer are swapped. Also, the newest data, that we save away for
  606. * next frame, has the wrong sign. Hence the subtraction below.
  607. * Almost sounds like a complex conjugate/reverse data/FFT effect.
  608. */
  609. /* Apply window and overlap */
  610. for(i = 0; i < q->samples_per_channel; i++){
  611. buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
  612. previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
  613. }
  614. }
  615. /**
  616. * The modulated lapped transform, this takes transform coefficients
  617. * and transforms them into timedomain samples.
  618. * Apply transform window, overlap buffers, apply gain profile
  619. * and buffer management.
  620. *
  621. * @param q pointer to the COOKContext
  622. * @param inbuffer pointer to the mltcoefficients
  623. * @param gains_ptr current and previous gains
  624. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  625. */
  626. static void imlt_gain(COOKContext *q, float *inbuffer,
  627. cook_gains *gains_ptr, float* previous_buffer)
  628. {
  629. float *buffer0 = q->mono_mdct_output;
  630. float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
  631. int i;
  632. /* Inverse modified discrete cosine transform */
  633. ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
  634. q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
  635. /* Apply gain profile */
  636. for (i = 0; i < 8; i++) {
  637. if (gains_ptr->now[i] || gains_ptr->now[i + 1])
  638. q->interpolate(q, &buffer1[q->gain_size_factor * i],
  639. gains_ptr->now[i], gains_ptr->now[i + 1]);
  640. }
  641. /* Save away the current to be previous block. */
  642. memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
  643. }
  644. /**
  645. * function for getting the jointstereo coupling information
  646. *
  647. * @param q pointer to the COOKContext
  648. * @param decouple_tab decoupling array
  649. *
  650. */
  651. static void decouple_info(COOKContext *q, int* decouple_tab){
  652. int length, i;
  653. if(get_bits1(&q->gb)) {
  654. if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
  655. length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
  656. for (i=0 ; i<length ; i++) {
  657. decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
  658. }
  659. return;
  660. }
  661. if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
  662. length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
  663. for (i=0 ; i<length ; i++) {
  664. decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
  665. }
  666. return;
  667. }
  668. /*
  669. * function decouples a pair of signals from a single signal via multiplication.
  670. *
  671. * @param q pointer to the COOKContext
  672. * @param subband index of the current subband
  673. * @param f1 multiplier for channel 1 extraction
  674. * @param f2 multiplier for channel 2 extraction
  675. * @param decode_buffer input buffer
  676. * @param mlt_buffer1 pointer to left channel mlt coefficients
  677. * @param mlt_buffer2 pointer to right channel mlt coefficients
  678. */
  679. static void decouple_float (COOKContext *q,
  680. int subband,
  681. float f1, float f2,
  682. float *decode_buffer,
  683. float *mlt_buffer1, float *mlt_buffer2)
  684. {
  685. int j, tmp_idx;
  686. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  687. tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
  688. mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
  689. mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
  690. }
  691. }
  692. /**
  693. * function for decoding joint stereo data
  694. *
  695. * @param q pointer to the COOKContext
  696. * @param mlt_buffer1 pointer to left channel mlt coefficients
  697. * @param mlt_buffer2 pointer to right channel mlt coefficients
  698. */
  699. static void joint_decode(COOKContext *q, float* mlt_buffer1,
  700. float* mlt_buffer2) {
  701. int i,j;
  702. int decouple_tab[SUBBAND_SIZE];
  703. float *decode_buffer = q->decode_buffer_0;
  704. int idx, cpl_tmp;
  705. float f1,f2;
  706. const float* cplscale;
  707. memset(decouple_tab, 0, sizeof(decouple_tab));
  708. memset(decode_buffer, 0, sizeof(decode_buffer));
  709. /* Make sure the buffers are zeroed out. */
  710. memset(mlt_buffer1,0, 1024*sizeof(float));
  711. memset(mlt_buffer2,0, 1024*sizeof(float));
  712. decouple_info(q, decouple_tab);
  713. mono_decode(q, decode_buffer);
  714. /* The two channels are stored interleaved in decode_buffer. */
  715. for (i=0 ; i<q->js_subband_start ; i++) {
  716. for (j=0 ; j<SUBBAND_SIZE ; j++) {
  717. mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
  718. mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
  719. }
  720. }
  721. /* When we reach js_subband_start (the higher frequencies)
  722. the coefficients are stored in a coupling scheme. */
  723. idx = (1 << q->js_vlc_bits) - 1;
  724. for (i=q->js_subband_start ; i<q->subbands ; i++) {
  725. cpl_tmp = cplband[i];
  726. idx -=decouple_tab[cpl_tmp];
  727. cplscale = q->cplscales[q->js_vlc_bits-2]; //choose decoupler table
  728. f1 = cplscale[decouple_tab[cpl_tmp]];
  729. f2 = cplscale[idx-1];
  730. q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
  731. idx = (1 << q->js_vlc_bits) - 1;
  732. }
  733. }
  734. /**
  735. * First part of subpacket decoding:
  736. * decode raw stream bytes and read gain info.
  737. *
  738. * @param q pointer to the COOKContext
  739. * @param inbuffer pointer to raw stream data
  740. * @param gain_ptr array of current/prev gain pointers
  741. */
  742. static inline void
  743. decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
  744. cook_gains *gains_ptr)
  745. {
  746. int offset;
  747. offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
  748. q->bits_per_subpacket/8);
  749. init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
  750. q->bits_per_subpacket);
  751. decode_gain_info(&q->gb, gains_ptr->now);
  752. /* Swap current and previous gains */
  753. FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
  754. }
  755. /**
  756. * Saturate the output signal to signed 16bit integers.
  757. *
  758. * @param q pointer to the COOKContext
  759. * @param chan channel to saturate
  760. * @param out pointer to the output vector
  761. */
  762. static void
  763. saturate_output_float (COOKContext *q, int chan, int16_t *out)
  764. {
  765. int j;
  766. float *output = q->mono_mdct_output + q->samples_per_channel;
  767. /* Clip and convert floats to 16 bits.
  768. */
  769. for (j = 0; j < q->samples_per_channel; j++) {
  770. out[chan + q->nb_channels * j] =
  771. av_clip_int16(lrintf(output[j]));
  772. }
  773. }
  774. /**
  775. * Final part of subpacket decoding:
  776. * Apply modulated lapped transform, gain compensation,
  777. * clip and convert to integer.
  778. *
  779. * @param q pointer to the COOKContext
  780. * @param decode_buffer pointer to the mlt coefficients
  781. * @param gain_ptr array of current/prev gain pointers
  782. * @param previous_buffer pointer to the previous buffer to be used for overlapping
  783. * @param out pointer to the output buffer
  784. * @param chan 0: left or single channel, 1: right channel
  785. */
  786. static inline void
  787. mlt_compensate_output(COOKContext *q, float *decode_buffer,
  788. cook_gains *gains, float *previous_buffer,
  789. int16_t *out, int chan)
  790. {
  791. imlt_gain(q, decode_buffer, gains, previous_buffer);
  792. q->saturate_output (q, chan, out);
  793. }
  794. /**
  795. * Cook subpacket decoding. This function returns one decoded subpacket,
  796. * usually 1024 samples per channel.
  797. *
  798. * @param q pointer to the COOKContext
  799. * @param inbuffer pointer to the inbuffer
  800. * @param sub_packet_size subpacket size
  801. * @param outbuffer pointer to the outbuffer
  802. */
  803. static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
  804. int sub_packet_size, int16_t *outbuffer) {
  805. /* packet dump */
  806. // for (i=0 ; i<sub_packet_size ; i++) {
  807. // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
  808. // }
  809. // av_log(q->avctx, AV_LOG_ERROR, "\n");
  810. decode_bytes_and_gain(q, inbuffer, &q->gains1);
  811. if (q->joint_stereo) {
  812. joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
  813. } else {
  814. mono_decode(q, q->decode_buffer_1);
  815. if (q->nb_channels == 2) {
  816. decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
  817. mono_decode(q, q->decode_buffer_2);
  818. }
  819. }
  820. mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
  821. q->mono_previous_buffer1, outbuffer, 0);
  822. if (q->nb_channels == 2) {
  823. if (q->joint_stereo) {
  824. mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
  825. q->mono_previous_buffer2, outbuffer, 1);
  826. } else {
  827. mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
  828. q->mono_previous_buffer2, outbuffer, 1);
  829. }
  830. }
  831. return q->samples_per_frame * sizeof(int16_t);
  832. }
  833. /**
  834. * Cook frame decoding
  835. *
  836. * @param avctx pointer to the AVCodecContext
  837. */
  838. static int cook_decode_frame(AVCodecContext *avctx,
  839. void *data, int *data_size,
  840. const uint8_t *buf, int buf_size) {
  841. COOKContext *q = avctx->priv_data;
  842. if (buf_size < avctx->block_align)
  843. return buf_size;
  844. *data_size = decode_subpacket(q, buf, avctx->block_align, data);
  845. /* Discard the first two frames: no valid audio. */
  846. if (avctx->frame_number < 2) *data_size = 0;
  847. return avctx->block_align;
  848. }
  849. #ifdef COOKDEBUG
  850. static void dump_cook_context(COOKContext *q)
  851. {
  852. //int i=0;
  853. #define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
  854. av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
  855. av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
  856. if (q->cookversion > STEREO) {
  857. PRINT("js_subband_start",q->js_subband_start);
  858. PRINT("js_vlc_bits",q->js_vlc_bits);
  859. }
  860. av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
  861. PRINT("nb_channels",q->nb_channels);
  862. PRINT("bit_rate",q->bit_rate);
  863. PRINT("sample_rate",q->sample_rate);
  864. PRINT("samples_per_channel",q->samples_per_channel);
  865. PRINT("samples_per_frame",q->samples_per_frame);
  866. PRINT("subbands",q->subbands);
  867. PRINT("random_state",q->random_state);
  868. PRINT("js_subband_start",q->js_subband_start);
  869. PRINT("log2_numvector_size",q->log2_numvector_size);
  870. PRINT("numvector_size",q->numvector_size);
  871. PRINT("total_subbands",q->total_subbands);
  872. }
  873. #endif
  874. static av_cold int cook_count_channels(unsigned int mask){
  875. int i;
  876. int channels = 0;
  877. for(i = 0;i<32;i++){
  878. if(mask & (1<<i))
  879. ++channels;
  880. }
  881. return channels;
  882. }
  883. /**
  884. * Cook initialization
  885. *
  886. * @param avctx pointer to the AVCodecContext
  887. */
  888. static av_cold int cook_decode_init(AVCodecContext *avctx)
  889. {
  890. COOKContext *q = avctx->priv_data;
  891. const uint8_t *edata_ptr = avctx->extradata;
  892. q->avctx = avctx;
  893. /* Take care of the codec specific extradata. */
  894. if (avctx->extradata_size <= 0) {
  895. av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
  896. return -1;
  897. } else {
  898. /* 8 for mono, 16 for stereo, ? for multichannel
  899. Swap to right endianness so we don't need to care later on. */
  900. av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
  901. if (avctx->extradata_size >= 8){
  902. q->cookversion = bytestream_get_be32(&edata_ptr);
  903. q->samples_per_frame = bytestream_get_be16(&edata_ptr);
  904. q->subbands = bytestream_get_be16(&edata_ptr);
  905. }
  906. if (avctx->extradata_size >= 16){
  907. bytestream_get_be32(&edata_ptr); //Unknown unused
  908. q->js_subband_start = bytestream_get_be16(&edata_ptr);
  909. q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
  910. }
  911. }
  912. /* Take data from the AVCodecContext (RM container). */
  913. q->sample_rate = avctx->sample_rate;
  914. q->nb_channels = avctx->channels;
  915. q->bit_rate = avctx->bit_rate;
  916. /* Initialize RNG. */
  917. av_lfg_init(&q->random_state, ff_random_get_seed());
  918. /* Initialize extradata related variables. */
  919. q->samples_per_channel = q->samples_per_frame / q->nb_channels;
  920. q->bits_per_subpacket = avctx->block_align * 8;
  921. /* Initialize default data states. */
  922. q->log2_numvector_size = 5;
  923. q->total_subbands = q->subbands;
  924. /* Initialize version-dependent variables */
  925. av_log(avctx,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
  926. q->joint_stereo = 0;
  927. switch (q->cookversion) {
  928. case MONO:
  929. if (q->nb_channels != 1) {
  930. av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
  931. return -1;
  932. }
  933. av_log(avctx,AV_LOG_DEBUG,"MONO\n");
  934. break;
  935. case STEREO:
  936. if (q->nb_channels != 1) {
  937. q->bits_per_subpacket = q->bits_per_subpacket/2;
  938. }
  939. av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
  940. break;
  941. case JOINT_STEREO:
  942. if (q->nb_channels != 2) {
  943. av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
  944. return -1;
  945. }
  946. av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
  947. if (avctx->extradata_size >= 16){
  948. q->total_subbands = q->subbands + q->js_subband_start;
  949. q->joint_stereo = 1;
  950. }
  951. if (q->samples_per_channel > 256) {
  952. q->log2_numvector_size = 6;
  953. }
  954. if (q->samples_per_channel > 512) {
  955. q->log2_numvector_size = 7;
  956. }
  957. break;
  958. case MC_COOK:
  959. av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
  960. return -1;
  961. break;
  962. default:
  963. av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
  964. return -1;
  965. break;
  966. }
  967. /* Initialize variable relations */
  968. q->numvector_size = (1 << q->log2_numvector_size);
  969. /* Generate tables */
  970. init_pow2table();
  971. init_gain_table(q);
  972. init_cplscales_table(q);
  973. if (init_cook_vlc_tables(q) != 0)
  974. return -1;
  975. if(avctx->block_align >= UINT_MAX/2)
  976. return -1;
  977. /* Pad the databuffer with:
  978. DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
  979. FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
  980. if (q->nb_channels==2 && q->joint_stereo==0) {
  981. q->decoded_bytes_buffer =
  982. av_mallocz(avctx->block_align/2
  983. + DECODE_BYTES_PAD2(avctx->block_align/2)
  984. + FF_INPUT_BUFFER_PADDING_SIZE);
  985. } else {
  986. q->decoded_bytes_buffer =
  987. av_mallocz(avctx->block_align
  988. + DECODE_BYTES_PAD1(avctx->block_align)
  989. + FF_INPUT_BUFFER_PADDING_SIZE);
  990. }
  991. if (q->decoded_bytes_buffer == NULL)
  992. return -1;
  993. q->gains1.now = q->gain_1;
  994. q->gains1.previous = q->gain_2;
  995. q->gains2.now = q->gain_3;
  996. q->gains2.previous = q->gain_4;
  997. /* Initialize transform. */
  998. if ( init_cook_mlt(q) != 0 )
  999. return -1;
  1000. /* Initialize COOK signal arithmetic handling */
  1001. if (1) {
  1002. q->scalar_dequant = scalar_dequant_float;
  1003. q->decouple = decouple_float;
  1004. q->imlt_window = imlt_window_float;
  1005. q->interpolate = interpolate_float;
  1006. q->saturate_output = saturate_output_float;
  1007. }
  1008. /* Try to catch some obviously faulty streams, othervise it might be exploitable */
  1009. if (q->total_subbands > 53) {
  1010. av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
  1011. return -1;
  1012. }
  1013. if (q->subbands > 50) {
  1014. av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
  1015. return -1;
  1016. }
  1017. if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
  1018. } else {
  1019. av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
  1020. return -1;
  1021. }
  1022. if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
  1023. av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
  1024. return -1;
  1025. }
  1026. avctx->sample_fmt = SAMPLE_FMT_S16;
  1027. avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
  1028. #ifdef COOKDEBUG
  1029. dump_cook_context(q);
  1030. #endif
  1031. return 0;
  1032. }
  1033. AVCodec cook_decoder =
  1034. {
  1035. .name = "cook",
  1036. .type = CODEC_TYPE_AUDIO,
  1037. .id = CODEC_ID_COOK,
  1038. .priv_data_size = sizeof(COOKContext),
  1039. .init = cook_decode_init,
  1040. .close = cook_decode_close,
  1041. .decode = cook_decode_frame,
  1042. .long_name = NULL_IF_CONFIG_SMALL("COOK"),
  1043. };