You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

728 lines
33KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avutil.h"
  27. #include "libavutil/log.h"
  28. #include "libavutil/pixfmt.h"
  29. #define STR(s) AV_TOSTRING(s) //AV_STRINGIFY is too long
  30. #define FAST_BGR2YV12 //use 7-bit instead of 15-bit coefficients
  31. #define MAX_FILTER_SIZE 256
  32. #define DITHER1XBPP
  33. #if HAVE_BIGENDIAN
  34. #define ALT32_CORR (-1)
  35. #else
  36. #define ALT32_CORR 1
  37. #endif
  38. #if ARCH_X86_64
  39. # define APCK_PTR2 8
  40. # define APCK_COEF 16
  41. # define APCK_SIZE 24
  42. #else
  43. # define APCK_PTR2 4
  44. # define APCK_COEF 8
  45. # define APCK_SIZE 16
  46. #endif
  47. struct SwsContext;
  48. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t* src[],
  49. int srcStride[], int srcSliceY, int srcSliceH,
  50. uint8_t* dst[], int dstStride[]);
  51. /**
  52. * Write one line of horizontally scaled Y/U/V/A to planar output
  53. * without any additional vertical scaling (or point-scaling).
  54. *
  55. * @param c SWS scaling context
  56. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  57. * 19-bit for 16bit output (in int32_t)
  58. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  59. * 19-bit for 16bit output (in int32_t)
  60. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  61. * 19-bit for 16bit output (in int32_t)
  62. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  63. * 19-bit for 16bit output (in int32_t)
  64. * @param dest pointer to the 4 output planes (Y/U/V/A). For >8bit
  65. * output, this is in uint16_t
  66. * @param dstW width of dest[0], dest[3], lumSrc and alpSrc in pixels
  67. * @param chrDstW width of dest[1], dest[2], chrUSrc and chrVSrc
  68. */
  69. typedef void (*yuv2planar1_fn) (struct SwsContext *c,
  70. const int16_t *lumSrc, const int16_t *chrUSrc,
  71. const int16_t *chrVSrc, const int16_t *alpSrc,
  72. uint8_t *dest[4], int dstW, int chrDstW);
  73. /**
  74. * Write one line of horizontally scaled Y/U/V/A to planar output
  75. * with multi-point vertical scaling between input pixels.
  76. *
  77. * @param c SWS scaling context
  78. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  79. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  80. * 19-bit for 16bit output (in int32_t)
  81. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  82. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  83. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  84. * 19-bit for 16bit output (in int32_t)
  85. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  86. * 19-bit for 16bit output (in int32_t)
  87. * @param chrFilterSize number of vertical chroma input lines to scale
  88. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  89. * 19-bit for 16bit output (in int32_t)
  90. * @param dest pointer to the 4 output planes (Y/U/V/A). For >8bit
  91. * output, this is in uint16_t
  92. * @param dstW width of dest[0], dest[3], lumSrc and alpSrc in pixels
  93. * @param chrDstW width of dest[1], dest[2], chrUSrc and chrVSrc
  94. */
  95. typedef void (*yuv2planarX_fn) (struct SwsContext *c, const int16_t *lumFilter,
  96. const int16_t **lumSrc, int lumFilterSize,
  97. const int16_t *chrFilter, const int16_t **chrUSrc,
  98. const int16_t **chrVSrc, int chrFilterSize,
  99. const int16_t **alpSrc, uint8_t *dest[4],
  100. int dstW, int chrDstW);
  101. /**
  102. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  103. * output without any additional vertical scaling (or point-scaling). Note
  104. * that this function may do chroma scaling, see the "uvalpha" argument.
  105. *
  106. * @param c SWS scaling context
  107. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  108. * 19-bit for 16bit output (in int32_t)
  109. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  110. * 19-bit for 16bit output (in int32_t)
  111. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  112. * 19-bit for 16bit output (in int32_t)
  113. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  114. * 19-bit for 16bit output (in int32_t)
  115. * @param dest pointer to the output plane. For 16bit output, this is
  116. * uint16_t
  117. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  118. * to write into dest[]
  119. * @param uvalpha chroma scaling coefficient for the second line of chroma
  120. * pixels, either 2048 or 0. If 0, one chroma input is used
  121. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  122. * is set, it generates 1 output pixel). If 2048, two chroma
  123. * input pixels should be averaged for 2 output pixels (this
  124. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  125. * @param y vertical line number for this output. This does not need
  126. * to be used to calculate the offset in the destination,
  127. * but can be used to generate comfort noise using dithering
  128. * for some output formats.
  129. */
  130. typedef void (*yuv2packed1_fn) (struct SwsContext *c, const int16_t *lumSrc,
  131. const int16_t *chrUSrc[2], const int16_t *chrVSrc[2],
  132. const int16_t *alpSrc, uint8_t *dest,
  133. int dstW, int uvalpha, int y);
  134. /**
  135. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  136. * output by doing bilinear scaling between two input lines.
  137. *
  138. * @param c SWS scaling context
  139. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  140. * 19-bit for 16bit output (in int32_t)
  141. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  142. * 19-bit for 16bit output (in int32_t)
  143. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  144. * 19-bit for 16bit output (in int32_t)
  145. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  146. * 19-bit for 16bit output (in int32_t)
  147. * @param dest pointer to the output plane. For 16bit output, this is
  148. * uint16_t
  149. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  150. * to write into dest[]
  151. * @param yalpha luma/alpha scaling coefficients for the second input line.
  152. * The first line's coefficients can be calculated by using
  153. * 4096 - yalpha
  154. * @param uvalpha chroma scaling coefficient for the second input line. The
  155. * first line's coefficients can be calculated by using
  156. * 4096 - uvalpha
  157. * @param y vertical line number for this output. This does not need
  158. * to be used to calculate the offset in the destination,
  159. * but can be used to generate comfort noise using dithering
  160. * for some output formats.
  161. */
  162. typedef void (*yuv2packed2_fn) (struct SwsContext *c, const int16_t *lumSrc[2],
  163. const int16_t *chrUSrc[2], const int16_t *chrVSrc[2],
  164. const int16_t *alpSrc[2], uint8_t *dest,
  165. int dstW, int yalpha, int uvalpha, int y);
  166. /**
  167. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  168. * output by doing multi-point vertical scaling between input pixels.
  169. *
  170. * @param c SWS scaling context
  171. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  172. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  173. * 19-bit for 16bit output (in int32_t)
  174. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  175. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  176. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  177. * 19-bit for 16bit output (in int32_t)
  178. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  179. * 19-bit for 16bit output (in int32_t)
  180. * @param chrFilterSize number of vertical chroma input lines to scale
  181. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  182. * 19-bit for 16bit output (in int32_t)
  183. * @param dest pointer to the output plane. For 16bit output, this is
  184. * uint16_t
  185. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  186. * to write into dest[]
  187. * @param y vertical line number for this output. This does not need
  188. * to be used to calculate the offset in the destination,
  189. * but can be used to generate comfort noise using dithering
  190. * or some output formats.
  191. */
  192. typedef void (*yuv2packedX_fn) (struct SwsContext *c, const int16_t *lumFilter,
  193. const int16_t **lumSrc, int lumFilterSize,
  194. const int16_t *chrFilter, const int16_t **chrUSrc,
  195. const int16_t **chrVSrc, int chrFilterSize,
  196. const int16_t **alpSrc, uint8_t *dest,
  197. int dstW, int y);
  198. /* This struct should be aligned on at least a 32-byte boundary. */
  199. typedef struct SwsContext {
  200. /**
  201. * info on struct for av_log
  202. */
  203. const AVClass *av_class;
  204. /**
  205. * Note that src, dst, srcStride, dstStride will be copied in the
  206. * sws_scale() wrapper so they can be freely modified here.
  207. */
  208. SwsFunc swScale;
  209. int srcW; ///< Width of source luma/alpha planes.
  210. int srcH; ///< Height of source luma/alpha planes.
  211. int dstH; ///< Height of destination luma/alpha planes.
  212. int chrSrcW; ///< Width of source chroma planes.
  213. int chrSrcH; ///< Height of source chroma planes.
  214. int chrDstW; ///< Width of destination chroma planes.
  215. int chrDstH; ///< Height of destination chroma planes.
  216. int lumXInc, chrXInc;
  217. int lumYInc, chrYInc;
  218. enum PixelFormat dstFormat; ///< Destination pixel format.
  219. enum PixelFormat srcFormat; ///< Source pixel format.
  220. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  221. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  222. int dstBpc, srcBpc;
  223. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  224. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  225. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  226. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  227. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  228. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  229. double param[2]; ///< Input parameters for scaling algorithms that need them.
  230. uint32_t pal_yuv[256];
  231. uint32_t pal_rgb[256];
  232. /**
  233. * @name Scaled horizontal lines ring buffer.
  234. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  235. * so they may be passed to the vertical scaler. The pointers to the
  236. * allocated buffers for each line are duplicated in sequence in the ring
  237. * buffer to simplify indexing and avoid wrapping around between lines
  238. * inside the vertical scaler code. The wrapping is done before the
  239. * vertical scaler is called.
  240. */
  241. //@{
  242. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  243. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  244. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  245. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  246. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  247. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  248. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  249. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  250. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  251. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  252. //@}
  253. uint8_t *formatConvBuffer;
  254. /**
  255. * @name Horizontal and vertical filters.
  256. * To better understand the following fields, here is a pseudo-code of
  257. * their usage in filtering a horizontal line:
  258. * @code
  259. * for (i = 0; i < width; i++) {
  260. * dst[i] = 0;
  261. * for (j = 0; j < filterSize; j++)
  262. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  263. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  264. * }
  265. * @endcode
  266. */
  267. //@{
  268. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  269. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  270. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  271. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  272. int16_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  273. int16_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  274. int16_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  275. int16_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  276. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  277. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  278. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  279. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  280. //@}
  281. int lumMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for luma/alpha planes.
  282. int chrMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for chroma planes.
  283. uint8_t *lumMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for luma/alpha planes.
  284. uint8_t *chrMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for chroma planes.
  285. int canMMX2BeUsed;
  286. int dstY; ///< Last destination vertical line output from last slice.
  287. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  288. void * yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  289. uint8_t * table_rV[256];
  290. uint8_t * table_gU[256];
  291. int table_gV[256];
  292. uint8_t * table_bU[256];
  293. //Colorspace stuff
  294. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  295. int srcColorspaceTable[4];
  296. int dstColorspaceTable[4];
  297. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  298. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  299. int yuv2rgb_y_offset;
  300. int yuv2rgb_y_coeff;
  301. int yuv2rgb_v2r_coeff;
  302. int yuv2rgb_v2g_coeff;
  303. int yuv2rgb_u2g_coeff;
  304. int yuv2rgb_u2b_coeff;
  305. #define RED_DITHER "0*8"
  306. #define GREEN_DITHER "1*8"
  307. #define BLUE_DITHER "2*8"
  308. #define Y_COEFF "3*8"
  309. #define VR_COEFF "4*8"
  310. #define UB_COEFF "5*8"
  311. #define VG_COEFF "6*8"
  312. #define UG_COEFF "7*8"
  313. #define Y_OFFSET "8*8"
  314. #define U_OFFSET "9*8"
  315. #define V_OFFSET "10*8"
  316. #define LUM_MMX_FILTER_OFFSET "11*8"
  317. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  318. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  319. #define ESP_OFFSET "11*8+4*4*256*2+8"
  320. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  321. #define U_TEMP "11*8+4*4*256*2+24"
  322. #define V_TEMP "11*8+4*4*256*2+32"
  323. #define Y_TEMP "11*8+4*4*256*2+40"
  324. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  325. #define UV_OFF "11*8+4*4*256*3+48"
  326. #define UV_OFFx2 "11*8+4*4*256*3+56"
  327. #define DITHER16 "11*8+4*4*256*3+64"
  328. #define DITHER32 "11*8+4*4*256*3+80"
  329. DECLARE_ALIGNED(8, uint64_t, redDither);
  330. DECLARE_ALIGNED(8, uint64_t, greenDither);
  331. DECLARE_ALIGNED(8, uint64_t, blueDither);
  332. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  333. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  334. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  335. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  336. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  337. DECLARE_ALIGNED(8, uint64_t, yOffset);
  338. DECLARE_ALIGNED(8, uint64_t, uOffset);
  339. DECLARE_ALIGNED(8, uint64_t, vOffset);
  340. int32_t lumMmxFilter[4*MAX_FILTER_SIZE];
  341. int32_t chrMmxFilter[4*MAX_FILTER_SIZE];
  342. int dstW; ///< Width of destination luma/alpha planes.
  343. DECLARE_ALIGNED(8, uint64_t, esp);
  344. DECLARE_ALIGNED(8, uint64_t, vRounder);
  345. DECLARE_ALIGNED(8, uint64_t, u_temp);
  346. DECLARE_ALIGNED(8, uint64_t, v_temp);
  347. DECLARE_ALIGNED(8, uint64_t, y_temp);
  348. int32_t alpMmxFilter[4*MAX_FILTER_SIZE];
  349. // alignment of these values is not necessary, but merely here
  350. // to maintain the same offset across x8632 and x86-64. Once we
  351. // use proper offset macros in the asm, they can be removed.
  352. DECLARE_ALIGNED(8, ptrdiff_t, uv_off); ///< offset (in pixels) between u and v planes
  353. DECLARE_ALIGNED(8, ptrdiff_t, uv_offx2); ///< offset (in bytes) between u and v planes
  354. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  355. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  356. const uint8_t *chrDither8, *lumDither8;
  357. #if HAVE_ALTIVEC
  358. vector signed short CY;
  359. vector signed short CRV;
  360. vector signed short CBU;
  361. vector signed short CGU;
  362. vector signed short CGV;
  363. vector signed short OY;
  364. vector unsigned short CSHIFT;
  365. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  366. #endif
  367. #if ARCH_BFIN
  368. DECLARE_ALIGNED(4, uint32_t, oy);
  369. DECLARE_ALIGNED(4, uint32_t, oc);
  370. DECLARE_ALIGNED(4, uint32_t, zero);
  371. DECLARE_ALIGNED(4, uint32_t, cy);
  372. DECLARE_ALIGNED(4, uint32_t, crv);
  373. DECLARE_ALIGNED(4, uint32_t, rmask);
  374. DECLARE_ALIGNED(4, uint32_t, cbu);
  375. DECLARE_ALIGNED(4, uint32_t, bmask);
  376. DECLARE_ALIGNED(4, uint32_t, cgu);
  377. DECLARE_ALIGNED(4, uint32_t, cgv);
  378. DECLARE_ALIGNED(4, uint32_t, gmask);
  379. #endif
  380. #if HAVE_VIS
  381. DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
  382. #endif
  383. /* function pointers for swScale() */
  384. yuv2planar1_fn yuv2yuv1;
  385. yuv2planarX_fn yuv2yuvX;
  386. yuv2packed1_fn yuv2packed1;
  387. yuv2packed2_fn yuv2packed2;
  388. yuv2packedX_fn yuv2packedX;
  389. void (*lumToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  390. int width, uint32_t *pal); ///< Unscaled conversion of luma plane to YV12 for horizontal scaler.
  391. void (*alpToYV12)(uint8_t *dst, const uint8_t *src, const uint8_t *src2, const uint8_t *src3,
  392. int width, uint32_t *pal); ///< Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  393. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  394. const uint8_t *src1, const uint8_t *src2, const uint8_t *src3,
  395. int width, uint32_t *pal); ///< Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  396. /**
  397. * Scale one horizontal line of input data using a bilinear filter
  398. * to produce one line of output data. Compared to SwsContext->hScale(),
  399. * please take note of the following caveats when using these:
  400. * - Scaling is done using only 7bit instead of 14bit coefficients.
  401. * - You can use no more than 5 input pixels to produce 4 output
  402. * pixels. Therefore, this filter should not be used for downscaling
  403. * by more than ~20% in width (because that equals more than 5/4th
  404. * downscaling and thus more than 5 pixels input per 4 pixels output).
  405. * - In general, bilinear filters create artifacts during downscaling
  406. * (even when <20%), because one output pixel will span more than one
  407. * input pixel, and thus some pixels will need edges of both neighbor
  408. * pixels to interpolate the output pixel. Since you can use at most
  409. * two input pixels per output pixel in bilinear scaling, this is
  410. * impossible and thus downscaling by any size will create artifacts.
  411. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  412. * in SwsContext->flags.
  413. */
  414. /** @{ */
  415. void (*hyscale_fast)(struct SwsContext *c,
  416. int16_t *dst, int dstWidth,
  417. const uint8_t *src, int srcW, int xInc);
  418. void (*hcscale_fast)(struct SwsContext *c,
  419. int16_t *dst1, int16_t *dst2, int dstWidth,
  420. const uint8_t *src1, const uint8_t *src2,
  421. int srcW, int xInc);
  422. /** @} */
  423. /**
  424. * Scale one horizontal line of input data using a filter over the input
  425. * lines, to produce one (differently sized) line of output data.
  426. *
  427. * @param dst pointer to destination buffer for horizontally scaled
  428. * data. If the number of bits per component of one
  429. * destination pixel (SwsContext->dstBpc) is <= 10, data
  430. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  431. * SwsContext->dstBpc == 16), data will be 19bpc in
  432. * 32bits (int32_t) width.
  433. * @param dstW width of destination image
  434. * @param src pointer to source data to be scaled. If the number of
  435. * bits per component of a source pixel (SwsContext->srcBpc)
  436. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  437. * (i.e. SwsContext->dstBpc > 8), this is native depth
  438. * in 16bits (uint16_t) width. In other words, for 9-bit
  439. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  440. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  441. * @param filter filter coefficients to be used per output pixel for
  442. * scaling. This contains 14bpp filtering coefficients.
  443. * Guaranteed to contain dstW * filterSize entries.
  444. * @param filterPos position of the first input pixel to be used for
  445. * each output pixel during scaling. Guaranteed to
  446. * contain dstW entries.
  447. * @param filterSize the number of input coefficients to be used (and
  448. * thus the number of input pixels to be used) for
  449. * creating a single output pixel. Is aligned to 4
  450. * (and input coefficients thus padded with zeroes)
  451. * to simplify creating SIMD code.
  452. */
  453. /** @{ */
  454. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW, const uint8_t *src,
  455. const int16_t *filter, const int16_t *filterPos,
  456. int filterSize);
  457. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW, const uint8_t *src,
  458. const int16_t *filter, const int16_t *filterPos,
  459. int filterSize);
  460. /** @} */
  461. void (*lumConvertRange)(int16_t *dst, int width); ///< Color range conversion function for luma plane if needed.
  462. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width); ///< Color range conversion function for chroma planes if needed.
  463. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  464. } SwsContext;
  465. //FIXME check init (where 0)
  466. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  467. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  468. int fullRange, int brightness,
  469. int contrast, int saturation);
  470. void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
  471. int brightness, int contrast, int saturation);
  472. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  473. int lastInLumBuf, int lastInChrBuf);
  474. SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
  475. SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
  476. SwsFunc ff_yuv2rgb_init_mlib(SwsContext *c);
  477. SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
  478. SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
  479. void ff_bfin_get_unscaled_swscale(SwsContext *c);
  480. #if FF_API_SWS_FORMAT_NAME
  481. /**
  482. * @deprecated Use av_get_pix_fmt_name() instead.
  483. */
  484. attribute_deprecated
  485. const char *sws_format_name(enum PixelFormat format);
  486. #endif
  487. //FIXME replace this with something faster
  488. #define is16BPS(x) ( \
  489. (x)==PIX_FMT_GRAY16BE \
  490. || (x)==PIX_FMT_GRAY16LE \
  491. || (x)==PIX_FMT_BGR48BE \
  492. || (x)==PIX_FMT_BGR48LE \
  493. || (x)==PIX_FMT_RGB48BE \
  494. || (x)==PIX_FMT_RGB48LE \
  495. || (x)==PIX_FMT_BGRA64BE \
  496. || (x)==PIX_FMT_BGRA64LE \
  497. || (x)==PIX_FMT_RGBA64BE \
  498. || (x)==PIX_FMT_RGBA64LE \
  499. || (x)==PIX_FMT_YUV420P16LE \
  500. || (x)==PIX_FMT_YUV422P16LE \
  501. || (x)==PIX_FMT_YUV444P16LE \
  502. || (x)==PIX_FMT_YUV420P16BE \
  503. || (x)==PIX_FMT_YUV422P16BE \
  504. || (x)==PIX_FMT_YUV444P16BE \
  505. )
  506. #define isNBPS(x) ( \
  507. (x)==PIX_FMT_YUV420P9LE \
  508. || (x)==PIX_FMT_YUV420P9BE \
  509. || (x)==PIX_FMT_YUV444P9BE \
  510. || (x)==PIX_FMT_YUV444P9LE \
  511. || (x)==PIX_FMT_YUV422P10BE \
  512. || (x)==PIX_FMT_YUV422P10LE \
  513. || (x)==PIX_FMT_YUV444P10BE \
  514. || (x)==PIX_FMT_YUV444P10LE \
  515. || (x)==PIX_FMT_YUV420P10LE \
  516. || (x)==PIX_FMT_YUV420P10BE \
  517. || (x)==PIX_FMT_YUV422P10LE \
  518. || (x)==PIX_FMT_YUV422P10BE \
  519. )
  520. #define is9_OR_10BPS isNBPS //for ronald
  521. #define isBE(x) ((x)&1)
  522. #define isPlanar8YUV(x) ( \
  523. (x)==PIX_FMT_YUV410P \
  524. || (x)==PIX_FMT_YUV420P \
  525. || (x)==PIX_FMT_YUVA420P \
  526. || (x)==PIX_FMT_YUV411P \
  527. || (x)==PIX_FMT_YUV422P \
  528. || (x)==PIX_FMT_YUV444P \
  529. || (x)==PIX_FMT_YUV440P \
  530. || (x)==PIX_FMT_NV12 \
  531. || (x)==PIX_FMT_NV21 \
  532. )
  533. #define isPlanarYUV(x) ( \
  534. isPlanar8YUV(x) \
  535. || (x)==PIX_FMT_YUV420P9LE \
  536. || (x)==PIX_FMT_YUV444P9LE \
  537. || (x)==PIX_FMT_YUV420P10LE \
  538. || (x)==PIX_FMT_YUV422P10LE \
  539. || (x)==PIX_FMT_YUV444P10LE \
  540. || (x)==PIX_FMT_YUV420P16LE \
  541. || (x)==PIX_FMT_YUV422P10LE \
  542. || (x)==PIX_FMT_YUV422P16LE \
  543. || (x)==PIX_FMT_YUV444P16LE \
  544. || (x)==PIX_FMT_YUV420P9BE \
  545. || (x)==PIX_FMT_YUV444P9BE \
  546. || (x)==PIX_FMT_YUV420P10BE \
  547. || (x)==PIX_FMT_YUV422P10BE \
  548. || (x)==PIX_FMT_YUV444P10BE \
  549. || (x)==PIX_FMT_YUV420P16BE \
  550. || (x)==PIX_FMT_YUV422P10BE \
  551. || (x)==PIX_FMT_YUV422P16BE \
  552. || (x)==PIX_FMT_YUV444P16BE \
  553. )
  554. #define isPlanar(x) ( \
  555. isPlanarYUV(x) \
  556. || (x)==PIX_FMT_GBR24P \
  557. )
  558. #define isYUV(x) ( \
  559. (x)==PIX_FMT_UYVY422 \
  560. || (x)==PIX_FMT_YUYV422 \
  561. || isPlanarYUV(x) \
  562. )
  563. #define isGray(x) ( \
  564. (x)==PIX_FMT_GRAY8 \
  565. || (x)==PIX_FMT_GRAY8A \
  566. || (x)==PIX_FMT_GRAY16BE \
  567. || (x)==PIX_FMT_GRAY16LE \
  568. )
  569. #define isGray16(x) ( \
  570. (x)==PIX_FMT_GRAY16BE \
  571. || (x)==PIX_FMT_GRAY16LE \
  572. )
  573. #define isRGBinInt(x) ( \
  574. (x)==PIX_FMT_RGB48BE \
  575. || (x)==PIX_FMT_RGB48LE \
  576. || (x)==PIX_FMT_RGBA64BE \
  577. || (x)==PIX_FMT_RGBA64LE \
  578. || (x)==PIX_FMT_RGB32 \
  579. || (x)==PIX_FMT_RGB32_1 \
  580. || (x)==PIX_FMT_RGB24 \
  581. || (x)==PIX_FMT_RGB565BE \
  582. || (x)==PIX_FMT_RGB565LE \
  583. || (x)==PIX_FMT_RGB555BE \
  584. || (x)==PIX_FMT_RGB555LE \
  585. || (x)==PIX_FMT_RGB444BE \
  586. || (x)==PIX_FMT_RGB444LE \
  587. || (x)==PIX_FMT_RGB8 \
  588. || (x)==PIX_FMT_RGB4 \
  589. || (x)==PIX_FMT_RGB4_BYTE \
  590. || (x)==PIX_FMT_MONOBLACK \
  591. || (x)==PIX_FMT_MONOWHITE \
  592. )
  593. #define isBGRinInt(x) ( \
  594. (x)==PIX_FMT_BGR48BE \
  595. || (x)==PIX_FMT_BGR48LE \
  596. || (x)==PIX_FMT_BGRA64BE \
  597. || (x)==PIX_FMT_BGRA64LE \
  598. || (x)==PIX_FMT_BGR32 \
  599. || (x)==PIX_FMT_BGR32_1 \
  600. || (x)==PIX_FMT_BGR24 \
  601. || (x)==PIX_FMT_BGR565BE \
  602. || (x)==PIX_FMT_BGR565LE \
  603. || (x)==PIX_FMT_BGR555BE \
  604. || (x)==PIX_FMT_BGR555LE \
  605. || (x)==PIX_FMT_BGR444BE \
  606. || (x)==PIX_FMT_BGR444LE \
  607. || (x)==PIX_FMT_BGR8 \
  608. || (x)==PIX_FMT_BGR4 \
  609. || (x)==PIX_FMT_BGR4_BYTE \
  610. || (x)==PIX_FMT_MONOBLACK \
  611. || (x)==PIX_FMT_MONOWHITE \
  612. )
  613. #define isRGBinBytes(x) ( \
  614. (x)==PIX_FMT_RGB48BE \
  615. || (x)==PIX_FMT_RGB48LE \
  616. || (x)==PIX_FMT_RGBA64BE \
  617. || (x)==PIX_FMT_RGBA64LE \
  618. || (x)==PIX_FMT_RGBA \
  619. || (x)==PIX_FMT_ARGB \
  620. || (x)==PIX_FMT_RGB24 \
  621. )
  622. #define isBGRinBytes(x) ( \
  623. (x)==PIX_FMT_BGR48BE \
  624. || (x)==PIX_FMT_BGR48LE \
  625. || (x)==PIX_FMT_BGRA64BE \
  626. || (x)==PIX_FMT_BGRA64LE \
  627. || (x)==PIX_FMT_BGRA \
  628. || (x)==PIX_FMT_ABGR \
  629. || (x)==PIX_FMT_BGR24 \
  630. )
  631. #define isAnyRGB(x) ( \
  632. isRGBinInt(x) \
  633. || isBGRinInt(x) \
  634. || (x)==PIX_FMT_GBR24P \
  635. )
  636. #define isALPHA(x) ( \
  637. (x)==PIX_FMT_BGRA64BE \
  638. || (x)==PIX_FMT_BGRA64LE \
  639. || (x)==PIX_FMT_RGBA64BE \
  640. || (x)==PIX_FMT_RGBA64LE \
  641. || (x)==PIX_FMT_BGR32 \
  642. || (x)==PIX_FMT_BGR32_1 \
  643. || (x)==PIX_FMT_RGB32 \
  644. || (x)==PIX_FMT_RGB32_1 \
  645. || (x)==PIX_FMT_PAL8 \
  646. || (x)==PIX_FMT_GRAY8A \
  647. || (x)==PIX_FMT_YUVA420P \
  648. )
  649. #define isPacked(x) ( \
  650. (x)==PIX_FMT_PAL8 \
  651. || (x)==PIX_FMT_YUYV422 \
  652. || (x)==PIX_FMT_UYVY422 \
  653. || (x)==PIX_FMT_Y400A \
  654. || isRGBinInt(x) \
  655. || isBGRinInt(x) \
  656. )
  657. #define usePal(x) ((av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL) || (x) == PIX_FMT_GRAY8A)
  658. extern const uint64_t ff_dither4[2];
  659. extern const uint64_t ff_dither8[2];
  660. extern const uint8_t dithers[8][8][8];
  661. extern const uint16_t dither_scale[15][16];
  662. extern const AVClass sws_context_class;
  663. /**
  664. * Sets c->swScale to an unscaled converter if one exists for the specific
  665. * source and destination formats, bit depths, flags, etc.
  666. */
  667. void ff_get_unscaled_swscale(SwsContext *c);
  668. void ff_swscale_get_unscaled_altivec(SwsContext *c);
  669. /**
  670. * Returns function pointer to fastest main scaler path function depending
  671. * on architecture and available optimizations.
  672. */
  673. SwsFunc ff_getSwsFunc(SwsContext *c);
  674. void ff_sws_init_swScale_altivec(SwsContext *c);
  675. void ff_sws_init_swScale_mmx(SwsContext *c);
  676. #endif /* SWSCALE_SWSCALE_INTERNAL_H */