You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

954 lines
31KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  91. if(AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  92. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  93. s->use_variable_block_len= 0; // this fixes issue1503
  94. }
  95. }
  96. if(ff_wma_init(avctx, flags2)<0)
  97. return -1;
  98. /* init MDCT */
  99. for(i = 0; i < s->nb_block_sizes; i++)
  100. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  101. if (s->use_noise_coding) {
  102. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  103. ff_wma_hgain_huffbits, 1, 1,
  104. ff_wma_hgain_huffcodes, 2, 2, 0);
  105. }
  106. if (s->use_exp_vlc) {
  107. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  108. ff_aac_scalefactor_bits, 1, 1,
  109. ff_aac_scalefactor_code, 4, 4, 0);
  110. } else {
  111. wma_lsp_to_curve_init(s, s->frame_len);
  112. }
  113. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  114. return 0;
  115. }
  116. /**
  117. * compute x^-0.25 with an exponent and mantissa table. We use linear
  118. * interpolation to reduce the mantissa table size at a small speed
  119. * expense (linear interpolation approximately doubles the number of
  120. * bits of precision).
  121. */
  122. static inline float pow_m1_4(WMACodecContext *s, float x)
  123. {
  124. union {
  125. float f;
  126. unsigned int v;
  127. } u, t;
  128. unsigned int e, m;
  129. float a, b;
  130. u.f = x;
  131. e = u.v >> 23;
  132. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  133. /* build interpolation scale: 1 <= t < 2. */
  134. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  135. a = s->lsp_pow_m_table1[m];
  136. b = s->lsp_pow_m_table2[m];
  137. return s->lsp_pow_e_table[e] * (a + b * t.f);
  138. }
  139. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  140. {
  141. float wdel, a, b;
  142. int i, e, m;
  143. wdel = M_PI / frame_len;
  144. for(i=0;i<frame_len;i++)
  145. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  146. /* tables for x^-0.25 computation */
  147. for(i=0;i<256;i++) {
  148. e = i - 126;
  149. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  150. }
  151. /* NOTE: these two tables are needed to avoid two operations in
  152. pow_m1_4 */
  153. b = 1.0;
  154. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  155. m = (1 << LSP_POW_BITS) + i;
  156. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  157. a = pow(a, -0.25);
  158. s->lsp_pow_m_table1[i] = 2 * a - b;
  159. s->lsp_pow_m_table2[i] = b - a;
  160. b = a;
  161. }
  162. }
  163. /**
  164. * NOTE: We use the same code as Vorbis here
  165. * @todo optimize it further with SSE/3Dnow
  166. */
  167. static void wma_lsp_to_curve(WMACodecContext *s,
  168. float *out, float *val_max_ptr,
  169. int n, float *lsp)
  170. {
  171. int i, j;
  172. float p, q, w, v, val_max;
  173. val_max = 0;
  174. for(i=0;i<n;i++) {
  175. p = 0.5f;
  176. q = 0.5f;
  177. w = s->lsp_cos_table[i];
  178. for(j=1;j<NB_LSP_COEFS;j+=2){
  179. q *= w - lsp[j - 1];
  180. p *= w - lsp[j];
  181. }
  182. p *= p * (2.0f - w);
  183. q *= q * (2.0f + w);
  184. v = p + q;
  185. v = pow_m1_4(s, v);
  186. if (v > val_max)
  187. val_max = v;
  188. out[i] = v;
  189. }
  190. *val_max_ptr = val_max;
  191. }
  192. /**
  193. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  194. */
  195. static void decode_exp_lsp(WMACodecContext *s, int ch)
  196. {
  197. float lsp_coefs[NB_LSP_COEFS];
  198. int val, i;
  199. for(i = 0; i < NB_LSP_COEFS; i++) {
  200. if (i == 0 || i >= 8)
  201. val = get_bits(&s->gb, 3);
  202. else
  203. val = get_bits(&s->gb, 4);
  204. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  205. }
  206. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  207. s->block_len, lsp_coefs);
  208. }
  209. /** pow(10, i / 16.0) for i in -60..95 */
  210. static const float pow_tab[] = {
  211. 1.7782794100389e-04, 2.0535250264571e-04,
  212. 2.3713737056617e-04, 2.7384196342644e-04,
  213. 3.1622776601684e-04, 3.6517412725484e-04,
  214. 4.2169650342858e-04, 4.8696752516586e-04,
  215. 5.6234132519035e-04, 6.4938163157621e-04,
  216. 7.4989420933246e-04, 8.6596432336006e-04,
  217. 1.0000000000000e-03, 1.1547819846895e-03,
  218. 1.3335214321633e-03, 1.5399265260595e-03,
  219. 1.7782794100389e-03, 2.0535250264571e-03,
  220. 2.3713737056617e-03, 2.7384196342644e-03,
  221. 3.1622776601684e-03, 3.6517412725484e-03,
  222. 4.2169650342858e-03, 4.8696752516586e-03,
  223. 5.6234132519035e-03, 6.4938163157621e-03,
  224. 7.4989420933246e-03, 8.6596432336006e-03,
  225. 1.0000000000000e-02, 1.1547819846895e-02,
  226. 1.3335214321633e-02, 1.5399265260595e-02,
  227. 1.7782794100389e-02, 2.0535250264571e-02,
  228. 2.3713737056617e-02, 2.7384196342644e-02,
  229. 3.1622776601684e-02, 3.6517412725484e-02,
  230. 4.2169650342858e-02, 4.8696752516586e-02,
  231. 5.6234132519035e-02, 6.4938163157621e-02,
  232. 7.4989420933246e-02, 8.6596432336007e-02,
  233. 1.0000000000000e-01, 1.1547819846895e-01,
  234. 1.3335214321633e-01, 1.5399265260595e-01,
  235. 1.7782794100389e-01, 2.0535250264571e-01,
  236. 2.3713737056617e-01, 2.7384196342644e-01,
  237. 3.1622776601684e-01, 3.6517412725484e-01,
  238. 4.2169650342858e-01, 4.8696752516586e-01,
  239. 5.6234132519035e-01, 6.4938163157621e-01,
  240. 7.4989420933246e-01, 8.6596432336007e-01,
  241. 1.0000000000000e+00, 1.1547819846895e+00,
  242. 1.3335214321633e+00, 1.5399265260595e+00,
  243. 1.7782794100389e+00, 2.0535250264571e+00,
  244. 2.3713737056617e+00, 2.7384196342644e+00,
  245. 3.1622776601684e+00, 3.6517412725484e+00,
  246. 4.2169650342858e+00, 4.8696752516586e+00,
  247. 5.6234132519035e+00, 6.4938163157621e+00,
  248. 7.4989420933246e+00, 8.6596432336007e+00,
  249. 1.0000000000000e+01, 1.1547819846895e+01,
  250. 1.3335214321633e+01, 1.5399265260595e+01,
  251. 1.7782794100389e+01, 2.0535250264571e+01,
  252. 2.3713737056617e+01, 2.7384196342644e+01,
  253. 3.1622776601684e+01, 3.6517412725484e+01,
  254. 4.2169650342858e+01, 4.8696752516586e+01,
  255. 5.6234132519035e+01, 6.4938163157621e+01,
  256. 7.4989420933246e+01, 8.6596432336007e+01,
  257. 1.0000000000000e+02, 1.1547819846895e+02,
  258. 1.3335214321633e+02, 1.5399265260595e+02,
  259. 1.7782794100389e+02, 2.0535250264571e+02,
  260. 2.3713737056617e+02, 2.7384196342644e+02,
  261. 3.1622776601684e+02, 3.6517412725484e+02,
  262. 4.2169650342858e+02, 4.8696752516586e+02,
  263. 5.6234132519035e+02, 6.4938163157621e+02,
  264. 7.4989420933246e+02, 8.6596432336007e+02,
  265. 1.0000000000000e+03, 1.1547819846895e+03,
  266. 1.3335214321633e+03, 1.5399265260595e+03,
  267. 1.7782794100389e+03, 2.0535250264571e+03,
  268. 2.3713737056617e+03, 2.7384196342644e+03,
  269. 3.1622776601684e+03, 3.6517412725484e+03,
  270. 4.2169650342858e+03, 4.8696752516586e+03,
  271. 5.6234132519035e+03, 6.4938163157621e+03,
  272. 7.4989420933246e+03, 8.6596432336007e+03,
  273. 1.0000000000000e+04, 1.1547819846895e+04,
  274. 1.3335214321633e+04, 1.5399265260595e+04,
  275. 1.7782794100389e+04, 2.0535250264571e+04,
  276. 2.3713737056617e+04, 2.7384196342644e+04,
  277. 3.1622776601684e+04, 3.6517412725484e+04,
  278. 4.2169650342858e+04, 4.8696752516586e+04,
  279. 5.6234132519035e+04, 6.4938163157621e+04,
  280. 7.4989420933246e+04, 8.6596432336007e+04,
  281. 1.0000000000000e+05, 1.1547819846895e+05,
  282. 1.3335214321633e+05, 1.5399265260595e+05,
  283. 1.7782794100389e+05, 2.0535250264571e+05,
  284. 2.3713737056617e+05, 2.7384196342644e+05,
  285. 3.1622776601684e+05, 3.6517412725484e+05,
  286. 4.2169650342858e+05, 4.8696752516586e+05,
  287. 5.6234132519035e+05, 6.4938163157621e+05,
  288. 7.4989420933246e+05, 8.6596432336007e+05,
  289. };
  290. /**
  291. * decode exponents coded with VLC codes
  292. */
  293. static int decode_exp_vlc(WMACodecContext *s, int ch)
  294. {
  295. int last_exp, n, code;
  296. const uint16_t *ptr;
  297. float v, max_scale;
  298. uint32_t *q, *q_end, iv;
  299. const float *ptab = pow_tab + 60;
  300. const uint32_t *iptab = (const uint32_t*)ptab;
  301. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  302. q = (uint32_t *)s->exponents[ch];
  303. q_end = q + s->block_len;
  304. max_scale = 0;
  305. if (s->version == 1) {
  306. last_exp = get_bits(&s->gb, 5) + 10;
  307. v = ptab[last_exp];
  308. iv = iptab[last_exp];
  309. max_scale = v;
  310. n = *ptr++;
  311. switch (n & 3) do {
  312. case 0: *q++ = iv;
  313. case 3: *q++ = iv;
  314. case 2: *q++ = iv;
  315. case 1: *q++ = iv;
  316. } while ((n -= 4) > 0);
  317. }else
  318. last_exp = 36;
  319. while (q < q_end) {
  320. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  321. if (code < 0){
  322. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  323. return -1;
  324. }
  325. /* NOTE: this offset is the same as MPEG4 AAC ! */
  326. last_exp += code - 60;
  327. if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
  328. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  329. last_exp);
  330. return -1;
  331. }
  332. v = ptab[last_exp];
  333. iv = iptab[last_exp];
  334. if (v > max_scale)
  335. max_scale = v;
  336. n = *ptr++;
  337. switch (n & 3) do {
  338. case 0: *q++ = iv;
  339. case 3: *q++ = iv;
  340. case 2: *q++ = iv;
  341. case 1: *q++ = iv;
  342. } while ((n -= 4) > 0);
  343. }
  344. s->max_exponent[ch] = max_scale;
  345. return 0;
  346. }
  347. /**
  348. * Apply MDCT window and add into output.
  349. *
  350. * We ensure that when the windows overlap their squared sum
  351. * is always 1 (MDCT reconstruction rule).
  352. */
  353. static void wma_window(WMACodecContext *s, float *out)
  354. {
  355. float *in = s->output;
  356. int block_len, bsize, n;
  357. /* left part */
  358. if (s->block_len_bits <= s->prev_block_len_bits) {
  359. block_len = s->block_len;
  360. bsize = s->frame_len_bits - s->block_len_bits;
  361. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  362. out, block_len);
  363. } else {
  364. block_len = 1 << s->prev_block_len_bits;
  365. n = (s->block_len - block_len) / 2;
  366. bsize = s->frame_len_bits - s->prev_block_len_bits;
  367. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  368. out+n, block_len);
  369. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  370. }
  371. out += s->block_len;
  372. in += s->block_len;
  373. /* right part */
  374. if (s->block_len_bits <= s->next_block_len_bits) {
  375. block_len = s->block_len;
  376. bsize = s->frame_len_bits - s->block_len_bits;
  377. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  378. } else {
  379. block_len = 1 << s->next_block_len_bits;
  380. n = (s->block_len - block_len) / 2;
  381. bsize = s->frame_len_bits - s->next_block_len_bits;
  382. memcpy(out, in, n*sizeof(float));
  383. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  384. memset(out+n+block_len, 0, n*sizeof(float));
  385. }
  386. }
  387. /**
  388. * @return 0 if OK. 1 if last block of frame. return -1 if
  389. * unrecorrable error.
  390. */
  391. static int wma_decode_block(WMACodecContext *s)
  392. {
  393. int n, v, a, ch, bsize;
  394. int coef_nb_bits, total_gain;
  395. int nb_coefs[MAX_CHANNELS];
  396. float mdct_norm;
  397. FFTContext *mdct;
  398. #ifdef TRACE
  399. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  400. #endif
  401. /* compute current block length */
  402. if (s->use_variable_block_len) {
  403. n = av_log2(s->nb_block_sizes - 1) + 1;
  404. if (s->reset_block_lengths) {
  405. s->reset_block_lengths = 0;
  406. v = get_bits(&s->gb, n);
  407. if (v >= s->nb_block_sizes){
  408. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  409. return -1;
  410. }
  411. s->prev_block_len_bits = s->frame_len_bits - v;
  412. v = get_bits(&s->gb, n);
  413. if (v >= s->nb_block_sizes){
  414. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  415. return -1;
  416. }
  417. s->block_len_bits = s->frame_len_bits - v;
  418. } else {
  419. /* update block lengths */
  420. s->prev_block_len_bits = s->block_len_bits;
  421. s->block_len_bits = s->next_block_len_bits;
  422. }
  423. v = get_bits(&s->gb, n);
  424. if (v >= s->nb_block_sizes){
  425. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  426. return -1;
  427. }
  428. s->next_block_len_bits = s->frame_len_bits - v;
  429. } else {
  430. /* fixed block len */
  431. s->next_block_len_bits = s->frame_len_bits;
  432. s->prev_block_len_bits = s->frame_len_bits;
  433. s->block_len_bits = s->frame_len_bits;
  434. }
  435. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  436. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  437. return -1;
  438. }
  439. /* now check if the block length is coherent with the frame length */
  440. s->block_len = 1 << s->block_len_bits;
  441. if ((s->block_pos + s->block_len) > s->frame_len){
  442. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  443. return -1;
  444. }
  445. if (s->nb_channels == 2) {
  446. s->ms_stereo = get_bits1(&s->gb);
  447. }
  448. v = 0;
  449. for(ch = 0; ch < s->nb_channels; ch++) {
  450. a = get_bits1(&s->gb);
  451. s->channel_coded[ch] = a;
  452. v |= a;
  453. }
  454. bsize = s->frame_len_bits - s->block_len_bits;
  455. /* if no channel coded, no need to go further */
  456. /* XXX: fix potential framing problems */
  457. if (!v)
  458. goto next;
  459. /* read total gain and extract corresponding number of bits for
  460. coef escape coding */
  461. total_gain = 1;
  462. for(;;) {
  463. a = get_bits(&s->gb, 7);
  464. total_gain += a;
  465. if (a != 127)
  466. break;
  467. }
  468. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  469. /* compute number of coefficients */
  470. n = s->coefs_end[bsize] - s->coefs_start;
  471. for(ch = 0; ch < s->nb_channels; ch++)
  472. nb_coefs[ch] = n;
  473. /* complex coding */
  474. if (s->use_noise_coding) {
  475. for(ch = 0; ch < s->nb_channels; ch++) {
  476. if (s->channel_coded[ch]) {
  477. int i, n, a;
  478. n = s->exponent_high_sizes[bsize];
  479. for(i=0;i<n;i++) {
  480. a = get_bits1(&s->gb);
  481. s->high_band_coded[ch][i] = a;
  482. /* if noise coding, the coefficients are not transmitted */
  483. if (a)
  484. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  485. }
  486. }
  487. }
  488. for(ch = 0; ch < s->nb_channels; ch++) {
  489. if (s->channel_coded[ch]) {
  490. int i, n, val, code;
  491. n = s->exponent_high_sizes[bsize];
  492. val = (int)0x80000000;
  493. for(i=0;i<n;i++) {
  494. if (s->high_band_coded[ch][i]) {
  495. if (val == (int)0x80000000) {
  496. val = get_bits(&s->gb, 7) - 19;
  497. } else {
  498. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  499. if (code < 0){
  500. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  501. return -1;
  502. }
  503. val += code - 18;
  504. }
  505. s->high_band_values[ch][i] = val;
  506. }
  507. }
  508. }
  509. }
  510. }
  511. /* exponents can be reused in short blocks. */
  512. if ((s->block_len_bits == s->frame_len_bits) ||
  513. get_bits1(&s->gb)) {
  514. for(ch = 0; ch < s->nb_channels; ch++) {
  515. if (s->channel_coded[ch]) {
  516. if (s->use_exp_vlc) {
  517. if (decode_exp_vlc(s, ch) < 0)
  518. return -1;
  519. } else {
  520. decode_exp_lsp(s, ch);
  521. }
  522. s->exponents_bsize[ch] = bsize;
  523. }
  524. }
  525. }
  526. /* parse spectral coefficients : just RLE encoding */
  527. for(ch = 0; ch < s->nb_channels; ch++) {
  528. if (s->channel_coded[ch]) {
  529. int tindex;
  530. WMACoef* ptr = &s->coefs1[ch][0];
  531. /* special VLC tables are used for ms stereo because
  532. there is potentially less energy there */
  533. tindex = (ch == 1 && s->ms_stereo);
  534. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  535. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  536. s->level_table[tindex], s->run_table[tindex],
  537. 0, ptr, 0, nb_coefs[ch],
  538. s->block_len, s->frame_len_bits, coef_nb_bits);
  539. }
  540. if (s->version == 1 && s->nb_channels >= 2) {
  541. align_get_bits(&s->gb);
  542. }
  543. }
  544. /* normalize */
  545. {
  546. int n4 = s->block_len / 2;
  547. mdct_norm = 1.0 / (float)n4;
  548. if (s->version == 1) {
  549. mdct_norm *= sqrt(n4);
  550. }
  551. }
  552. /* finally compute the MDCT coefficients */
  553. for(ch = 0; ch < s->nb_channels; ch++) {
  554. if (s->channel_coded[ch]) {
  555. WMACoef *coefs1;
  556. float *coefs, *exponents, mult, mult1, noise;
  557. int i, j, n, n1, last_high_band, esize;
  558. float exp_power[HIGH_BAND_MAX_SIZE];
  559. coefs1 = s->coefs1[ch];
  560. exponents = s->exponents[ch];
  561. esize = s->exponents_bsize[ch];
  562. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  563. mult *= mdct_norm;
  564. coefs = s->coefs[ch];
  565. if (s->use_noise_coding) {
  566. mult1 = mult;
  567. /* very low freqs : noise */
  568. for(i = 0;i < s->coefs_start; i++) {
  569. *coefs++ = s->noise_table[s->noise_index] *
  570. exponents[i<<bsize>>esize] * mult1;
  571. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  572. }
  573. n1 = s->exponent_high_sizes[bsize];
  574. /* compute power of high bands */
  575. exponents = s->exponents[ch] +
  576. (s->high_band_start[bsize]<<bsize>>esize);
  577. last_high_band = 0; /* avoid warning */
  578. for(j=0;j<n1;j++) {
  579. n = s->exponent_high_bands[s->frame_len_bits -
  580. s->block_len_bits][j];
  581. if (s->high_band_coded[ch][j]) {
  582. float e2, v;
  583. e2 = 0;
  584. for(i = 0;i < n; i++) {
  585. v = exponents[i<<bsize>>esize];
  586. e2 += v * v;
  587. }
  588. exp_power[j] = e2 / n;
  589. last_high_band = j;
  590. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  591. }
  592. exponents += n<<bsize>>esize;
  593. }
  594. /* main freqs and high freqs */
  595. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  596. for(j=-1;j<n1;j++) {
  597. if (j < 0) {
  598. n = s->high_band_start[bsize] -
  599. s->coefs_start;
  600. } else {
  601. n = s->exponent_high_bands[s->frame_len_bits -
  602. s->block_len_bits][j];
  603. }
  604. if (j >= 0 && s->high_band_coded[ch][j]) {
  605. /* use noise with specified power */
  606. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  607. /* XXX: use a table */
  608. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  609. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  610. mult1 *= mdct_norm;
  611. for(i = 0;i < n; i++) {
  612. noise = s->noise_table[s->noise_index];
  613. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  614. *coefs++ = noise *
  615. exponents[i<<bsize>>esize] * mult1;
  616. }
  617. exponents += n<<bsize>>esize;
  618. } else {
  619. /* coded values + small noise */
  620. for(i = 0;i < n; i++) {
  621. noise = s->noise_table[s->noise_index];
  622. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  623. *coefs++ = ((*coefs1++) + noise) *
  624. exponents[i<<bsize>>esize] * mult;
  625. }
  626. exponents += n<<bsize>>esize;
  627. }
  628. }
  629. /* very high freqs : noise */
  630. n = s->block_len - s->coefs_end[bsize];
  631. mult1 = mult * exponents[((-1<<bsize))>>esize];
  632. for(i = 0; i < n; i++) {
  633. *coefs++ = s->noise_table[s->noise_index] * mult1;
  634. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  635. }
  636. } else {
  637. /* XXX: optimize more */
  638. for(i = 0;i < s->coefs_start; i++)
  639. *coefs++ = 0.0;
  640. n = nb_coefs[ch];
  641. for(i = 0;i < n; i++) {
  642. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  643. }
  644. n = s->block_len - s->coefs_end[bsize];
  645. for(i = 0;i < n; i++)
  646. *coefs++ = 0.0;
  647. }
  648. }
  649. }
  650. #ifdef TRACE
  651. for(ch = 0; ch < s->nb_channels; ch++) {
  652. if (s->channel_coded[ch]) {
  653. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  654. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  655. }
  656. }
  657. #endif
  658. if (s->ms_stereo && s->channel_coded[1]) {
  659. /* nominal case for ms stereo: we do it before mdct */
  660. /* no need to optimize this case because it should almost
  661. never happen */
  662. if (!s->channel_coded[0]) {
  663. tprintf(s->avctx, "rare ms-stereo case happened\n");
  664. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  665. s->channel_coded[0] = 1;
  666. }
  667. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  668. }
  669. next:
  670. mdct = &s->mdct_ctx[bsize];
  671. for(ch = 0; ch < s->nb_channels; ch++) {
  672. int n4, index;
  673. n4 = s->block_len / 2;
  674. if(s->channel_coded[ch]){
  675. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  676. }else if(!(s->ms_stereo && ch==1))
  677. memset(s->output, 0, sizeof(s->output));
  678. /* multiply by the window and add in the frame */
  679. index = (s->frame_len / 2) + s->block_pos - n4;
  680. wma_window(s, &s->frame_out[ch][index]);
  681. }
  682. /* update block number */
  683. s->block_num++;
  684. s->block_pos += s->block_len;
  685. if (s->block_pos >= s->frame_len)
  686. return 1;
  687. else
  688. return 0;
  689. }
  690. /* decode a frame of frame_len samples */
  691. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  692. {
  693. int ret, n, ch, incr;
  694. const float *output[MAX_CHANNELS];
  695. #ifdef TRACE
  696. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  697. #endif
  698. /* read each block */
  699. s->block_num = 0;
  700. s->block_pos = 0;
  701. for(;;) {
  702. ret = wma_decode_block(s);
  703. if (ret < 0)
  704. return -1;
  705. if (ret)
  706. break;
  707. }
  708. /* convert frame to integer */
  709. n = s->frame_len;
  710. incr = s->nb_channels;
  711. for (ch = 0; ch < MAX_CHANNELS; ch++)
  712. output[ch] = s->frame_out[ch];
  713. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  714. for (ch = 0; ch < incr; ch++) {
  715. /* prepare for next block */
  716. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  717. }
  718. #ifdef TRACE
  719. dump_shorts(s, "samples", samples, n * s->nb_channels);
  720. #endif
  721. return 0;
  722. }
  723. static int wma_decode_superframe(AVCodecContext *avctx,
  724. void *data, int *data_size,
  725. AVPacket *avpkt)
  726. {
  727. const uint8_t *buf = avpkt->data;
  728. int buf_size = avpkt->size;
  729. WMACodecContext *s = avctx->priv_data;
  730. int nb_frames, bit_offset, i, pos, len;
  731. uint8_t *q;
  732. int16_t *samples;
  733. tprintf(avctx, "***decode_superframe:\n");
  734. if(buf_size==0){
  735. s->last_superframe_len = 0;
  736. return 0;
  737. }
  738. if (buf_size < s->block_align)
  739. return AVERROR(EINVAL);
  740. if(s->block_align)
  741. buf_size = s->block_align;
  742. samples = data;
  743. init_get_bits(&s->gb, buf, buf_size*8);
  744. if (s->use_bit_reservoir) {
  745. /* read super frame header */
  746. skip_bits(&s->gb, 4); /* super frame index */
  747. nb_frames = get_bits(&s->gb, 4) - 1;
  748. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  749. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  750. goto fail;
  751. }
  752. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  753. if (s->last_superframe_len > 0) {
  754. // printf("skip=%d\n", s->last_bitoffset);
  755. /* add bit_offset bits to last frame */
  756. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  757. MAX_CODED_SUPERFRAME_SIZE)
  758. goto fail;
  759. q = s->last_superframe + s->last_superframe_len;
  760. len = bit_offset;
  761. while (len > 7) {
  762. *q++ = (get_bits)(&s->gb, 8);
  763. len -= 8;
  764. }
  765. if (len > 0) {
  766. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  767. }
  768. /* XXX: bit_offset bits into last frame */
  769. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  770. /* skip unused bits */
  771. if (s->last_bitoffset > 0)
  772. skip_bits(&s->gb, s->last_bitoffset);
  773. /* this frame is stored in the last superframe and in the
  774. current one */
  775. if (wma_decode_frame(s, samples) < 0)
  776. goto fail;
  777. samples += s->nb_channels * s->frame_len;
  778. }
  779. /* read each frame starting from bit_offset */
  780. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  781. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  782. len = pos & 7;
  783. if (len > 0)
  784. skip_bits(&s->gb, len);
  785. s->reset_block_lengths = 1;
  786. for(i=0;i<nb_frames;i++) {
  787. if (wma_decode_frame(s, samples) < 0)
  788. goto fail;
  789. samples += s->nb_channels * s->frame_len;
  790. }
  791. /* we copy the end of the frame in the last frame buffer */
  792. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  793. s->last_bitoffset = pos & 7;
  794. pos >>= 3;
  795. len = buf_size - pos;
  796. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  797. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  798. goto fail;
  799. }
  800. s->last_superframe_len = len;
  801. memcpy(s->last_superframe, buf + pos, len);
  802. } else {
  803. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  804. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  805. goto fail;
  806. }
  807. /* single frame decode */
  808. if (wma_decode_frame(s, samples) < 0)
  809. goto fail;
  810. samples += s->nb_channels * s->frame_len;
  811. }
  812. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  813. *data_size = (int8_t *)samples - (int8_t *)data;
  814. return buf_size;
  815. fail:
  816. /* when error, we reset the bit reservoir */
  817. s->last_superframe_len = 0;
  818. return -1;
  819. }
  820. static av_cold void flush(AVCodecContext *avctx)
  821. {
  822. WMACodecContext *s = avctx->priv_data;
  823. s->last_bitoffset=
  824. s->last_superframe_len= 0;
  825. }
  826. AVCodec ff_wmav1_decoder = {
  827. .name = "wmav1",
  828. .type = AVMEDIA_TYPE_AUDIO,
  829. .id = CODEC_ID_WMAV1,
  830. .priv_data_size = sizeof(WMACodecContext),
  831. .init = wma_decode_init,
  832. .close = ff_wma_end,
  833. .decode = wma_decode_superframe,
  834. .flush = flush,
  835. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  836. };
  837. AVCodec ff_wmav2_decoder = {
  838. .name = "wmav2",
  839. .type = AVMEDIA_TYPE_AUDIO,
  840. .id = CODEC_ID_WMAV2,
  841. .priv_data_size = sizeof(WMACodecContext),
  842. .init = wma_decode_init,
  843. .close = ff_wma_end,
  844. .decode = wma_decode_superframe,
  845. .flush = flush,
  846. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  847. };