You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

526 lines
17KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "sinewin.h"
  23. #include "wma.h"
  24. #include "wmadata.h"
  25. #undef NDEBUG
  26. #include <assert.h>
  27. /* XXX: use same run/length optimization as mpeg decoders */
  28. //FIXME maybe split decode / encode or pass flag
  29. static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  30. float **plevel_table, uint16_t **pint_table,
  31. const CoefVLCTable *vlc_table)
  32. {
  33. int n = vlc_table->n;
  34. const uint8_t *table_bits = vlc_table->huffbits;
  35. const uint32_t *table_codes = vlc_table->huffcodes;
  36. const uint16_t *levels_table = vlc_table->levels;
  37. uint16_t *run_table, *level_table, *int_table;
  38. float *flevel_table;
  39. int i, l, j, k, level;
  40. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  41. run_table = av_malloc(n * sizeof(uint16_t));
  42. level_table = av_malloc(n * sizeof(uint16_t));
  43. flevel_table= av_malloc(n * sizeof(*flevel_table));
  44. int_table = av_malloc(n * sizeof(uint16_t));
  45. i = 2;
  46. level = 1;
  47. k = 0;
  48. while (i < n) {
  49. int_table[k] = i;
  50. l = levels_table[k++];
  51. for (j = 0; j < l; j++) {
  52. run_table[i] = j;
  53. level_table[i] = level;
  54. flevel_table[i]= level;
  55. i++;
  56. }
  57. level++;
  58. }
  59. *prun_table = run_table;
  60. *plevel_table = flevel_table;
  61. *pint_table = int_table;
  62. av_free(level_table);
  63. }
  64. /**
  65. *@brief Get the samples per frame for this stream.
  66. *@param sample_rate output sample_rate
  67. *@param version wma version
  68. *@param decode_flags codec compression features
  69. *@return log2 of the number of output samples per frame
  70. */
  71. int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
  72. unsigned int decode_flags)
  73. {
  74. int frame_len_bits;
  75. if (sample_rate <= 16000) {
  76. frame_len_bits = 9;
  77. } else if (sample_rate <= 22050 ||
  78. (sample_rate <= 32000 && version == 1)) {
  79. frame_len_bits = 10;
  80. } else if (sample_rate <= 48000) {
  81. frame_len_bits = 11;
  82. } else if (sample_rate <= 96000) {
  83. frame_len_bits = 12;
  84. } else {
  85. frame_len_bits = 13;
  86. }
  87. if (version == 3) {
  88. int tmp = decode_flags & 0x6;
  89. if (tmp == 0x2) {
  90. ++frame_len_bits;
  91. } else if (tmp == 0x4) {
  92. --frame_len_bits;
  93. } else if (tmp == 0x6) {
  94. frame_len_bits -= 2;
  95. }
  96. }
  97. return frame_len_bits;
  98. }
  99. int ff_wma_init(AVCodecContext *avctx, int flags2)
  100. {
  101. WMACodecContext *s = avctx->priv_data;
  102. int i;
  103. float bps1, high_freq;
  104. volatile float bps;
  105. int sample_rate1;
  106. int coef_vlc_table;
  107. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  108. || avctx->channels <= 0 || avctx->channels > 8
  109. || avctx->bit_rate <= 0)
  110. return -1;
  111. s->sample_rate = avctx->sample_rate;
  112. s->nb_channels = avctx->channels;
  113. s->bit_rate = avctx->bit_rate;
  114. s->block_align = avctx->block_align;
  115. dsputil_init(&s->dsp, avctx);
  116. ff_fmt_convert_init(&s->fmt_conv, avctx);
  117. if (avctx->codec->id == CODEC_ID_WMAV1) {
  118. s->version = 1;
  119. } else {
  120. s->version = 2;
  121. }
  122. /* compute MDCT block size */
  123. s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
  124. s->frame_len = 1 << s->frame_len_bits;
  125. if (s->use_variable_block_len) {
  126. int nb_max, nb;
  127. nb = ((flags2 >> 3) & 3) + 1;
  128. if ((s->bit_rate / s->nb_channels) >= 32000)
  129. nb += 2;
  130. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  131. if (nb > nb_max)
  132. nb = nb_max;
  133. s->nb_block_sizes = nb + 1;
  134. } else {
  135. s->nb_block_sizes = 1;
  136. }
  137. /* init rate dependent parameters */
  138. s->use_noise_coding = 1;
  139. high_freq = s->sample_rate * 0.5;
  140. /* if version 2, then the rates are normalized */
  141. sample_rate1 = s->sample_rate;
  142. if (s->version == 2) {
  143. if (sample_rate1 >= 44100) {
  144. sample_rate1 = 44100;
  145. } else if (sample_rate1 >= 22050) {
  146. sample_rate1 = 22050;
  147. } else if (sample_rate1 >= 16000) {
  148. sample_rate1 = 16000;
  149. } else if (sample_rate1 >= 11025) {
  150. sample_rate1 = 11025;
  151. } else if (sample_rate1 >= 8000) {
  152. sample_rate1 = 8000;
  153. }
  154. }
  155. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  156. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  157. /* compute high frequency value and choose if noise coding should
  158. be activated */
  159. bps1 = bps;
  160. if (s->nb_channels == 2)
  161. bps1 = bps * 1.6;
  162. if (sample_rate1 == 44100) {
  163. if (bps1 >= 0.61) {
  164. s->use_noise_coding = 0;
  165. } else {
  166. high_freq = high_freq * 0.4;
  167. }
  168. } else if (sample_rate1 == 22050) {
  169. if (bps1 >= 1.16) {
  170. s->use_noise_coding = 0;
  171. } else if (bps1 >= 0.72) {
  172. high_freq = high_freq * 0.7;
  173. } else {
  174. high_freq = high_freq * 0.6;
  175. }
  176. } else if (sample_rate1 == 16000) {
  177. if (bps > 0.5) {
  178. high_freq = high_freq * 0.5;
  179. } else {
  180. high_freq = high_freq * 0.3;
  181. }
  182. } else if (sample_rate1 == 11025) {
  183. high_freq = high_freq * 0.7;
  184. } else if (sample_rate1 == 8000) {
  185. if (bps <= 0.625) {
  186. high_freq = high_freq * 0.5;
  187. } else if (bps > 0.75) {
  188. s->use_noise_coding = 0;
  189. } else {
  190. high_freq = high_freq * 0.65;
  191. }
  192. } else {
  193. if (bps >= 0.8) {
  194. high_freq = high_freq * 0.75;
  195. } else if (bps >= 0.6) {
  196. high_freq = high_freq * 0.6;
  197. } else {
  198. high_freq = high_freq * 0.5;
  199. }
  200. }
  201. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  202. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  203. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  204. s->block_align);
  205. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  206. bps, bps1, high_freq, s->byte_offset_bits);
  207. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  208. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  209. /* compute the scale factor band sizes for each MDCT block size */
  210. {
  211. int a, b, pos, lpos, k, block_len, i, j, n;
  212. const uint8_t *table;
  213. if (s->version == 1) {
  214. s->coefs_start = 3;
  215. } else {
  216. s->coefs_start = 0;
  217. }
  218. for (k = 0; k < s->nb_block_sizes; k++) {
  219. block_len = s->frame_len >> k;
  220. if (s->version == 1) {
  221. lpos = 0;
  222. for (i = 0; i < 25; i++) {
  223. a = ff_wma_critical_freqs[i];
  224. b = s->sample_rate;
  225. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  226. if (pos > block_len)
  227. pos = block_len;
  228. s->exponent_bands[0][i] = pos - lpos;
  229. if (pos >= block_len) {
  230. i++;
  231. break;
  232. }
  233. lpos = pos;
  234. }
  235. s->exponent_sizes[0] = i;
  236. } else {
  237. /* hardcoded tables */
  238. table = NULL;
  239. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  240. if (a < 3) {
  241. if (s->sample_rate >= 44100) {
  242. table = exponent_band_44100[a];
  243. } else if (s->sample_rate >= 32000) {
  244. table = exponent_band_32000[a];
  245. } else if (s->sample_rate >= 22050) {
  246. table = exponent_band_22050[a];
  247. }
  248. }
  249. if (table) {
  250. n = *table++;
  251. for (i = 0; i < n; i++)
  252. s->exponent_bands[k][i] = table[i];
  253. s->exponent_sizes[k] = n;
  254. } else {
  255. j = 0;
  256. lpos = 0;
  257. for (i = 0; i < 25; i++) {
  258. a = ff_wma_critical_freqs[i];
  259. b = s->sample_rate;
  260. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  261. pos <<= 2;
  262. if (pos > block_len)
  263. pos = block_len;
  264. if (pos > lpos)
  265. s->exponent_bands[k][j++] = pos - lpos;
  266. if (pos >= block_len)
  267. break;
  268. lpos = pos;
  269. }
  270. s->exponent_sizes[k] = j;
  271. }
  272. }
  273. /* max number of coefs */
  274. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  275. /* high freq computation */
  276. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  277. s->sample_rate + 0.5);
  278. n = s->exponent_sizes[k];
  279. j = 0;
  280. pos = 0;
  281. for (i = 0; i < n; i++) {
  282. int start, end;
  283. start = pos;
  284. pos += s->exponent_bands[k][i];
  285. end = pos;
  286. if (start < s->high_band_start[k])
  287. start = s->high_band_start[k];
  288. if (end > s->coefs_end[k])
  289. end = s->coefs_end[k];
  290. if (end > start)
  291. s->exponent_high_bands[k][j++] = end - start;
  292. }
  293. s->exponent_high_sizes[k] = j;
  294. #if 0
  295. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  296. s->frame_len >> k,
  297. s->coefs_end[k],
  298. s->high_band_start[k],
  299. s->exponent_high_sizes[k]);
  300. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  301. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  302. tprintf(s->avctx, "\n");
  303. #endif
  304. }
  305. }
  306. #ifdef TRACE
  307. {
  308. int i, j;
  309. for (i = 0; i < s->nb_block_sizes; i++) {
  310. tprintf(s->avctx, "%5d: n=%2d:",
  311. s->frame_len >> i,
  312. s->exponent_sizes[i]);
  313. for (j = 0; j < s->exponent_sizes[i]; j++)
  314. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  315. tprintf(s->avctx, "\n");
  316. }
  317. }
  318. #endif
  319. /* init MDCT windows : simple sinus window */
  320. for (i = 0; i < s->nb_block_sizes; i++) {
  321. ff_init_ff_sine_windows(s->frame_len_bits - i);
  322. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  323. }
  324. s->reset_block_lengths = 1;
  325. if (s->use_noise_coding) {
  326. /* init the noise generator */
  327. if (s->use_exp_vlc) {
  328. s->noise_mult = 0.02;
  329. } else {
  330. s->noise_mult = 0.04;
  331. }
  332. #ifdef TRACE
  333. for (i = 0; i < NOISE_TAB_SIZE; i++)
  334. s->noise_table[i] = 1.0 * s->noise_mult;
  335. #else
  336. {
  337. unsigned int seed;
  338. float norm;
  339. seed = 1;
  340. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  341. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  342. seed = seed * 314159 + 1;
  343. s->noise_table[i] = (float)((int)seed) * norm;
  344. }
  345. }
  346. #endif
  347. }
  348. /* choose the VLC tables for the coefficients */
  349. coef_vlc_table = 2;
  350. if (s->sample_rate >= 32000) {
  351. if (bps1 < 0.72) {
  352. coef_vlc_table = 0;
  353. } else if (bps1 < 1.16) {
  354. coef_vlc_table = 1;
  355. }
  356. }
  357. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  358. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  359. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  360. s->coef_vlcs[0]);
  361. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  362. s->coef_vlcs[1]);
  363. return 0;
  364. }
  365. int ff_wma_total_gain_to_bits(int total_gain)
  366. {
  367. if (total_gain < 15) return 13;
  368. else if (total_gain < 32) return 12;
  369. else if (total_gain < 40) return 11;
  370. else if (total_gain < 45) return 10;
  371. else return 9;
  372. }
  373. int ff_wma_end(AVCodecContext *avctx)
  374. {
  375. WMACodecContext *s = avctx->priv_data;
  376. int i;
  377. for (i = 0; i < s->nb_block_sizes; i++)
  378. ff_mdct_end(&s->mdct_ctx[i]);
  379. if (s->use_exp_vlc) {
  380. free_vlc(&s->exp_vlc);
  381. }
  382. if (s->use_noise_coding) {
  383. free_vlc(&s->hgain_vlc);
  384. }
  385. for (i = 0; i < 2; i++) {
  386. free_vlc(&s->coef_vlc[i]);
  387. av_free(s->run_table[i]);
  388. av_free(s->level_table[i]);
  389. av_free(s->int_table[i]);
  390. }
  391. return 0;
  392. }
  393. /**
  394. * Decode an uncompressed coefficient.
  395. * @param gb GetBitContext
  396. * @return the decoded coefficient
  397. */
  398. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  399. {
  400. /** consumes up to 34 bits */
  401. int n_bits = 8;
  402. /** decode length */
  403. if (get_bits1(gb)) {
  404. n_bits += 8;
  405. if (get_bits1(gb)) {
  406. n_bits += 8;
  407. if (get_bits1(gb)) {
  408. n_bits += 7;
  409. }
  410. }
  411. }
  412. return get_bits_long(gb, n_bits);
  413. }
  414. /**
  415. * Decode run level compressed coefficients.
  416. * @param avctx codec context
  417. * @param gb bitstream reader context
  418. * @param vlc vlc table for get_vlc2
  419. * @param level_table level codes
  420. * @param run_table run codes
  421. * @param version 0 for wma1,2 1 for wmapro
  422. * @param ptr output buffer
  423. * @param offset offset in the output buffer
  424. * @param num_coefs number of input coefficents
  425. * @param block_len input buffer length (2^n)
  426. * @param frame_len_bits number of bits for escaped run codes
  427. * @param coef_nb_bits number of bits for escaped level codes
  428. * @return 0 on success, -1 otherwise
  429. */
  430. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  431. VLC *vlc,
  432. const float *level_table, const uint16_t *run_table,
  433. int version, WMACoef *ptr, int offset,
  434. int num_coefs, int block_len, int frame_len_bits,
  435. int coef_nb_bits)
  436. {
  437. int code, level, sign;
  438. const uint32_t *ilvl = (const uint32_t*)level_table;
  439. uint32_t *iptr = (uint32_t*)ptr;
  440. const unsigned int coef_mask = block_len - 1;
  441. for (; offset < num_coefs; offset++) {
  442. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  443. if (code > 1) {
  444. /** normal code */
  445. offset += run_table[code];
  446. sign = get_bits1(gb) - 1;
  447. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  448. } else if (code == 1) {
  449. /** EOB */
  450. break;
  451. } else {
  452. /** escape */
  453. if (!version) {
  454. level = get_bits(gb, coef_nb_bits);
  455. /** NOTE: this is rather suboptimal. reading
  456. block_len_bits would be better */
  457. offset += get_bits(gb, frame_len_bits);
  458. } else {
  459. level = ff_wma_get_large_val(gb);
  460. /** escape decode */
  461. if (get_bits1(gb)) {
  462. if (get_bits1(gb)) {
  463. if (get_bits1(gb)) {
  464. av_log(avctx,AV_LOG_ERROR,
  465. "broken escape sequence\n");
  466. return -1;
  467. } else
  468. offset += get_bits(gb, frame_len_bits) + 4;
  469. } else
  470. offset += get_bits(gb, 2) + 1;
  471. }
  472. }
  473. sign = get_bits1(gb) - 1;
  474. ptr[offset & coef_mask] = (level^sign) - sign;
  475. }
  476. }
  477. /** NOTE: EOB can be omitted */
  478. if (offset > num_coefs) {
  479. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  480. return -1;
  481. }
  482. return 0;
  483. }