You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

846 lines
27KB

  1. /*
  2. * VC-1 and WMV3 decoder - DSP functions
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "vc1dsp.h"
  27. /** Apply overlap transform to horizontal edge
  28. */
  29. static void vc1_v_overlap_c(uint8_t* src, int stride)
  30. {
  31. int i;
  32. int a, b, c, d;
  33. int d1, d2;
  34. int rnd = 1;
  35. for(i = 0; i < 8; i++) {
  36. a = src[-2*stride];
  37. b = src[-stride];
  38. c = src[0];
  39. d = src[stride];
  40. d1 = (a - d + 3 + rnd) >> 3;
  41. d2 = (a - d + b - c + 4 - rnd) >> 3;
  42. src[-2*stride] = a - d1;
  43. src[-stride] = av_clip_uint8(b - d2);
  44. src[0] = av_clip_uint8(c + d2);
  45. src[stride] = d + d1;
  46. src++;
  47. rnd = !rnd;
  48. }
  49. }
  50. /** Apply overlap transform to vertical edge
  51. */
  52. static void vc1_h_overlap_c(uint8_t* src, int stride)
  53. {
  54. int i;
  55. int a, b, c, d;
  56. int d1, d2;
  57. int rnd = 1;
  58. for(i = 0; i < 8; i++) {
  59. a = src[-2];
  60. b = src[-1];
  61. c = src[0];
  62. d = src[1];
  63. d1 = (a - d + 3 + rnd) >> 3;
  64. d2 = (a - d + b - c + 4 - rnd) >> 3;
  65. src[-2] = a - d1;
  66. src[-1] = av_clip_uint8(b - d2);
  67. src[0] = av_clip_uint8(c + d2);
  68. src[1] = d + d1;
  69. src += stride;
  70. rnd = !rnd;
  71. }
  72. }
  73. static void vc1_v_s_overlap_c(DCTELEM *top, DCTELEM *bottom)
  74. {
  75. int i;
  76. int a, b, c, d;
  77. int d1, d2;
  78. int rnd1 = 4, rnd2 = 3;
  79. for(i = 0; i < 8; i++) {
  80. a = top[48];
  81. b = top[56];
  82. c = bottom[0];
  83. d = bottom[8];
  84. d1 = a - d;
  85. d2 = a - d + b - c;
  86. top[48] = ((a << 3) - d1 + rnd1) >> 3;
  87. top[56] = ((b << 3) - d2 + rnd2) >> 3;
  88. bottom[0] = ((c << 3) + d2 + rnd1) >> 3;
  89. bottom[8] = ((d << 3) + d1 + rnd2) >> 3;
  90. bottom++;
  91. top++;
  92. rnd2 = 7 - rnd2;
  93. rnd1 = 7 - rnd1;
  94. }
  95. }
  96. static void vc1_h_s_overlap_c(DCTELEM *left, DCTELEM *right)
  97. {
  98. int i;
  99. int a, b, c, d;
  100. int d1, d2;
  101. int rnd1 = 4, rnd2 = 3;
  102. for(i = 0; i < 8; i++) {
  103. a = left[6];
  104. b = left[7];
  105. c = right[0];
  106. d = right[1];
  107. d1 = a - d;
  108. d2 = a - d + b - c;
  109. left[6] = ((a << 3) - d1 + rnd1) >> 3;
  110. left[7] = ((b << 3) - d2 + rnd2) >> 3;
  111. right[0] = ((c << 3) + d2 + rnd1) >> 3;
  112. right[1] = ((d << 3) + d1 + rnd2) >> 3;
  113. right += 8;
  114. left += 8;
  115. rnd2 = 7 - rnd2;
  116. rnd1 = 7 - rnd1;
  117. }
  118. }
  119. /**
  120. * VC-1 in-loop deblocking filter for one line
  121. * @param src source block type
  122. * @param stride block stride
  123. * @param pq block quantizer
  124. * @return whether other 3 pairs should be filtered or not
  125. * @see 8.6
  126. */
  127. static av_always_inline int vc1_filter_line(uint8_t* src, int stride, int pq){
  128. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  129. int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  130. int a0_sign = a0 >> 31; /* Store sign */
  131. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  132. if(a0 < pq){
  133. int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
  134. int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
  135. if(a1 < a0 || a2 < a0){
  136. int clip = src[-1*stride] - src[ 0*stride];
  137. int clip_sign = clip >> 31;
  138. clip = ((clip ^ clip_sign) - clip_sign)>>1;
  139. if(clip){
  140. int a3 = FFMIN(a1, a2);
  141. int d = 5 * (a3 - a0);
  142. int d_sign = (d >> 31);
  143. d = ((d ^ d_sign) - d_sign) >> 3;
  144. d_sign ^= a0_sign;
  145. if( d_sign ^ clip_sign )
  146. d = 0;
  147. else{
  148. d = FFMIN(d, clip);
  149. d = (d ^ d_sign) - d_sign; /* Restore sign */
  150. src[-1*stride] = cm[src[-1*stride] - d];
  151. src[ 0*stride] = cm[src[ 0*stride] + d];
  152. }
  153. return 1;
  154. }
  155. }
  156. }
  157. return 0;
  158. }
  159. /**
  160. * VC-1 in-loop deblocking filter
  161. * @param src source block type
  162. * @param step distance between horizontally adjacent elements
  163. * @param stride distance between vertically adjacent elements
  164. * @param len edge length to filter (4 or 8 pixels)
  165. * @param pq block quantizer
  166. * @see 8.6
  167. */
  168. static inline void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  169. {
  170. int i;
  171. int filt3;
  172. for(i = 0; i < len; i += 4){
  173. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  174. if(filt3){
  175. vc1_filter_line(src + 0*step, stride, pq);
  176. vc1_filter_line(src + 1*step, stride, pq);
  177. vc1_filter_line(src + 3*step, stride, pq);
  178. }
  179. src += step * 4;
  180. }
  181. }
  182. static void vc1_v_loop_filter4_c(uint8_t *src, int stride, int pq)
  183. {
  184. vc1_loop_filter(src, 1, stride, 4, pq);
  185. }
  186. static void vc1_h_loop_filter4_c(uint8_t *src, int stride, int pq)
  187. {
  188. vc1_loop_filter(src, stride, 1, 4, pq);
  189. }
  190. static void vc1_v_loop_filter8_c(uint8_t *src, int stride, int pq)
  191. {
  192. vc1_loop_filter(src, 1, stride, 8, pq);
  193. }
  194. static void vc1_h_loop_filter8_c(uint8_t *src, int stride, int pq)
  195. {
  196. vc1_loop_filter(src, stride, 1, 8, pq);
  197. }
  198. static void vc1_v_loop_filter16_c(uint8_t *src, int stride, int pq)
  199. {
  200. vc1_loop_filter(src, 1, stride, 16, pq);
  201. }
  202. static void vc1_h_loop_filter16_c(uint8_t *src, int stride, int pq)
  203. {
  204. vc1_loop_filter(src, stride, 1, 16, pq);
  205. }
  206. /** Do inverse transform on 8x8 block
  207. */
  208. static void vc1_inv_trans_8x8_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
  209. {
  210. int i;
  211. int dc = block[0];
  212. const uint8_t *cm;
  213. dc = (3 * dc + 1) >> 1;
  214. dc = (3 * dc + 16) >> 5;
  215. cm = ff_cropTbl + MAX_NEG_CROP + dc;
  216. for(i = 0; i < 8; i++){
  217. dest[0] = cm[dest[0]];
  218. dest[1] = cm[dest[1]];
  219. dest[2] = cm[dest[2]];
  220. dest[3] = cm[dest[3]];
  221. dest[4] = cm[dest[4]];
  222. dest[5] = cm[dest[5]];
  223. dest[6] = cm[dest[6]];
  224. dest[7] = cm[dest[7]];
  225. dest += linesize;
  226. }
  227. }
  228. static void vc1_inv_trans_8x8_c(DCTELEM block[64])
  229. {
  230. int i;
  231. register int t1,t2,t3,t4,t5,t6,t7,t8;
  232. DCTELEM *src, *dst, temp[64];
  233. src = block;
  234. dst = temp;
  235. for(i = 0; i < 8; i++){
  236. t1 = 12 * (src[ 0] + src[32]) + 4;
  237. t2 = 12 * (src[ 0] - src[32]) + 4;
  238. t3 = 16 * src[16] + 6 * src[48];
  239. t4 = 6 * src[16] - 16 * src[48];
  240. t5 = t1 + t3;
  241. t6 = t2 + t4;
  242. t7 = t2 - t4;
  243. t8 = t1 - t3;
  244. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  245. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  246. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  247. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  248. dst[0] = (t5 + t1) >> 3;
  249. dst[1] = (t6 + t2) >> 3;
  250. dst[2] = (t7 + t3) >> 3;
  251. dst[3] = (t8 + t4) >> 3;
  252. dst[4] = (t8 - t4) >> 3;
  253. dst[5] = (t7 - t3) >> 3;
  254. dst[6] = (t6 - t2) >> 3;
  255. dst[7] = (t5 - t1) >> 3;
  256. src += 1;
  257. dst += 8;
  258. }
  259. src = temp;
  260. dst = block;
  261. for(i = 0; i < 8; i++){
  262. t1 = 12 * (src[ 0] + src[32]) + 64;
  263. t2 = 12 * (src[ 0] - src[32]) + 64;
  264. t3 = 16 * src[16] + 6 * src[48];
  265. t4 = 6 * src[16] - 16 * src[48];
  266. t5 = t1 + t3;
  267. t6 = t2 + t4;
  268. t7 = t2 - t4;
  269. t8 = t1 - t3;
  270. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  271. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  272. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  273. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  274. dst[ 0] = (t5 + t1) >> 7;
  275. dst[ 8] = (t6 + t2) >> 7;
  276. dst[16] = (t7 + t3) >> 7;
  277. dst[24] = (t8 + t4) >> 7;
  278. dst[32] = (t8 - t4 + 1) >> 7;
  279. dst[40] = (t7 - t3 + 1) >> 7;
  280. dst[48] = (t6 - t2 + 1) >> 7;
  281. dst[56] = (t5 - t1 + 1) >> 7;
  282. src++;
  283. dst++;
  284. }
  285. }
  286. /** Do inverse transform on 8x4 part of block
  287. */
  288. static void vc1_inv_trans_8x4_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
  289. {
  290. int i;
  291. int dc = block[0];
  292. const uint8_t *cm;
  293. dc = ( 3 * dc + 1) >> 1;
  294. dc = (17 * dc + 64) >> 7;
  295. cm = ff_cropTbl + MAX_NEG_CROP + dc;
  296. for(i = 0; i < 4; i++){
  297. dest[0] = cm[dest[0]];
  298. dest[1] = cm[dest[1]];
  299. dest[2] = cm[dest[2]];
  300. dest[3] = cm[dest[3]];
  301. dest[4] = cm[dest[4]];
  302. dest[5] = cm[dest[5]];
  303. dest[6] = cm[dest[6]];
  304. dest[7] = cm[dest[7]];
  305. dest += linesize;
  306. }
  307. }
  308. static void vc1_inv_trans_8x4_c(uint8_t *dest, int linesize, DCTELEM *block)
  309. {
  310. int i;
  311. register int t1,t2,t3,t4,t5,t6,t7,t8;
  312. DCTELEM *src, *dst;
  313. const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  314. src = block;
  315. dst = block;
  316. for(i = 0; i < 4; i++){
  317. t1 = 12 * (src[0] + src[4]) + 4;
  318. t2 = 12 * (src[0] - src[4]) + 4;
  319. t3 = 16 * src[2] + 6 * src[6];
  320. t4 = 6 * src[2] - 16 * src[6];
  321. t5 = t1 + t3;
  322. t6 = t2 + t4;
  323. t7 = t2 - t4;
  324. t8 = t1 - t3;
  325. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  326. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  327. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  328. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  329. dst[0] = (t5 + t1) >> 3;
  330. dst[1] = (t6 + t2) >> 3;
  331. dst[2] = (t7 + t3) >> 3;
  332. dst[3] = (t8 + t4) >> 3;
  333. dst[4] = (t8 - t4) >> 3;
  334. dst[5] = (t7 - t3) >> 3;
  335. dst[6] = (t6 - t2) >> 3;
  336. dst[7] = (t5 - t1) >> 3;
  337. src += 8;
  338. dst += 8;
  339. }
  340. src = block;
  341. for(i = 0; i < 8; i++){
  342. t1 = 17 * (src[ 0] + src[16]) + 64;
  343. t2 = 17 * (src[ 0] - src[16]) + 64;
  344. t3 = 22 * src[ 8] + 10 * src[24];
  345. t4 = 22 * src[24] - 10 * src[ 8];
  346. dest[0*linesize] = cm[dest[0*linesize] + ((t1 + t3) >> 7)];
  347. dest[1*linesize] = cm[dest[1*linesize] + ((t2 - t4) >> 7)];
  348. dest[2*linesize] = cm[dest[2*linesize] + ((t2 + t4) >> 7)];
  349. dest[3*linesize] = cm[dest[3*linesize] + ((t1 - t3) >> 7)];
  350. src ++;
  351. dest++;
  352. }
  353. }
  354. /** Do inverse transform on 4x8 parts of block
  355. */
  356. static void vc1_inv_trans_4x8_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
  357. {
  358. int i;
  359. int dc = block[0];
  360. const uint8_t *cm;
  361. dc = (17 * dc + 4) >> 3;
  362. dc = (12 * dc + 64) >> 7;
  363. cm = ff_cropTbl + MAX_NEG_CROP + dc;
  364. for(i = 0; i < 8; i++){
  365. dest[0] = cm[dest[0]];
  366. dest[1] = cm[dest[1]];
  367. dest[2] = cm[dest[2]];
  368. dest[3] = cm[dest[3]];
  369. dest += linesize;
  370. }
  371. }
  372. static void vc1_inv_trans_4x8_c(uint8_t *dest, int linesize, DCTELEM *block)
  373. {
  374. int i;
  375. register int t1,t2,t3,t4,t5,t6,t7,t8;
  376. DCTELEM *src, *dst;
  377. const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  378. src = block;
  379. dst = block;
  380. for(i = 0; i < 8; i++){
  381. t1 = 17 * (src[0] + src[2]) + 4;
  382. t2 = 17 * (src[0] - src[2]) + 4;
  383. t3 = 22 * src[1] + 10 * src[3];
  384. t4 = 22 * src[3] - 10 * src[1];
  385. dst[0] = (t1 + t3) >> 3;
  386. dst[1] = (t2 - t4) >> 3;
  387. dst[2] = (t2 + t4) >> 3;
  388. dst[3] = (t1 - t3) >> 3;
  389. src += 8;
  390. dst += 8;
  391. }
  392. src = block;
  393. for(i = 0; i < 4; i++){
  394. t1 = 12 * (src[ 0] + src[32]) + 64;
  395. t2 = 12 * (src[ 0] - src[32]) + 64;
  396. t3 = 16 * src[16] + 6 * src[48];
  397. t4 = 6 * src[16] - 16 * src[48];
  398. t5 = t1 + t3;
  399. t6 = t2 + t4;
  400. t7 = t2 - t4;
  401. t8 = t1 - t3;
  402. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  403. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  404. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  405. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  406. dest[0*linesize] = cm[dest[0*linesize] + ((t5 + t1) >> 7)];
  407. dest[1*linesize] = cm[dest[1*linesize] + ((t6 + t2) >> 7)];
  408. dest[2*linesize] = cm[dest[2*linesize] + ((t7 + t3) >> 7)];
  409. dest[3*linesize] = cm[dest[3*linesize] + ((t8 + t4) >> 7)];
  410. dest[4*linesize] = cm[dest[4*linesize] + ((t8 - t4 + 1) >> 7)];
  411. dest[5*linesize] = cm[dest[5*linesize] + ((t7 - t3 + 1) >> 7)];
  412. dest[6*linesize] = cm[dest[6*linesize] + ((t6 - t2 + 1) >> 7)];
  413. dest[7*linesize] = cm[dest[7*linesize] + ((t5 - t1 + 1) >> 7)];
  414. src ++;
  415. dest++;
  416. }
  417. }
  418. /** Do inverse transform on 4x4 part of block
  419. */
  420. static void vc1_inv_trans_4x4_dc_c(uint8_t *dest, int linesize, DCTELEM *block)
  421. {
  422. int i;
  423. int dc = block[0];
  424. const uint8_t *cm;
  425. dc = (17 * dc + 4) >> 3;
  426. dc = (17 * dc + 64) >> 7;
  427. cm = ff_cropTbl + MAX_NEG_CROP + dc;
  428. for(i = 0; i < 4; i++){
  429. dest[0] = cm[dest[0]];
  430. dest[1] = cm[dest[1]];
  431. dest[2] = cm[dest[2]];
  432. dest[3] = cm[dest[3]];
  433. dest += linesize;
  434. }
  435. }
  436. static void vc1_inv_trans_4x4_c(uint8_t *dest, int linesize, DCTELEM *block)
  437. {
  438. int i;
  439. register int t1,t2,t3,t4;
  440. DCTELEM *src, *dst;
  441. const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  442. src = block;
  443. dst = block;
  444. for(i = 0; i < 4; i++){
  445. t1 = 17 * (src[0] + src[2]) + 4;
  446. t2 = 17 * (src[0] - src[2]) + 4;
  447. t3 = 22 * src[1] + 10 * src[3];
  448. t4 = 22 * src[3] - 10 * src[1];
  449. dst[0] = (t1 + t3) >> 3;
  450. dst[1] = (t2 - t4) >> 3;
  451. dst[2] = (t2 + t4) >> 3;
  452. dst[3] = (t1 - t3) >> 3;
  453. src += 8;
  454. dst += 8;
  455. }
  456. src = block;
  457. for(i = 0; i < 4; i++){
  458. t1 = 17 * (src[ 0] + src[16]) + 64;
  459. t2 = 17 * (src[ 0] - src[16]) + 64;
  460. t3 = 22 * src[ 8] + 10 * src[24];
  461. t4 = 22 * src[24] - 10 * src[ 8];
  462. dest[0*linesize] = cm[dest[0*linesize] + ((t1 + t3) >> 7)];
  463. dest[1*linesize] = cm[dest[1*linesize] + ((t2 - t4) >> 7)];
  464. dest[2*linesize] = cm[dest[2*linesize] + ((t2 + t4) >> 7)];
  465. dest[3*linesize] = cm[dest[3*linesize] + ((t1 - t3) >> 7)];
  466. src ++;
  467. dest++;
  468. }
  469. }
  470. /* motion compensation functions */
  471. /** Filter in case of 2 filters */
  472. #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
  473. static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, int stride, int mode) \
  474. { \
  475. switch(mode){ \
  476. case 0: /* no shift - should not occur */ \
  477. return 0; \
  478. case 1: /* 1/4 shift */ \
  479. return -4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2]; \
  480. case 2: /* 1/2 shift */ \
  481. return -src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2]; \
  482. case 3: /* 3/4 shift */ \
  483. return -3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2]; \
  484. } \
  485. return 0; /* should not occur */ \
  486. }
  487. VC1_MSPEL_FILTER_16B(ver, uint8_t);
  488. VC1_MSPEL_FILTER_16B(hor, int16_t);
  489. /** Filter used to interpolate fractional pel values
  490. */
  491. static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride, int mode, int r)
  492. {
  493. switch(mode){
  494. case 0: //no shift
  495. return src[0];
  496. case 1: // 1/4 shift
  497. return (-4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2] + 32 - r) >> 6;
  498. case 2: // 1/2 shift
  499. return (-src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2] + 8 - r) >> 4;
  500. case 3: // 3/4 shift
  501. return (-3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2] + 32 - r) >> 6;
  502. }
  503. return 0; //should not occur
  504. }
  505. /** Function used to do motion compensation with bicubic interpolation
  506. */
  507. #define VC1_MSPEL_MC(OP, OPNAME)\
  508. static void OPNAME ## vc1_mspel_mc(uint8_t *dst, const uint8_t *src, int stride, int hmode, int vmode, int rnd)\
  509. {\
  510. int i, j;\
  511. \
  512. if (vmode) { /* Horizontal filter to apply */\
  513. int r;\
  514. \
  515. if (hmode) { /* Vertical filter to apply, output to tmp */\
  516. static const int shift_value[] = { 0, 5, 1, 5 };\
  517. int shift = (shift_value[hmode]+shift_value[vmode])>>1;\
  518. int16_t tmp[11*8], *tptr = tmp;\
  519. \
  520. r = (1<<(shift-1)) + rnd-1;\
  521. \
  522. src -= 1;\
  523. for(j = 0; j < 8; j++) {\
  524. for(i = 0; i < 11; i++)\
  525. tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode)+r)>>shift;\
  526. src += stride;\
  527. tptr += 11;\
  528. }\
  529. \
  530. r = 64-rnd;\
  531. tptr = tmp+1;\
  532. for(j = 0; j < 8; j++) {\
  533. for(i = 0; i < 8; i++)\
  534. OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode)+r)>>7);\
  535. dst += stride;\
  536. tptr += 11;\
  537. }\
  538. \
  539. return;\
  540. }\
  541. else { /* No horizontal filter, output 8 lines to dst */\
  542. r = 1-rnd;\
  543. \
  544. for(j = 0; j < 8; j++) {\
  545. for(i = 0; i < 8; i++)\
  546. OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r));\
  547. src += stride;\
  548. dst += stride;\
  549. }\
  550. return;\
  551. }\
  552. }\
  553. \
  554. /* Horizontal mode with no vertical mode */\
  555. for(j = 0; j < 8; j++) {\
  556. for(i = 0; i < 8; i++)\
  557. OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd));\
  558. dst += stride;\
  559. src += stride;\
  560. }\
  561. }
  562. #define op_put(a, b) a = av_clip_uint8(b)
  563. #define op_avg(a, b) a = (a + av_clip_uint8(b) + 1) >> 1
  564. VC1_MSPEL_MC(op_put, put_)
  565. VC1_MSPEL_MC(op_avg, avg_)
  566. /* pixel functions - really are entry points to vc1_mspel_mc */
  567. #define PUT_VC1_MSPEL(a, b)\
  568. static void put_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \
  569. put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  570. }\
  571. static void avg_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \
  572. avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  573. }
  574. PUT_VC1_MSPEL(1, 0)
  575. PUT_VC1_MSPEL(2, 0)
  576. PUT_VC1_MSPEL(3, 0)
  577. PUT_VC1_MSPEL(0, 1)
  578. PUT_VC1_MSPEL(1, 1)
  579. PUT_VC1_MSPEL(2, 1)
  580. PUT_VC1_MSPEL(3, 1)
  581. PUT_VC1_MSPEL(0, 2)
  582. PUT_VC1_MSPEL(1, 2)
  583. PUT_VC1_MSPEL(2, 2)
  584. PUT_VC1_MSPEL(3, 2)
  585. PUT_VC1_MSPEL(0, 3)
  586. PUT_VC1_MSPEL(1, 3)
  587. PUT_VC1_MSPEL(2, 3)
  588. PUT_VC1_MSPEL(3, 3)
  589. static void put_no_rnd_vc1_chroma_mc8_c(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int x, int y){
  590. const int A=(8-x)*(8-y);
  591. const int B=( x)*(8-y);
  592. const int C=(8-x)*( y);
  593. const int D=( x)*( y);
  594. int i;
  595. assert(x<8 && y<8 && x>=0 && y>=0);
  596. for(i=0; i<h; i++)
  597. {
  598. dst[0] = (A*src[0] + B*src[1] + C*src[stride+0] + D*src[stride+1] + 32 - 4) >> 6;
  599. dst[1] = (A*src[1] + B*src[2] + C*src[stride+1] + D*src[stride+2] + 32 - 4) >> 6;
  600. dst[2] = (A*src[2] + B*src[3] + C*src[stride+2] + D*src[stride+3] + 32 - 4) >> 6;
  601. dst[3] = (A*src[3] + B*src[4] + C*src[stride+3] + D*src[stride+4] + 32 - 4) >> 6;
  602. dst[4] = (A*src[4] + B*src[5] + C*src[stride+4] + D*src[stride+5] + 32 - 4) >> 6;
  603. dst[5] = (A*src[5] + B*src[6] + C*src[stride+5] + D*src[stride+6] + 32 - 4) >> 6;
  604. dst[6] = (A*src[6] + B*src[7] + C*src[stride+6] + D*src[stride+7] + 32 - 4) >> 6;
  605. dst[7] = (A*src[7] + B*src[8] + C*src[stride+7] + D*src[stride+8] + 32 - 4) >> 6;
  606. dst+= stride;
  607. src+= stride;
  608. }
  609. }
  610. #define avg2(a,b) ((a+b+1)>>1)
  611. static void avg_no_rnd_vc1_chroma_mc8_c(uint8_t *dst/*align 8*/, uint8_t *src/*align 1*/, int stride, int h, int x, int y){
  612. const int A=(8-x)*(8-y);
  613. const int B=( x)*(8-y);
  614. const int C=(8-x)*( y);
  615. const int D=( x)*( y);
  616. int i;
  617. assert(x<8 && y<8 && x>=0 && y>=0);
  618. for(i=0; i<h; i++)
  619. {
  620. dst[0] = avg2(dst[0], ((A*src[0] + B*src[1] + C*src[stride+0] + D*src[stride+1] + 32 - 4) >> 6));
  621. dst[1] = avg2(dst[1], ((A*src[1] + B*src[2] + C*src[stride+1] + D*src[stride+2] + 32 - 4) >> 6));
  622. dst[2] = avg2(dst[2], ((A*src[2] + B*src[3] + C*src[stride+2] + D*src[stride+3] + 32 - 4) >> 6));
  623. dst[3] = avg2(dst[3], ((A*src[3] + B*src[4] + C*src[stride+3] + D*src[stride+4] + 32 - 4) >> 6));
  624. dst[4] = avg2(dst[4], ((A*src[4] + B*src[5] + C*src[stride+4] + D*src[stride+5] + 32 - 4) >> 6));
  625. dst[5] = avg2(dst[5], ((A*src[5] + B*src[6] + C*src[stride+5] + D*src[stride+6] + 32 - 4) >> 6));
  626. dst[6] = avg2(dst[6], ((A*src[6] + B*src[7] + C*src[stride+6] + D*src[stride+7] + 32 - 4) >> 6));
  627. dst[7] = avg2(dst[7], ((A*src[7] + B*src[8] + C*src[stride+7] + D*src[stride+8] + 32 - 4) >> 6));
  628. dst+= stride;
  629. src+= stride;
  630. }
  631. }
  632. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  633. static void sprite_h_c(uint8_t *dst, const uint8_t *src, int offset, int advance, int count)
  634. {
  635. while (count--) {
  636. int a = src[(offset >> 16) ];
  637. int b = src[(offset >> 16) + 1];
  638. *dst++ = a + ((b - a) * (offset&0xFFFF) >> 16);
  639. offset += advance;
  640. }
  641. }
  642. static av_always_inline void sprite_v_template(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1,
  643. int two_sprites, const uint8_t *src2a, const uint8_t *src2b, int offset2,
  644. int alpha, int scaled, int width)
  645. {
  646. int a1, b1, a2, b2;
  647. while (width--) {
  648. a1 = *src1a++;
  649. if (scaled) {
  650. b1 = *src1b++;
  651. a1 = a1 + ((b1 - a1) * offset1 >> 16);
  652. }
  653. if (two_sprites) {
  654. a2 = *src2a++;
  655. if (scaled > 1) {
  656. b2 = *src2b++;
  657. a2 = a2 + ((b2 - a2) * offset2 >> 16);
  658. }
  659. a1 = a1 + ((a2 - a1) * alpha >> 16);
  660. }
  661. *dst++ = a1;
  662. }
  663. }
  664. static void sprite_v_single_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset, int width)
  665. {
  666. sprite_v_template(dst, src1a, src1b, offset, 0, NULL, NULL, 0, 0, 1, width);
  667. }
  668. static void sprite_v_double_noscale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src2a, int alpha, int width)
  669. {
  670. sprite_v_template(dst, src1a, NULL, 0, 1, src2a, NULL, 0, alpha, 0, width);
  671. }
  672. static void sprite_v_double_onescale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1,
  673. const uint8_t *src2a, int alpha, int width)
  674. {
  675. sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, NULL, 0, alpha, 1, width);
  676. }
  677. static void sprite_v_double_twoscale_c(uint8_t *dst, const uint8_t *src1a, const uint8_t *src1b, int offset1,
  678. const uint8_t *src2a, const uint8_t *src2b, int offset2,
  679. int alpha, int width)
  680. {
  681. sprite_v_template(dst, src1a, src1b, offset1, 1, src2a, src2b, offset2, alpha, 2, width);
  682. }
  683. #endif
  684. av_cold void ff_vc1dsp_init(VC1DSPContext* dsp) {
  685. dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c;
  686. dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c;
  687. dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c;
  688. dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c;
  689. dsp->vc1_inv_trans_8x8_dc = vc1_inv_trans_8x8_dc_c;
  690. dsp->vc1_inv_trans_4x8_dc = vc1_inv_trans_4x8_dc_c;
  691. dsp->vc1_inv_trans_8x4_dc = vc1_inv_trans_8x4_dc_c;
  692. dsp->vc1_inv_trans_4x4_dc = vc1_inv_trans_4x4_dc_c;
  693. dsp->vc1_h_overlap = vc1_h_overlap_c;
  694. dsp->vc1_v_overlap = vc1_v_overlap_c;
  695. dsp->vc1_h_s_overlap = vc1_h_s_overlap_c;
  696. dsp->vc1_v_s_overlap = vc1_v_s_overlap_c;
  697. dsp->vc1_v_loop_filter4 = vc1_v_loop_filter4_c;
  698. dsp->vc1_h_loop_filter4 = vc1_h_loop_filter4_c;
  699. dsp->vc1_v_loop_filter8 = vc1_v_loop_filter8_c;
  700. dsp->vc1_h_loop_filter8 = vc1_h_loop_filter8_c;
  701. dsp->vc1_v_loop_filter16 = vc1_v_loop_filter16_c;
  702. dsp->vc1_h_loop_filter16 = vc1_h_loop_filter16_c;
  703. dsp->put_vc1_mspel_pixels_tab[ 0] = ff_put_pixels8x8_c;
  704. dsp->put_vc1_mspel_pixels_tab[ 1] = put_vc1_mspel_mc10_c;
  705. dsp->put_vc1_mspel_pixels_tab[ 2] = put_vc1_mspel_mc20_c;
  706. dsp->put_vc1_mspel_pixels_tab[ 3] = put_vc1_mspel_mc30_c;
  707. dsp->put_vc1_mspel_pixels_tab[ 4] = put_vc1_mspel_mc01_c;
  708. dsp->put_vc1_mspel_pixels_tab[ 5] = put_vc1_mspel_mc11_c;
  709. dsp->put_vc1_mspel_pixels_tab[ 6] = put_vc1_mspel_mc21_c;
  710. dsp->put_vc1_mspel_pixels_tab[ 7] = put_vc1_mspel_mc31_c;
  711. dsp->put_vc1_mspel_pixels_tab[ 8] = put_vc1_mspel_mc02_c;
  712. dsp->put_vc1_mspel_pixels_tab[ 9] = put_vc1_mspel_mc12_c;
  713. dsp->put_vc1_mspel_pixels_tab[10] = put_vc1_mspel_mc22_c;
  714. dsp->put_vc1_mspel_pixels_tab[11] = put_vc1_mspel_mc32_c;
  715. dsp->put_vc1_mspel_pixels_tab[12] = put_vc1_mspel_mc03_c;
  716. dsp->put_vc1_mspel_pixels_tab[13] = put_vc1_mspel_mc13_c;
  717. dsp->put_vc1_mspel_pixels_tab[14] = put_vc1_mspel_mc23_c;
  718. dsp->put_vc1_mspel_pixels_tab[15] = put_vc1_mspel_mc33_c;
  719. dsp->avg_vc1_mspel_pixels_tab[ 0] = ff_avg_pixels8x8_c;
  720. dsp->avg_vc1_mspel_pixels_tab[ 1] = avg_vc1_mspel_mc10_c;
  721. dsp->avg_vc1_mspel_pixels_tab[ 2] = avg_vc1_mspel_mc20_c;
  722. dsp->avg_vc1_mspel_pixels_tab[ 3] = avg_vc1_mspel_mc30_c;
  723. dsp->avg_vc1_mspel_pixels_tab[ 4] = avg_vc1_mspel_mc01_c;
  724. dsp->avg_vc1_mspel_pixels_tab[ 5] = avg_vc1_mspel_mc11_c;
  725. dsp->avg_vc1_mspel_pixels_tab[ 6] = avg_vc1_mspel_mc21_c;
  726. dsp->avg_vc1_mspel_pixels_tab[ 7] = avg_vc1_mspel_mc31_c;
  727. dsp->avg_vc1_mspel_pixels_tab[ 8] = avg_vc1_mspel_mc02_c;
  728. dsp->avg_vc1_mspel_pixels_tab[ 9] = avg_vc1_mspel_mc12_c;
  729. dsp->avg_vc1_mspel_pixels_tab[10] = avg_vc1_mspel_mc22_c;
  730. dsp->avg_vc1_mspel_pixels_tab[11] = avg_vc1_mspel_mc32_c;
  731. dsp->avg_vc1_mspel_pixels_tab[12] = avg_vc1_mspel_mc03_c;
  732. dsp->avg_vc1_mspel_pixels_tab[13] = avg_vc1_mspel_mc13_c;
  733. dsp->avg_vc1_mspel_pixels_tab[14] = avg_vc1_mspel_mc23_c;
  734. dsp->avg_vc1_mspel_pixels_tab[15] = avg_vc1_mspel_mc33_c;
  735. dsp->put_no_rnd_vc1_chroma_pixels_tab[0]= put_no_rnd_vc1_chroma_mc8_c;
  736. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0]= avg_no_rnd_vc1_chroma_mc8_c;
  737. #if CONFIG_WMV3IMAGE_DECODER || CONFIG_VC1IMAGE_DECODER
  738. dsp->sprite_h = sprite_h_c;
  739. dsp->sprite_v_single = sprite_v_single_c;
  740. dsp->sprite_v_double_noscale = sprite_v_double_noscale_c;
  741. dsp->sprite_v_double_onescale = sprite_v_double_onescale_c;
  742. dsp->sprite_v_double_twoscale = sprite_v_double_twoscale_c;
  743. #endif
  744. if (HAVE_ALTIVEC)
  745. ff_vc1dsp_init_altivec(dsp);
  746. if (HAVE_MMX)
  747. ff_vc1dsp_init_mmx(dsp);
  748. }