You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1133 lines
37KB

  1. /*
  2. * TwinVQ decoder
  3. * Copyright (c) 2009 Vitor Sessak
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "get_bits.h"
  23. #include "dsputil.h"
  24. #include "fft.h"
  25. #include "lsp.h"
  26. #include "sinewin.h"
  27. #include <math.h>
  28. #include <stdint.h>
  29. #include "twinvq_data.h"
  30. enum FrameType {
  31. FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
  32. FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
  33. FT_LONG, ///< Long frame (single sub-block + PPC)
  34. FT_PPC, ///< Periodic Peak Component (part of the long frame)
  35. };
  36. /**
  37. * Parameters and tables that are different for each frame type
  38. */
  39. struct FrameMode {
  40. uint8_t sub; ///< Number subblocks in each frame
  41. const uint16_t *bark_tab;
  42. /** number of distinct bark scale envelope values */
  43. uint8_t bark_env_size;
  44. const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
  45. uint8_t bark_n_coef;///< number of BSE CB coefficients to read
  46. uint8_t bark_n_bit; ///< number of bits of the BSE coefs
  47. //@{
  48. /** main codebooks for spectrum data */
  49. const int16_t *cb0;
  50. const int16_t *cb1;
  51. //@}
  52. uint8_t cb_len_read; ///< number of spectrum coefficients to read
  53. };
  54. /**
  55. * Parameters and tables that are different for every combination of
  56. * bitrate/sample rate
  57. */
  58. typedef struct {
  59. struct FrameMode fmode[3]; ///< frame type-dependant parameters
  60. uint16_t size; ///< frame size in samples
  61. uint8_t n_lsp; ///< number of lsp coefficients
  62. const float *lspcodebook;
  63. /* number of bits of the different LSP CB coefficients */
  64. uint8_t lsp_bit0;
  65. uint8_t lsp_bit1;
  66. uint8_t lsp_bit2;
  67. uint8_t lsp_split; ///< number of CB entries for the LSP decoding
  68. const int16_t *ppc_shape_cb; ///< PPC shape CB
  69. /** number of the bits for the PPC period value */
  70. uint8_t ppc_period_bit;
  71. uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
  72. uint8_t ppc_shape_len; ///< size of PPC shape CB
  73. uint8_t pgain_bit; ///< bits for PPC gain
  74. /** constant for peak period to peak width conversion */
  75. uint16_t peak_per2wid;
  76. } ModeTab;
  77. static const ModeTab mode_08_08 = {
  78. {
  79. { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
  80. { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
  81. { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
  82. },
  83. 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
  84. };
  85. static const ModeTab mode_11_08 = {
  86. {
  87. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
  88. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
  89. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
  90. },
  91. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  92. };
  93. static const ModeTab mode_11_10 = {
  94. {
  95. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
  96. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
  97. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
  98. },
  99. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  100. };
  101. static const ModeTab mode_16_16 = {
  102. {
  103. { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
  104. { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
  105. { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
  106. },
  107. 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
  108. };
  109. static const ModeTab mode_22_20 = {
  110. {
  111. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
  112. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
  113. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
  114. },
  115. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  116. };
  117. static const ModeTab mode_22_24 = {
  118. {
  119. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
  120. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
  121. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
  122. },
  123. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  124. };
  125. static const ModeTab mode_22_32 = {
  126. {
  127. { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
  128. { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
  129. { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
  130. },
  131. 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
  132. };
  133. static const ModeTab mode_44_40 = {
  134. {
  135. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
  136. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
  137. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
  138. },
  139. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  140. };
  141. static const ModeTab mode_44_48 = {
  142. {
  143. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
  144. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
  145. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
  146. },
  147. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  148. };
  149. typedef struct TwinContext {
  150. AVCodecContext *avctx;
  151. DSPContext dsp;
  152. FFTContext mdct_ctx[3];
  153. const ModeTab *mtab;
  154. // history
  155. float lsp_hist[2][20]; ///< LSP coefficients of the last frame
  156. float bark_hist[3][2][40]; ///< BSE coefficients of last frame
  157. // bitstream parameters
  158. int16_t permut[4][4096];
  159. uint8_t length[4][2]; ///< main codebook stride
  160. uint8_t length_change[4];
  161. uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
  162. int bits_main_spec_change[4];
  163. int n_div[4];
  164. float *spectrum;
  165. float *curr_frame; ///< non-interleaved output
  166. float *prev_frame; ///< non-interleaved previous frame
  167. int last_block_pos[2];
  168. float *cos_tabs[3];
  169. // scratch buffers
  170. float *tmp_buf;
  171. } TwinContext;
  172. #define PPC_SHAPE_CB_SIZE 64
  173. #define PPC_SHAPE_LEN_MAX 60
  174. #define SUB_AMP_MAX 4500.0
  175. #define MULAW_MU 100.0
  176. #define GAIN_BITS 8
  177. #define AMP_MAX 13000.0
  178. #define SUB_GAIN_BITS 5
  179. #define WINDOW_TYPE_BITS 4
  180. #define PGAIN_MU 200
  181. #define LSP_COEFS_MAX 20
  182. #define LSP_SPLIT_MAX 4
  183. #define CHANNELS_MAX 2
  184. #define SUBBLOCKS_MAX 16
  185. #define BARK_N_COEF_MAX 4
  186. /** @note not speed critical, hence not optimized */
  187. static void memset_float(float *buf, float val, int size)
  188. {
  189. while (size--)
  190. *buf++ = val;
  191. }
  192. /**
  193. * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
  194. * spectrum pairs.
  195. *
  196. * @param lsp a vector of the cosinus of the LSP values
  197. * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
  198. * @param order the order of the LSP (and the size of the *lsp buffer). Must
  199. * be a multiple of four.
  200. * @return the LPC value
  201. *
  202. * @todo reuse code from Vorbis decoder: vorbis_floor0_decode
  203. */
  204. static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
  205. {
  206. int j;
  207. float p = 0.5f;
  208. float q = 0.5f;
  209. float two_cos_w = 2.0f*cos_val;
  210. for (j = 0; j + 1 < order; j += 2*2) {
  211. // Unroll the loop once since order is a multiple of four
  212. q *= lsp[j ] - two_cos_w;
  213. p *= lsp[j+1] - two_cos_w;
  214. q *= lsp[j+2] - two_cos_w;
  215. p *= lsp[j+3] - two_cos_w;
  216. }
  217. p *= p * (2.0f - two_cos_w);
  218. q *= q * (2.0f + two_cos_w);
  219. return 0.5 / (p + q);
  220. }
  221. /**
  222. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  223. */
  224. static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
  225. {
  226. int i;
  227. const ModeTab *mtab = tctx->mtab;
  228. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  229. for (i = 0; i < size_s/2; i++) {
  230. float cos_i = tctx->cos_tabs[0][i];
  231. lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
  232. lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
  233. }
  234. }
  235. static void interpolate(float *out, float v1, float v2, int size)
  236. {
  237. int i;
  238. float step = (v1 - v2)/(size + 1);
  239. for (i = 0; i < size; i++) {
  240. v2 += step;
  241. out[i] = v2;
  242. }
  243. }
  244. static inline float get_cos(int idx, int part, const float *cos_tab, int size)
  245. {
  246. return part ? -cos_tab[size - idx - 1] :
  247. cos_tab[ idx ];
  248. }
  249. /**
  250. * Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
  251. * Probably for speed reasons, the coefficients are evaluated as
  252. * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
  253. * where s is an evaluated value, i is a value interpolated from the others
  254. * and b might be either calculated or interpolated, depending on an
  255. * unexplained condition.
  256. *
  257. * @param step the size of a block "siiiibiiii"
  258. * @param in the cosinus of the LSP data
  259. * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
  260. (negative cossinus values)
  261. * @param size the size of the whole output
  262. */
  263. static inline void eval_lpcenv_or_interp(TwinContext *tctx,
  264. enum FrameType ftype,
  265. float *out, const float *in,
  266. int size, int step, int part)
  267. {
  268. int i;
  269. const ModeTab *mtab = tctx->mtab;
  270. const float *cos_tab = tctx->cos_tabs[ftype];
  271. // Fill the 's'
  272. for (i = 0; i < size; i += step)
  273. out[i] =
  274. eval_lpc_spectrum(in,
  275. get_cos(i, part, cos_tab, size),
  276. mtab->n_lsp);
  277. // Fill the 'iiiibiiii'
  278. for (i = step; i <= size - 2*step; i += step) {
  279. if (out[i + step] + out[i - step] > 1.95*out[i] ||
  280. out[i + step] >= out[i - step]) {
  281. interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
  282. } else {
  283. out[i - step/2] =
  284. eval_lpc_spectrum(in,
  285. get_cos(i-step/2, part, cos_tab, size),
  286. mtab->n_lsp);
  287. interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
  288. interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
  289. }
  290. }
  291. interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
  292. }
  293. static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
  294. const float *buf, float *lpc,
  295. int size, int step)
  296. {
  297. eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
  298. eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
  299. interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
  300. memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
  301. }
  302. /**
  303. * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
  304. * bitstream, sum the corresponding vectors and write the result to *out
  305. * after permutation.
  306. */
  307. static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
  308. enum FrameType ftype,
  309. const int16_t *cb0, const int16_t *cb1, int cb_len)
  310. {
  311. int pos = 0;
  312. int i, j;
  313. for (i = 0; i < tctx->n_div[ftype]; i++) {
  314. int tmp0, tmp1;
  315. int sign0 = 1;
  316. int sign1 = 1;
  317. const int16_t *tab0, *tab1;
  318. int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
  319. int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
  320. int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
  321. if (bits == 7) {
  322. if (get_bits1(gb))
  323. sign0 = -1;
  324. bits = 6;
  325. }
  326. tmp0 = get_bits(gb, bits);
  327. bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
  328. if (bits == 7) {
  329. if (get_bits1(gb))
  330. sign1 = -1;
  331. bits = 6;
  332. }
  333. tmp1 = get_bits(gb, bits);
  334. tab0 = cb0 + tmp0*cb_len;
  335. tab1 = cb1 + tmp1*cb_len;
  336. for (j = 0; j < length; j++)
  337. out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
  338. pos += length;
  339. }
  340. }
  341. static inline float mulawinv(float y, float clip, float mu)
  342. {
  343. y = av_clipf(y/clip, -1, 1);
  344. return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
  345. }
  346. /**
  347. * Evaluate a*b/400 rounded to the nearest integer. When, for example,
  348. * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
  349. * the following broken float-based implementation used by the binary decoder:
  350. *
  351. * @code
  352. * static int very_broken_op(int a, int b)
  353. * {
  354. * static float test; // Ugh, force gcc to do the division first...
  355. *
  356. * test = a/400.;
  357. * return b * test + 0.5;
  358. * }
  359. * @endcode
  360. *
  361. * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
  362. * between the original file (before encoding with Yamaha encoder) and the
  363. * decoded output increases, which leads one to believe that the encoder expects
  364. * exactly this broken calculation.
  365. */
  366. static int very_broken_op(int a, int b)
  367. {
  368. int x = a*b + 200;
  369. int size;
  370. const uint8_t *rtab;
  371. if (x%400 || b%5)
  372. return x/400;
  373. x /= 400;
  374. size = tabs[b/5].size;
  375. rtab = tabs[b/5].tab;
  376. return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
  377. }
  378. /**
  379. * Sum to data a periodic peak of a given period, width and shape.
  380. *
  381. * @param period the period of the peak divised by 400.0
  382. */
  383. static void add_peak(int period, int width, const float *shape,
  384. float ppc_gain, float *speech, int len)
  385. {
  386. int i, j;
  387. const float *shape_end = shape + len;
  388. int center;
  389. // First peak centered around zero
  390. for (i = 0; i < width/2; i++)
  391. speech[i] += ppc_gain * *shape++;
  392. for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
  393. center = very_broken_op(period, i);
  394. for (j = -width/2; j < (width+1)/2; j++)
  395. speech[j+center] += ppc_gain * *shape++;
  396. }
  397. // For the last block, be careful not to go beyond the end of the buffer
  398. center = very_broken_op(period, i);
  399. for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
  400. speech[j+center] += ppc_gain * *shape++;
  401. }
  402. static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
  403. float ppc_gain, float *speech)
  404. {
  405. const ModeTab *mtab = tctx->mtab;
  406. int isampf = tctx->avctx->sample_rate/1000;
  407. int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
  408. int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
  409. int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
  410. int period_range = max_period - min_period;
  411. // This is actually the period multiplied by 400. It is just linearly coded
  412. // between its maximum and minimum value.
  413. int period = min_period +
  414. ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
  415. int width;
  416. if (isampf == 22 && ibps == 32) {
  417. // For some unknown reason, NTT decided to code this case differently...
  418. width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
  419. } else
  420. width = (period )* mtab->peak_per2wid/(400*mtab->size);
  421. add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
  422. }
  423. static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
  424. float *out)
  425. {
  426. const ModeTab *mtab = tctx->mtab;
  427. int i, j;
  428. int sub = mtab->fmode[ftype].sub;
  429. float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
  430. float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
  431. if (ftype == FT_LONG) {
  432. for (i = 0; i < tctx->avctx->channels; i++)
  433. out[i] = (1./(1<<13)) *
  434. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  435. AMP_MAX, MULAW_MU);
  436. } else {
  437. for (i = 0; i < tctx->avctx->channels; i++) {
  438. float val = (1./(1<<23)) *
  439. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  440. AMP_MAX, MULAW_MU);
  441. for (j = 0; j < sub; j++) {
  442. out[i*sub + j] =
  443. val*mulawinv(sub_step* 0.5 +
  444. sub_step* get_bits(gb, SUB_GAIN_BITS),
  445. SUB_AMP_MAX, MULAW_MU);
  446. }
  447. }
  448. }
  449. }
  450. /**
  451. * Rearrange the LSP coefficients so that they have a minimum distance of
  452. * min_dist. This function does it exactly as described in section of 3.2.4
  453. * of the G.729 specification (but interestingly is different from what the
  454. * reference decoder actually does).
  455. */
  456. static void rearrange_lsp(int order, float *lsp, float min_dist)
  457. {
  458. int i;
  459. float min_dist2 = min_dist * 0.5;
  460. for (i = 1; i < order; i++)
  461. if (lsp[i] - lsp[i-1] < min_dist) {
  462. float avg = (lsp[i] + lsp[i-1]) * 0.5;
  463. lsp[i-1] = avg - min_dist2;
  464. lsp[i ] = avg + min_dist2;
  465. }
  466. }
  467. static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
  468. int lpc_hist_idx, float *lsp, float *hist)
  469. {
  470. const ModeTab *mtab = tctx->mtab;
  471. int i, j;
  472. const float *cb = mtab->lspcodebook;
  473. const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
  474. const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
  475. const int8_t funny_rounding[4] = {
  476. -2,
  477. mtab->lsp_split == 4 ? -2 : 1,
  478. mtab->lsp_split == 4 ? -2 : 1,
  479. 0
  480. };
  481. j = 0;
  482. for (i = 0; i < mtab->lsp_split; i++) {
  483. int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
  484. for (; j < chunk_end; j++)
  485. lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
  486. cb2[lpc_idx2[i] * mtab->n_lsp + j];
  487. }
  488. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  489. for (i = 0; i < mtab->n_lsp; i++) {
  490. float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
  491. float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
  492. hist[i] = lsp[i];
  493. lsp[i] = lsp[i] * tmp1 + tmp2;
  494. }
  495. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  496. rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
  497. ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
  498. }
  499. static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
  500. enum FrameType ftype, float *lpc)
  501. {
  502. int i;
  503. int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
  504. for (i = 0; i < tctx->mtab->n_lsp; i++)
  505. lsp[i] = 2*cos(lsp[i]);
  506. switch (ftype) {
  507. case FT_LONG:
  508. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
  509. break;
  510. case FT_MEDIUM:
  511. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
  512. break;
  513. case FT_SHORT:
  514. eval_lpcenv(tctx, lsp, lpc);
  515. break;
  516. }
  517. }
  518. static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
  519. float *in, float *prev, int ch)
  520. {
  521. FFTContext *mdct = &tctx->mdct_ctx[ftype];
  522. const ModeTab *mtab = tctx->mtab;
  523. int bsize = mtab->size / mtab->fmode[ftype].sub;
  524. int size = mtab->size;
  525. float *buf1 = tctx->tmp_buf;
  526. int j;
  527. int wsize; // Window size
  528. float *out = tctx->curr_frame + 2*ch*mtab->size;
  529. float *out2 = out;
  530. float *prev_buf;
  531. int first_wsize;
  532. static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
  533. int types_sizes[] = {
  534. mtab->size / mtab->fmode[FT_LONG ].sub,
  535. mtab->size / mtab->fmode[FT_MEDIUM].sub,
  536. mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
  537. };
  538. wsize = types_sizes[wtype_to_wsize[wtype]];
  539. first_wsize = wsize;
  540. prev_buf = prev + (size - bsize)/2;
  541. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  542. int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
  543. if (!j && wtype == 4)
  544. sub_wtype = 4;
  545. else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
  546. sub_wtype = 7;
  547. wsize = types_sizes[wtype_to_wsize[sub_wtype]];
  548. mdct->imdct_half(mdct, buf1 + bsize*j, in + bsize*j);
  549. tctx->dsp.vector_fmul_window(out2,
  550. prev_buf + (bsize-wsize)/2,
  551. buf1 + bsize*j,
  552. ff_sine_windows[av_log2(wsize)],
  553. wsize/2);
  554. out2 += wsize;
  555. memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
  556. out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
  557. prev_buf = buf1 + bsize*j + bsize/2;
  558. }
  559. tctx->last_block_pos[ch] = (size + first_wsize)/2;
  560. }
  561. static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
  562. float *out)
  563. {
  564. const ModeTab *mtab = tctx->mtab;
  565. float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
  566. int i, j;
  567. for (i = 0; i < tctx->avctx->channels; i++) {
  568. imdct_and_window(tctx, ftype, wtype,
  569. tctx->spectrum + i*mtab->size,
  570. prev_buf + 2*i*mtab->size,
  571. i);
  572. }
  573. if (tctx->avctx->channels == 2) {
  574. for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) {
  575. float f1 = prev_buf[ i];
  576. float f2 = prev_buf[2*mtab->size + i];
  577. out[2*i ] = f1 + f2;
  578. out[2*i + 1] = f1 - f2;
  579. }
  580. for (j = 0; i < mtab->size; j++,i++) {
  581. float f1 = tctx->curr_frame[ j];
  582. float f2 = tctx->curr_frame[2*mtab->size + j];
  583. out[2*i ] = f1 + f2;
  584. out[2*i + 1] = f1 - f2;
  585. }
  586. } else {
  587. memcpy(out, prev_buf,
  588. (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
  589. out += mtab->size - tctx->last_block_pos[0];
  590. memcpy(out, tctx->curr_frame,
  591. (tctx->last_block_pos[0]) * sizeof(*out));
  592. }
  593. }
  594. static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
  595. int ch, float *out, float gain, enum FrameType ftype)
  596. {
  597. const ModeTab *mtab = tctx->mtab;
  598. int i,j;
  599. float *hist = tctx->bark_hist[ftype][ch];
  600. float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
  601. int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
  602. int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
  603. int idx = 0;
  604. for (i = 0; i < fw_cb_len; i++)
  605. for (j = 0; j < bark_n_coef; j++, idx++) {
  606. float tmp2 =
  607. mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
  608. float st = use_hist ?
  609. (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
  610. hist[idx] = tmp2;
  611. if (st < -1.) st = 1.;
  612. memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
  613. out += mtab->fmode[ftype].bark_tab[idx];
  614. }
  615. }
  616. static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
  617. float *out, enum FrameType ftype)
  618. {
  619. const ModeTab *mtab = tctx->mtab;
  620. int channels = tctx->avctx->channels;
  621. int sub = mtab->fmode[ftype].sub;
  622. int block_size = mtab->size / sub;
  623. float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
  624. float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4];
  625. uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX];
  626. uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX];
  627. uint8_t lpc_idx1[CHANNELS_MAX];
  628. uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX];
  629. uint8_t lpc_hist_idx[CHANNELS_MAX];
  630. int i, j, k;
  631. dequant(tctx, gb, out, ftype,
  632. mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
  633. mtab->fmode[ftype].cb_len_read);
  634. for (i = 0; i < channels; i++)
  635. for (j = 0; j < sub; j++)
  636. for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
  637. bark1[i][j][k] =
  638. get_bits(gb, mtab->fmode[ftype].bark_n_bit);
  639. for (i = 0; i < channels; i++)
  640. for (j = 0; j < sub; j++)
  641. bark_use_hist[i][j] = get_bits1(gb);
  642. dec_gain(tctx, gb, ftype, gain);
  643. for (i = 0; i < channels; i++) {
  644. lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
  645. lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
  646. for (j = 0; j < tctx->mtab->lsp_split; j++)
  647. lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
  648. }
  649. if (ftype == FT_LONG) {
  650. int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
  651. tctx->n_div[3];
  652. dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
  653. mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
  654. }
  655. for (i = 0; i < channels; i++) {
  656. float *chunk = out + mtab->size * i;
  657. float lsp[LSP_COEFS_MAX];
  658. for (j = 0; j < sub; j++) {
  659. dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
  660. tctx->tmp_buf, gain[sub*i+j], ftype);
  661. tctx->dsp.vector_fmul(chunk + block_size*j, chunk + block_size*j, tctx->tmp_buf,
  662. block_size);
  663. }
  664. if (ftype == FT_LONG) {
  665. float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
  666. int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
  667. int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
  668. float v = 1./8192*
  669. mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
  670. decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
  671. chunk);
  672. }
  673. decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
  674. tctx->lsp_hist[i]);
  675. dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
  676. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  677. tctx->dsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size);
  678. chunk += block_size;
  679. }
  680. }
  681. }
  682. static int twin_decode_frame(AVCodecContext * avctx, void *data,
  683. int *data_size, AVPacket *avpkt)
  684. {
  685. const uint8_t *buf = avpkt->data;
  686. int buf_size = avpkt->size;
  687. TwinContext *tctx = avctx->priv_data;
  688. GetBitContext gb;
  689. const ModeTab *mtab = tctx->mtab;
  690. float *out = data;
  691. enum FrameType ftype;
  692. int window_type;
  693. static const enum FrameType wtype_to_ftype_table[] = {
  694. FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
  695. FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
  696. };
  697. if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
  698. av_log(avctx, AV_LOG_ERROR,
  699. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  700. *data_size = 0;
  701. return buf_size;
  702. }
  703. init_get_bits(&gb, buf, buf_size * 8);
  704. skip_bits(&gb, get_bits(&gb, 8));
  705. window_type = get_bits(&gb, WINDOW_TYPE_BITS);
  706. if (window_type > 8) {
  707. av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
  708. return -1;
  709. }
  710. ftype = wtype_to_ftype_table[window_type];
  711. read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
  712. imdct_output(tctx, ftype, window_type, out);
  713. FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
  714. if (tctx->avctx->frame_number < 2) {
  715. *data_size=0;
  716. return buf_size;
  717. }
  718. *data_size = mtab->size*avctx->channels*4;
  719. return buf_size;
  720. }
  721. /**
  722. * Init IMDCT and windowing tables
  723. */
  724. static av_cold void init_mdct_win(TwinContext *tctx)
  725. {
  726. int i,j;
  727. const ModeTab *mtab = tctx->mtab;
  728. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  729. int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
  730. int channels = tctx->avctx->channels;
  731. float norm = channels == 1 ? 2. : 1.;
  732. for (i = 0; i < 3; i++) {
  733. int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
  734. ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
  735. -sqrt(norm/bsize) / (1<<15));
  736. }
  737. tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf));
  738. tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float));
  739. tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  740. tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  741. for (i = 0; i < 3; i++) {
  742. int m = 4*mtab->size/mtab->fmode[i].sub;
  743. double freq = 2*M_PI/m;
  744. tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
  745. for (j = 0; j <= m/8; j++)
  746. tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
  747. for (j = 1; j < m/8; j++)
  748. tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
  749. }
  750. ff_init_ff_sine_windows(av_log2(size_m));
  751. ff_init_ff_sine_windows(av_log2(size_s/2));
  752. ff_init_ff_sine_windows(av_log2(mtab->size));
  753. }
  754. /**
  755. * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
  756. * each line do a cyclic permutation, i.e.
  757. * abcdefghijklm -> defghijklmabc
  758. * where the amount to be shifted is evaluated depending on the column.
  759. */
  760. static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
  761. int block_size,
  762. const uint8_t line_len[2], int length_div,
  763. enum FrameType ftype)
  764. {
  765. int i,j;
  766. for (i = 0; i < line_len[0]; i++) {
  767. int shift;
  768. if (num_blocks == 1 ||
  769. (ftype == FT_LONG && num_vect % num_blocks) ||
  770. (ftype != FT_LONG && num_vect & 1 ) ||
  771. i == line_len[1]) {
  772. shift = 0;
  773. } else if (ftype == FT_LONG) {
  774. shift = i;
  775. } else
  776. shift = i*i;
  777. for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
  778. tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
  779. }
  780. }
  781. /**
  782. * Interpret the input data as in the following table:
  783. *
  784. * @verbatim
  785. *
  786. * abcdefgh
  787. * ijklmnop
  788. * qrstuvw
  789. * x123456
  790. *
  791. * @endverbatim
  792. *
  793. * and transpose it, giving the output
  794. * aiqxbjr1cks2dlt3emu4fvn5gow6hp
  795. */
  796. static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
  797. const uint8_t line_len[2], int length_div)
  798. {
  799. int i,j;
  800. int cont= 0;
  801. for (i = 0; i < num_vect; i++)
  802. for (j = 0; j < line_len[i >= length_div]; j++)
  803. out[cont++] = in[j*num_vect + i];
  804. }
  805. static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
  806. {
  807. int block_size = size/n_blocks;
  808. int i;
  809. for (i = 0; i < size; i++)
  810. out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
  811. }
  812. static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
  813. {
  814. int block_size;
  815. const ModeTab *mtab = tctx->mtab;
  816. int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
  817. int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
  818. if (ftype == FT_PPC) {
  819. size = tctx->avctx->channels;
  820. block_size = mtab->ppc_shape_len;
  821. } else
  822. block_size = mtab->size / mtab->fmode[ftype].sub;
  823. permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
  824. block_size, tctx->length[ftype],
  825. tctx->length_change[ftype], ftype);
  826. transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
  827. tctx->length[ftype], tctx->length_change[ftype]);
  828. linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
  829. size*block_size);
  830. }
  831. static av_cold void init_bitstream_params(TwinContext *tctx)
  832. {
  833. const ModeTab *mtab = tctx->mtab;
  834. int n_ch = tctx->avctx->channels;
  835. int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
  836. tctx->avctx->sample_rate;
  837. int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
  838. mtab->lsp_split*mtab->lsp_bit2);
  839. int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
  840. mtab->ppc_period_bit);
  841. int bsize_no_main_cb[3];
  842. int bse_bits[3];
  843. int i;
  844. enum FrameType frametype;
  845. for (i = 0; i < 3; i++)
  846. // +1 for history usage switch
  847. bse_bits[i] = n_ch *
  848. (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
  849. bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
  850. WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
  851. for (i = 0; i < 2; i++)
  852. bsize_no_main_cb[i] =
  853. lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
  854. mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
  855. // The remaining bits are all used for the main spectrum coefficients
  856. for (i = 0; i < 4; i++) {
  857. int bit_size;
  858. int vect_size;
  859. int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
  860. if (i == 3) {
  861. bit_size = n_ch * mtab->ppc_shape_bit;
  862. vect_size = n_ch * mtab->ppc_shape_len;
  863. } else {
  864. bit_size = total_fr_bits - bsize_no_main_cb[i];
  865. vect_size = n_ch * mtab->size;
  866. }
  867. tctx->n_div[i] = (bit_size + 13) / 14;
  868. rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  869. rounded_down = (bit_size )/tctx->n_div[i];
  870. num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
  871. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  872. tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
  873. tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
  874. tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
  875. tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
  876. tctx->bits_main_spec_change[i] = num_rounded_up;
  877. rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  878. rounded_down = (vect_size )/tctx->n_div[i];
  879. num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
  880. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  881. tctx->length[i][0] = rounded_up;
  882. tctx->length[i][1] = rounded_down;
  883. tctx->length_change[i] = num_rounded_up;
  884. }
  885. for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
  886. construct_perm_table(tctx, frametype);
  887. }
  888. static av_cold int twin_decode_init(AVCodecContext *avctx)
  889. {
  890. TwinContext *tctx = avctx->priv_data;
  891. int isampf = avctx->sample_rate/1000;
  892. int ibps = avctx->bit_rate/(1000 * avctx->channels);
  893. tctx->avctx = avctx;
  894. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  895. if (avctx->channels > CHANNELS_MAX) {
  896. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
  897. avctx->channels);
  898. return -1;
  899. }
  900. switch ((isampf << 8) + ibps) {
  901. case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
  902. case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
  903. case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
  904. case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
  905. case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
  906. case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
  907. case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
  908. case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
  909. case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
  910. default:
  911. av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
  912. return -1;
  913. }
  914. dsputil_init(&tctx->dsp, avctx);
  915. init_mdct_win(tctx);
  916. init_bitstream_params(tctx);
  917. memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
  918. return 0;
  919. }
  920. static av_cold int twin_decode_close(AVCodecContext *avctx)
  921. {
  922. TwinContext *tctx = avctx->priv_data;
  923. int i;
  924. for (i = 0; i < 3; i++) {
  925. ff_mdct_end(&tctx->mdct_ctx[i]);
  926. av_free(tctx->cos_tabs[i]);
  927. }
  928. av_free(tctx->curr_frame);
  929. av_free(tctx->spectrum);
  930. av_free(tctx->prev_frame);
  931. av_free(tctx->tmp_buf);
  932. return 0;
  933. }
  934. AVCodec ff_twinvq_decoder = {
  935. .name = "twinvq",
  936. .type = AVMEDIA_TYPE_AUDIO,
  937. .id = CODEC_ID_TWINVQ,
  938. .priv_data_size = sizeof(TwinContext),
  939. .init = twin_decode_init,
  940. .close = twin_decode_close,
  941. .decode = twin_decode_frame,
  942. .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
  943. };