You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1137 lines
40KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" //FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. /**
  56. * @file
  57. * svq3 decoder.
  58. */
  59. typedef struct {
  60. H264Context h;
  61. int halfpel_flag;
  62. int thirdpel_flag;
  63. int unknown_flag;
  64. int next_slice_index;
  65. uint32_t watermark_key;
  66. uint8_t *buf;
  67. int buf_size;
  68. } SVQ3Context;
  69. #define FULLPEL_MODE 1
  70. #define HALFPEL_MODE 2
  71. #define THIRDPEL_MODE 3
  72. #define PREDICT_MODE 4
  73. /* dual scan (from some older h264 draft)
  74. o-->o-->o o
  75. | /|
  76. o o o / o
  77. | / | |/ |
  78. o o o o
  79. /
  80. o-->o-->o-->o
  81. */
  82. static const uint8_t svq3_scan[16] = {
  83. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  84. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  85. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  86. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  87. };
  88. static const uint8_t svq3_pred_0[25][2] = {
  89. { 0, 0 },
  90. { 1, 0 }, { 0, 1 },
  91. { 0, 2 }, { 1, 1 }, { 2, 0 },
  92. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  93. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  94. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  95. { 2, 4 }, { 3, 3 }, { 4, 2 },
  96. { 4, 3 }, { 3, 4 },
  97. { 4, 4 }
  98. };
  99. static const int8_t svq3_pred_1[6][6][5] = {
  100. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  101. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  102. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  103. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  104. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  105. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  106. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  107. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  108. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  109. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  110. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  111. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  112. };
  113. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  114. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  115. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  116. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  117. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  118. };
  119. static const uint32_t svq3_dequant_coeff[32] = {
  120. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  121. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  122. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  123. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  124. };
  125. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp){
  126. const int qmul = svq3_dequant_coeff[qp];
  127. #define stride 16
  128. int i;
  129. int temp[16];
  130. static const uint8_t x_offset[4]={0, 1*stride, 4*stride, 5*stride};
  131. for(i=0; i<4; i++){
  132. const int z0 = 13*(input[4*i+0] + input[4*i+2]);
  133. const int z1 = 13*(input[4*i+0] - input[4*i+2]);
  134. const int z2 = 7* input[4*i+1] - 17*input[4*i+3];
  135. const int z3 = 17* input[4*i+1] + 7*input[4*i+3];
  136. temp[4*i+0] = z0+z3;
  137. temp[4*i+1] = z1+z2;
  138. temp[4*i+2] = z1-z2;
  139. temp[4*i+3] = z0-z3;
  140. }
  141. for(i=0; i<4; i++){
  142. const int offset= x_offset[i];
  143. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  144. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  145. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  146. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  147. output[stride* 0+offset] = ((z0 + z3)*qmul + 0x80000) >> 20;
  148. output[stride* 2+offset] = ((z1 + z2)*qmul + 0x80000) >> 20;
  149. output[stride* 8+offset] = ((z1 - z2)*qmul + 0x80000) >> 20;
  150. output[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20;
  151. }
  152. }
  153. #undef stride
  154. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp,
  155. int dc)
  156. {
  157. const int qmul = svq3_dequant_coeff[qp];
  158. int i;
  159. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  160. if (dc) {
  161. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  162. block[0] = 0;
  163. }
  164. for (i = 0; i < 4; i++) {
  165. const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]);
  166. const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]);
  167. const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i];
  168. const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i];
  169. block[0 + 4*i] = z0 + z3;
  170. block[1 + 4*i] = z1 + z2;
  171. block[2 + 4*i] = z1 - z2;
  172. block[3 + 4*i] = z0 - z3;
  173. }
  174. for (i = 0; i < 4; i++) {
  175. const int z0 = 13*(block[i + 4*0] + block[i + 4*2]);
  176. const int z1 = 13*(block[i + 4*0] - block[i + 4*2]);
  177. const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3];
  178. const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3];
  179. const int rr = (dc + 0x80000);
  180. dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  181. dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  182. dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  183. dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  184. }
  185. }
  186. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  187. int index, const int type)
  188. {
  189. static const uint8_t *const scan_patterns[4] =
  190. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  191. int run, level, sign, vlc, limit;
  192. const int intra = (3 * type) >> 2;
  193. const uint8_t *const scan = scan_patterns[type];
  194. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  195. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  196. if (vlc < 0)
  197. return -1;
  198. sign = (vlc & 0x1) - 1;
  199. vlc = (vlc + 1) >> 1;
  200. if (type == 3) {
  201. if (vlc < 3) {
  202. run = 0;
  203. level = vlc;
  204. } else if (vlc < 4) {
  205. run = 1;
  206. level = 1;
  207. } else {
  208. run = (vlc & 0x3);
  209. level = ((vlc + 9) >> 2) - run;
  210. }
  211. } else {
  212. if (vlc < 16U) {
  213. run = svq3_dct_tables[intra][vlc].run;
  214. level = svq3_dct_tables[intra][vlc].level;
  215. } else if (intra) {
  216. run = (vlc & 0x7);
  217. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  218. } else {
  219. run = (vlc & 0xF);
  220. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  221. }
  222. }
  223. if ((index += run) >= limit)
  224. return -1;
  225. block[scan[index]] = (level ^ sign) - sign;
  226. }
  227. if (type != 2) {
  228. break;
  229. }
  230. }
  231. return 0;
  232. }
  233. static inline void svq3_mc_dir_part(MpegEncContext *s,
  234. int x, int y, int width, int height,
  235. int mx, int my, int dxy,
  236. int thirdpel, int dir, int avg)
  237. {
  238. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  239. uint8_t *src, *dest;
  240. int i, emu = 0;
  241. int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2
  242. mx += x;
  243. my += y;
  244. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  245. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  246. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  247. emu = 1;
  248. }
  249. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  250. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  251. }
  252. /* form component predictions */
  253. dest = s->current_picture.f.data[0] + x + y*s->linesize;
  254. src = pic->f.data[0] + mx + my*s->linesize;
  255. if (emu) {
  256. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  257. mx, my, s->h_edge_pos, s->v_edge_pos);
  258. src = s->edge_emu_buffer;
  259. }
  260. if (thirdpel)
  261. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  262. else
  263. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  264. if (!(s->flags & CODEC_FLAG_GRAY)) {
  265. mx = (mx + (mx < (int) x)) >> 1;
  266. my = (my + (my < (int) y)) >> 1;
  267. width = (width >> 1);
  268. height = (height >> 1);
  269. blocksize++;
  270. for (i = 1; i < 3; i++) {
  271. dest = s->current_picture.f.data[i] + (x >> 1) + (y >> 1) * s->uvlinesize;
  272. src = pic->f.data[i] + mx + my * s->uvlinesize;
  273. if (emu) {
  274. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  275. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  276. src = s->edge_emu_buffer;
  277. }
  278. if (thirdpel)
  279. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  280. else
  281. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  282. }
  283. }
  284. }
  285. static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir,
  286. int avg)
  287. {
  288. int i, j, k, mx, my, dx, dy, x, y;
  289. MpegEncContext *const s = (MpegEncContext *) h;
  290. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  291. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  292. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  293. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  294. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  295. for (i = 0; i < 16; i += part_height) {
  296. for (j = 0; j < 16; j += part_width) {
  297. const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride;
  298. int dxy;
  299. x = 16*s->mb_x + j;
  300. y = 16*s->mb_y + i;
  301. k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8);
  302. if (mode != PREDICT_MODE) {
  303. pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my);
  304. } else {
  305. mx = s->next_picture.f.motion_val[0][b_xy][0] << 1;
  306. my = s->next_picture.f.motion_val[0][b_xy][1] << 1;
  307. if (dir == 0) {
  308. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  309. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  310. } else {
  311. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  312. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  313. }
  314. }
  315. /* clip motion vector prediction to frame border */
  316. mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x);
  317. my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y);
  318. /* get (optional) motion vector differential */
  319. if (mode == PREDICT_MODE) {
  320. dx = dy = 0;
  321. } else {
  322. dy = svq3_get_se_golomb(&s->gb);
  323. dx = svq3_get_se_golomb(&s->gb);
  324. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  325. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  326. return -1;
  327. }
  328. }
  329. /* compute motion vector */
  330. if (mode == THIRDPEL_MODE) {
  331. int fx, fy;
  332. mx = ((mx + 1)>>1) + dx;
  333. my = ((my + 1)>>1) + dy;
  334. fx = ((unsigned)(mx + 0x3000))/3 - 0x1000;
  335. fy = ((unsigned)(my + 0x3000))/3 - 0x1000;
  336. dxy = (mx - 3*fx) + 4*(my - 3*fy);
  337. svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  338. mx += mx;
  339. my += my;
  340. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  341. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  342. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  343. dxy = (mx&1) + 2*(my&1);
  344. svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  345. mx *= 3;
  346. my *= 3;
  347. } else {
  348. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  349. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  350. svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  351. mx *= 6;
  352. my *= 6;
  353. }
  354. /* update mv_cache */
  355. if (mode != PREDICT_MODE) {
  356. int32_t mv = pack16to32(mx,my);
  357. if (part_height == 8 && i < 8) {
  358. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  359. if (part_width == 8 && j < 8) {
  360. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  361. }
  362. }
  363. if (part_width == 8 && j < 8) {
  364. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  365. }
  366. if (part_width == 4 || part_height == 4) {
  367. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  368. }
  369. }
  370. /* write back motion vectors */
  371. fill_rectangle(s->current_picture.f.motion_val[dir][b_xy],
  372. part_width >> 2, part_height >> 2, h->b_stride,
  373. pack16to32(mx, my), 4);
  374. }
  375. }
  376. return 0;
  377. }
  378. static int svq3_decode_mb(SVQ3Context *svq3, unsigned int mb_type)
  379. {
  380. H264Context *h = &svq3->h;
  381. int i, j, k, m, dir, mode;
  382. int cbp = 0;
  383. uint32_t vlc;
  384. int8_t *top, *left;
  385. MpegEncContext *const s = (MpegEncContext *) h;
  386. const int mb_xy = h->mb_xy;
  387. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  388. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  389. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  390. h->topright_samples_available = 0xFFFF;
  391. if (mb_type == 0) { /* SKIP */
  392. if (s->pict_type == AV_PICTURE_TYPE_P || s->next_picture.f.mb_type[mb_xy] == -1) {
  393. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  394. if (s->pict_type == AV_PICTURE_TYPE_B) {
  395. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  396. }
  397. mb_type = MB_TYPE_SKIP;
  398. } else {
  399. mb_type = FFMIN(s->next_picture.f.mb_type[mb_xy], 6);
  400. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  401. return -1;
  402. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  403. return -1;
  404. mb_type = MB_TYPE_16x16;
  405. }
  406. } else if (mb_type < 8) { /* INTER */
  407. if (svq3->thirdpel_flag && svq3->halfpel_flag == !get_bits1 (&s->gb)) {
  408. mode = THIRDPEL_MODE;
  409. } else if (svq3->halfpel_flag && svq3->thirdpel_flag == !get_bits1 (&s->gb)) {
  410. mode = HALFPEL_MODE;
  411. } else {
  412. mode = FULLPEL_MODE;
  413. }
  414. /* fill caches */
  415. /* note ref_cache should contain here:
  416. ????????
  417. ???11111
  418. N??11111
  419. N??11111
  420. N??11111
  421. */
  422. for (m = 0; m < 2; m++) {
  423. if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6] != -1) {
  424. for (i = 0; i < 4; i++) {
  425. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - 1 + i*h->b_stride];
  426. }
  427. } else {
  428. for (i = 0; i < 4; i++) {
  429. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  430. }
  431. }
  432. if (s->mb_y > 0) {
  433. memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.f.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  434. memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  435. if (s->mb_x < (s->mb_width - 1)) {
  436. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - h->b_stride + 4];
  437. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  438. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1]+6] == -1 ||
  439. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride ] ] == -1) ? PART_NOT_AVAILABLE : 1;
  440. }else
  441. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  442. if (s->mb_x > 0) {
  443. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.f.motion_val[m][b_xy - h->b_stride - 1];
  444. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] == -1) ? PART_NOT_AVAILABLE : 1;
  445. }else
  446. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  447. }else
  448. memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  449. if (s->pict_type != AV_PICTURE_TYPE_B)
  450. break;
  451. }
  452. /* decode motion vector(s) and form prediction(s) */
  453. if (s->pict_type == AV_PICTURE_TYPE_P) {
  454. if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0)
  455. return -1;
  456. } else { /* AV_PICTURE_TYPE_B */
  457. if (mb_type != 2) {
  458. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  459. return -1;
  460. } else {
  461. for (i = 0; i < 4; i++) {
  462. memset(s->current_picture.f.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  463. }
  464. }
  465. if (mb_type != 1) {
  466. if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0)
  467. return -1;
  468. } else {
  469. for (i = 0; i < 4; i++) {
  470. memset(s->current_picture.f.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  471. }
  472. }
  473. }
  474. mb_type = MB_TYPE_16x16;
  475. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  476. memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  477. if (mb_type == 8) {
  478. if (s->mb_x > 0) {
  479. for (i = 0; i < 4; i++) {
  480. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6-i];
  481. }
  482. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  483. h->left_samples_available = 0x5F5F;
  484. }
  485. }
  486. if (s->mb_y > 0) {
  487. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+0];
  488. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+1];
  489. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+2];
  490. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+3];
  491. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  492. h->top_samples_available = 0x33FF;
  493. }
  494. }
  495. /* decode prediction codes for luma blocks */
  496. for (i = 0; i < 16; i+=2) {
  497. vlc = svq3_get_ue_golomb(&s->gb);
  498. if (vlc >= 25U){
  499. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  500. return -1;
  501. }
  502. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  503. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  504. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  505. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  506. if (left[1] == -1 || left[2] == -1){
  507. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  508. return -1;
  509. }
  510. }
  511. } else { /* mb_type == 33, DC_128_PRED block type */
  512. for (i = 0; i < 4; i++) {
  513. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  514. }
  515. }
  516. write_back_intra_pred_mode(h);
  517. if (mb_type == 8) {
  518. ff_h264_check_intra4x4_pred_mode(h);
  519. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  520. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  521. } else {
  522. for (i = 0; i < 4; i++) {
  523. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  524. }
  525. h->top_samples_available = 0x33FF;
  526. h->left_samples_available = 0x5F5F;
  527. }
  528. mb_type = MB_TYPE_INTRA4x4;
  529. } else { /* INTRA16x16 */
  530. dir = i_mb_type_info[mb_type - 8].pred_mode;
  531. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  532. if ((h->intra16x16_pred_mode = ff_h264_check_intra16x16_pred_mode(h, dir)) == -1){
  533. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  534. return -1;
  535. }
  536. cbp = i_mb_type_info[mb_type - 8].cbp;
  537. mb_type = MB_TYPE_INTRA16x16;
  538. }
  539. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  540. for (i = 0; i < 4; i++) {
  541. memset(s->current_picture.f.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  542. }
  543. if (s->pict_type == AV_PICTURE_TYPE_B) {
  544. for (i = 0; i < 4; i++) {
  545. memset(s->current_picture.f.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  546. }
  547. }
  548. }
  549. if (!IS_INTRA4x4(mb_type)) {
  550. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy], DC_PRED, 8);
  551. }
  552. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  553. memset(h->non_zero_count_cache + 8, 0, 14*8*sizeof(uint8_t));
  554. s->dsp.clear_blocks(h->mb+ 0);
  555. s->dsp.clear_blocks(h->mb+384);
  556. }
  557. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  558. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48U){
  559. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  560. return -1;
  561. }
  562. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  563. }
  564. if (IS_INTRA16x16(mb_type) || (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  565. s->qscale += svq3_get_se_golomb(&s->gb);
  566. if (s->qscale > 31U){
  567. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  568. return -1;
  569. }
  570. }
  571. if (IS_INTRA16x16(mb_type)) {
  572. AV_ZERO128(h->mb_luma_dc[0]+0);
  573. AV_ZERO128(h->mb_luma_dc[0]+8);
  574. if (svq3_decode_block(&s->gb, h->mb_luma_dc, 0, 1)){
  575. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  576. return -1;
  577. }
  578. }
  579. if (cbp) {
  580. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  581. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  582. for (i = 0; i < 4; i++) {
  583. if ((cbp & (1 << i))) {
  584. for (j = 0; j < 4; j++) {
  585. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  586. h->non_zero_count_cache[ scan8[k] ] = 1;
  587. if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){
  588. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  589. return -1;
  590. }
  591. }
  592. }
  593. }
  594. if ((cbp & 0x30)) {
  595. for (i = 1; i < 3; ++i) {
  596. if (svq3_decode_block(&s->gb, &h->mb[16*16*i], 0, 3)){
  597. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  598. return -1;
  599. }
  600. }
  601. if ((cbp & 0x20)) {
  602. for (i = 1; i < 3; i++) {
  603. for (j = 0; j < 4; j++) {
  604. k = 16*i + j;
  605. h->non_zero_count_cache[ scan8[k] ] = 1;
  606. if (svq3_decode_block(&s->gb, &h->mb[16*k], 1, 1)){
  607. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  608. return -1;
  609. }
  610. }
  611. }
  612. }
  613. }
  614. }
  615. h->cbp= cbp;
  616. s->current_picture.f.mb_type[mb_xy] = mb_type;
  617. if (IS_INTRA(mb_type)) {
  618. h->chroma_pred_mode = ff_h264_check_intra_chroma_pred_mode(h, DC_PRED8x8);
  619. }
  620. return 0;
  621. }
  622. static int svq3_decode_slice_header(AVCodecContext *avctx)
  623. {
  624. SVQ3Context *svq3 = avctx->priv_data;
  625. H264Context *h = &svq3->h;
  626. MpegEncContext *s = &h->s;
  627. const int mb_xy = h->mb_xy;
  628. int i, header;
  629. header = get_bits(&s->gb, 8);
  630. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  631. /* TODO: what? */
  632. av_log(avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  633. return -1;
  634. } else {
  635. int length = (header >> 5) & 3;
  636. svq3->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length;
  637. if (svq3->next_slice_index > s->gb.size_in_bits) {
  638. av_log(avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  639. return -1;
  640. }
  641. s->gb.size_in_bits = svq3->next_slice_index - 8*(length - 1);
  642. skip_bits(&s->gb, 8);
  643. if (svq3->watermark_key) {
  644. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
  645. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ svq3->watermark_key);
  646. }
  647. if (length > 0) {
  648. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  649. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  650. }
  651. skip_bits_long(&s->gb, 0);
  652. }
  653. if ((i = svq3_get_ue_golomb(&s->gb)) >= 3U){
  654. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  655. return -1;
  656. }
  657. h->slice_type = golomb_to_pict_type[i];
  658. if ((header & 0x9F) == 2) {
  659. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  660. s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  661. } else {
  662. skip_bits1(&s->gb);
  663. s->mb_skip_run = 0;
  664. }
  665. h->slice_num = get_bits(&s->gb, 8);
  666. s->qscale = get_bits(&s->gb, 5);
  667. s->adaptive_quant = get_bits1(&s->gb);
  668. /* unknown fields */
  669. skip_bits1(&s->gb);
  670. if (svq3->unknown_flag) {
  671. skip_bits1(&s->gb);
  672. }
  673. skip_bits1(&s->gb);
  674. skip_bits(&s->gb, 2);
  675. while (get_bits1(&s->gb)) {
  676. skip_bits(&s->gb, 8);
  677. }
  678. /* reset intra predictors and invalidate motion vector references */
  679. if (s->mb_x > 0) {
  680. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - 1 ]+3, -1, 4*sizeof(int8_t));
  681. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_x] , -1, 8*sizeof(int8_t)*s->mb_x);
  682. }
  683. if (s->mb_y > 0) {
  684. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  685. if (s->mb_x > 0) {
  686. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] = -1;
  687. }
  688. }
  689. return 0;
  690. }
  691. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  692. {
  693. SVQ3Context *svq3 = avctx->priv_data;
  694. H264Context *h = &svq3->h;
  695. MpegEncContext *s = &h->s;
  696. int m;
  697. unsigned char *extradata;
  698. unsigned int size;
  699. if (ff_h264_decode_init(avctx) < 0)
  700. return -1;
  701. s->flags = avctx->flags;
  702. s->flags2 = avctx->flags2;
  703. s->unrestricted_mv = 1;
  704. h->is_complex=1;
  705. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  706. if (!s->context_initialized) {
  707. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  708. svq3->halfpel_flag = 1;
  709. svq3->thirdpel_flag = 1;
  710. svq3->unknown_flag = 0;
  711. /* prowl for the "SEQH" marker in the extradata */
  712. extradata = (unsigned char *)avctx->extradata;
  713. for (m = 0; m < avctx->extradata_size; m++) {
  714. if (!memcmp(extradata, "SEQH", 4))
  715. break;
  716. extradata++;
  717. }
  718. /* if a match was found, parse the extra data */
  719. if (extradata && !memcmp(extradata, "SEQH", 4)) {
  720. GetBitContext gb;
  721. int frame_size_code;
  722. size = AV_RB32(&extradata[4]);
  723. init_get_bits(&gb, extradata + 8, size*8);
  724. /* 'frame size code' and optional 'width, height' */
  725. frame_size_code = get_bits(&gb, 3);
  726. switch (frame_size_code) {
  727. case 0: avctx->width = 160; avctx->height = 120; break;
  728. case 1: avctx->width = 128; avctx->height = 96; break;
  729. case 2: avctx->width = 176; avctx->height = 144; break;
  730. case 3: avctx->width = 352; avctx->height = 288; break;
  731. case 4: avctx->width = 704; avctx->height = 576; break;
  732. case 5: avctx->width = 240; avctx->height = 180; break;
  733. case 6: avctx->width = 320; avctx->height = 240; break;
  734. case 7:
  735. avctx->width = get_bits(&gb, 12);
  736. avctx->height = get_bits(&gb, 12);
  737. break;
  738. }
  739. svq3->halfpel_flag = get_bits1(&gb);
  740. svq3->thirdpel_flag = get_bits1(&gb);
  741. /* unknown fields */
  742. skip_bits1(&gb);
  743. skip_bits1(&gb);
  744. skip_bits1(&gb);
  745. skip_bits1(&gb);
  746. s->low_delay = get_bits1(&gb);
  747. /* unknown field */
  748. skip_bits1(&gb);
  749. while (get_bits1(&gb)) {
  750. skip_bits(&gb, 8);
  751. }
  752. svq3->unknown_flag = get_bits1(&gb);
  753. avctx->has_b_frames = !s->low_delay;
  754. if (svq3->unknown_flag) {
  755. #if CONFIG_ZLIB
  756. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  757. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  758. int u1 = svq3_get_ue_golomb(&gb);
  759. int u2 = get_bits(&gb, 8);
  760. int u3 = get_bits(&gb, 2);
  761. int u4 = svq3_get_ue_golomb(&gb);
  762. unsigned long buf_len = watermark_width*watermark_height*4;
  763. int offset = (get_bits_count(&gb)+7)>>3;
  764. uint8_t *buf;
  765. if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  766. return -1;
  767. buf = av_malloc(buf_len);
  768. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
  769. av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
  770. if (uncompress(buf, &buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
  771. av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
  772. av_free(buf);
  773. return -1;
  774. }
  775. svq3->watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  776. svq3->watermark_key = svq3->watermark_key << 16 | svq3->watermark_key;
  777. av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", svq3->watermark_key);
  778. av_free(buf);
  779. #else
  780. av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
  781. return -1;
  782. #endif
  783. }
  784. }
  785. s->width = avctx->width;
  786. s->height = avctx->height;
  787. if (MPV_common_init(s) < 0)
  788. return -1;
  789. h->b_stride = 4*s->mb_width;
  790. if (ff_h264_alloc_tables(h) < 0) {
  791. av_log(avctx, AV_LOG_ERROR, "svq3 memory allocation failed\n");
  792. return AVERROR(ENOMEM);
  793. }
  794. }
  795. return 0;
  796. }
  797. static int svq3_decode_frame(AVCodecContext *avctx,
  798. void *data, int *data_size,
  799. AVPacket *avpkt)
  800. {
  801. SVQ3Context *svq3 = avctx->priv_data;
  802. H264Context *h = &svq3->h;
  803. MpegEncContext *s = &h->s;
  804. int buf_size = avpkt->size;
  805. int m, mb_type, left;
  806. uint8_t *buf;
  807. /* special case for last picture */
  808. if (buf_size == 0) {
  809. if (s->next_picture_ptr && !s->low_delay) {
  810. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  811. s->next_picture_ptr = NULL;
  812. *data_size = sizeof(AVFrame);
  813. }
  814. return 0;
  815. }
  816. s->mb_x = s->mb_y = h->mb_xy = 0;
  817. if (svq3->watermark_key) {
  818. av_fast_malloc(&svq3->buf, &svq3->buf_size,
  819. buf_size+FF_INPUT_BUFFER_PADDING_SIZE);
  820. if (!svq3->buf)
  821. return AVERROR(ENOMEM);
  822. memcpy(svq3->buf, avpkt->data, buf_size);
  823. buf = svq3->buf;
  824. } else {
  825. buf = avpkt->data;
  826. }
  827. init_get_bits(&s->gb, buf, 8*buf_size);
  828. if (svq3_decode_slice_header(avctx))
  829. return -1;
  830. s->pict_type = h->slice_type;
  831. s->picture_number = h->slice_num;
  832. if (avctx->debug&FF_DEBUG_PICT_INFO){
  833. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  834. av_get_picture_type_char(s->pict_type), svq3->halfpel_flag, svq3->thirdpel_flag,
  835. s->adaptive_quant, s->qscale, h->slice_num);
  836. }
  837. /* for skipping the frame */
  838. s->current_picture.f.pict_type = s->pict_type;
  839. s->current_picture.f.key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  840. /* Skip B-frames if we do not have reference frames. */
  841. if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B)
  842. return 0;
  843. if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B)
  844. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I)
  845. || avctx->skip_frame >= AVDISCARD_ALL)
  846. return 0;
  847. if (s->next_p_frame_damaged) {
  848. if (s->pict_type == AV_PICTURE_TYPE_B)
  849. return 0;
  850. else
  851. s->next_p_frame_damaged = 0;
  852. }
  853. if (ff_h264_frame_start(h) < 0)
  854. return -1;
  855. if (s->pict_type == AV_PICTURE_TYPE_B) {
  856. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  857. if (h->frame_num_offset < 0) {
  858. h->frame_num_offset += 256;
  859. }
  860. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  861. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  862. return -1;
  863. }
  864. } else {
  865. h->prev_frame_num = h->frame_num;
  866. h->frame_num = h->slice_num;
  867. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  868. if (h->prev_frame_num_offset < 0) {
  869. h->prev_frame_num_offset += 256;
  870. }
  871. }
  872. for (m = 0; m < 2; m++){
  873. int i;
  874. for (i = 0; i < 4; i++){
  875. int j;
  876. for (j = -1; j < 4; j++)
  877. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  878. if (i < 3)
  879. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  880. }
  881. }
  882. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  883. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  884. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  885. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  886. ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  887. skip_bits(&s->gb, svq3->next_slice_index - get_bits_count(&s->gb));
  888. s->gb.size_in_bits = 8*buf_size;
  889. if (svq3_decode_slice_header(avctx))
  890. return -1;
  891. /* TODO: support s->mb_skip_run */
  892. }
  893. mb_type = svq3_get_ue_golomb(&s->gb);
  894. if (s->pict_type == AV_PICTURE_TYPE_I) {
  895. mb_type += 8;
  896. } else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4) {
  897. mb_type += 4;
  898. }
  899. if ((unsigned)mb_type > 33 || svq3_decode_mb(svq3, mb_type)) {
  900. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  901. return -1;
  902. }
  903. if (mb_type != 0) {
  904. ff_h264_hl_decode_mb (h);
  905. }
  906. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay) {
  907. s->current_picture.f.mb_type[s->mb_x + s->mb_y * s->mb_stride] =
  908. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  909. }
  910. }
  911. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  912. }
  913. left = buf_size*8 - get_bits_count(&s->gb);
  914. if (s->mb_y != s->mb_height || s->mb_x != s->mb_width) {
  915. av_log(avctx, AV_LOG_INFO, "frame num %d incomplete pic x %d y %d left %d\n", avctx->frame_number, s->mb_y, s->mb_x, left);
  916. //av_hex_dump(stderr, buf+buf_size-8, 8);
  917. }
  918. if (left < 0) {
  919. av_log(avctx, AV_LOG_ERROR, "frame num %d left %d\n", avctx->frame_number, left);
  920. return -1;
  921. }
  922. MPV_frame_end(s);
  923. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  924. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  925. } else {
  926. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  927. }
  928. /* Do not output the last pic after seeking. */
  929. if (s->last_picture_ptr || s->low_delay) {
  930. *data_size = sizeof(AVFrame);
  931. }
  932. return buf_size;
  933. }
  934. static int svq3_decode_end(AVCodecContext *avctx)
  935. {
  936. SVQ3Context *svq3 = avctx->priv_data;
  937. H264Context *h = &svq3->h;
  938. MpegEncContext *s = &h->s;
  939. ff_h264_free_context(h);
  940. MPV_common_end(s);
  941. av_freep(&svq3->buf);
  942. svq3->buf_size = 0;
  943. return 0;
  944. }
  945. AVCodec ff_svq3_decoder = {
  946. .name = "svq3",
  947. .type = AVMEDIA_TYPE_VIDEO,
  948. .id = CODEC_ID_SVQ3,
  949. .priv_data_size = sizeof(SVQ3Context),
  950. .init = svq3_decode_init,
  951. .close = svq3_decode_end,
  952. .decode = svq3_decode_frame,
  953. .capabilities = CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  954. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  955. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUVJ420P, PIX_FMT_NONE},
  956. };