You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

781 lines
23KB

  1. /*
  2. * The simplest mpeg audio layer 2 encoder
  3. * Copyright (c) 2000, 2001 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * The simplest mpeg audio layer 2 encoder.
  24. */
  25. #include "avcodec.h"
  26. #include "internal.h"
  27. #include "put_bits.h"
  28. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  29. #define WFRAC_BITS 14 /* fractional bits for window */
  30. #include "mpegaudio.h"
  31. /* currently, cannot change these constants (need to modify
  32. quantization stage) */
  33. #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  34. #define SAMPLES_BUF_SIZE 4096
  35. typedef struct MpegAudioContext {
  36. PutBitContext pb;
  37. int nb_channels;
  38. int lsf; /* 1 if mpeg2 low bitrate selected */
  39. int bitrate_index; /* bit rate */
  40. int freq_index;
  41. int frame_size; /* frame size, in bits, without padding */
  42. /* padding computation */
  43. int frame_frac, frame_frac_incr, do_padding;
  44. short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
  45. int samples_offset[MPA_MAX_CHANNELS]; /* offset in samples_buf */
  46. int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
  47. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
  48. /* code to group 3 scale factors */
  49. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  50. int sblimit; /* number of used subbands */
  51. const unsigned char *alloc_table;
  52. } MpegAudioContext;
  53. /* define it to use floats in quantization (I don't like floats !) */
  54. #define USE_FLOATS
  55. #include "mpegaudiodata.h"
  56. #include "mpegaudiotab.h"
  57. static av_cold int MPA_encode_init(AVCodecContext *avctx)
  58. {
  59. MpegAudioContext *s = avctx->priv_data;
  60. int freq = avctx->sample_rate;
  61. int bitrate = avctx->bit_rate;
  62. int channels = avctx->channels;
  63. int i, v, table;
  64. float a;
  65. if (channels <= 0 || channels > 2){
  66. av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
  67. return -1;
  68. }
  69. bitrate = bitrate / 1000;
  70. s->nb_channels = channels;
  71. avctx->frame_size = MPA_FRAME_SIZE;
  72. /* encoding freq */
  73. s->lsf = 0;
  74. for(i=0;i<3;i++) {
  75. if (ff_mpa_freq_tab[i] == freq)
  76. break;
  77. if ((ff_mpa_freq_tab[i] / 2) == freq) {
  78. s->lsf = 1;
  79. break;
  80. }
  81. }
  82. if (i == 3){
  83. av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
  84. return -1;
  85. }
  86. s->freq_index = i;
  87. /* encoding bitrate & frequency */
  88. for(i=0;i<15;i++) {
  89. if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
  90. break;
  91. }
  92. if (i == 15){
  93. av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
  94. return -1;
  95. }
  96. s->bitrate_index = i;
  97. /* compute total header size & pad bit */
  98. a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
  99. s->frame_size = ((int)a) * 8;
  100. /* frame fractional size to compute padding */
  101. s->frame_frac = 0;
  102. s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
  103. /* select the right allocation table */
  104. table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
  105. /* number of used subbands */
  106. s->sblimit = ff_mpa_sblimit_table[table];
  107. s->alloc_table = ff_mpa_alloc_tables[table];
  108. av_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
  109. bitrate, freq, s->frame_size, table, s->frame_frac_incr);
  110. for(i=0;i<s->nb_channels;i++)
  111. s->samples_offset[i] = 0;
  112. for(i=0;i<257;i++) {
  113. int v;
  114. v = ff_mpa_enwindow[i];
  115. #if WFRAC_BITS != 16
  116. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  117. #endif
  118. filter_bank[i] = v;
  119. if ((i & 63) != 0)
  120. v = -v;
  121. if (i != 0)
  122. filter_bank[512 - i] = v;
  123. }
  124. for(i=0;i<64;i++) {
  125. v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
  126. if (v <= 0)
  127. v = 1;
  128. scale_factor_table[i] = v;
  129. #ifdef USE_FLOATS
  130. scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
  131. #else
  132. #define P 15
  133. scale_factor_shift[i] = 21 - P - (i / 3);
  134. scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
  135. #endif
  136. }
  137. for(i=0;i<128;i++) {
  138. v = i - 64;
  139. if (v <= -3)
  140. v = 0;
  141. else if (v < 0)
  142. v = 1;
  143. else if (v == 0)
  144. v = 2;
  145. else if (v < 3)
  146. v = 3;
  147. else
  148. v = 4;
  149. scale_diff_table[i] = v;
  150. }
  151. for(i=0;i<17;i++) {
  152. v = ff_mpa_quant_bits[i];
  153. if (v < 0)
  154. v = -v;
  155. else
  156. v = v * 3;
  157. total_quant_bits[i] = 12 * v;
  158. }
  159. avctx->coded_frame= avcodec_alloc_frame();
  160. avctx->coded_frame->key_frame= 1;
  161. return 0;
  162. }
  163. /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
  164. static void idct32(int *out, int *tab)
  165. {
  166. int i, j;
  167. int *t, *t1, xr;
  168. const int *xp = costab32;
  169. for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
  170. t = tab + 30;
  171. t1 = tab + 2;
  172. do {
  173. t[0] += t[-4];
  174. t[1] += t[1 - 4];
  175. t -= 4;
  176. } while (t != t1);
  177. t = tab + 28;
  178. t1 = tab + 4;
  179. do {
  180. t[0] += t[-8];
  181. t[1] += t[1-8];
  182. t[2] += t[2-8];
  183. t[3] += t[3-8];
  184. t -= 8;
  185. } while (t != t1);
  186. t = tab;
  187. t1 = tab + 32;
  188. do {
  189. t[ 3] = -t[ 3];
  190. t[ 6] = -t[ 6];
  191. t[11] = -t[11];
  192. t[12] = -t[12];
  193. t[13] = -t[13];
  194. t[15] = -t[15];
  195. t += 16;
  196. } while (t != t1);
  197. t = tab;
  198. t1 = tab + 8;
  199. do {
  200. int x1, x2, x3, x4;
  201. x3 = MUL(t[16], FIX(SQRT2*0.5));
  202. x4 = t[0] - x3;
  203. x3 = t[0] + x3;
  204. x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
  205. x1 = MUL((t[8] - x2), xp[0]);
  206. x2 = MUL((t[8] + x2), xp[1]);
  207. t[ 0] = x3 + x1;
  208. t[ 8] = x4 - x2;
  209. t[16] = x4 + x2;
  210. t[24] = x3 - x1;
  211. t++;
  212. } while (t != t1);
  213. xp += 2;
  214. t = tab;
  215. t1 = tab + 4;
  216. do {
  217. xr = MUL(t[28],xp[0]);
  218. t[28] = (t[0] - xr);
  219. t[0] = (t[0] + xr);
  220. xr = MUL(t[4],xp[1]);
  221. t[ 4] = (t[24] - xr);
  222. t[24] = (t[24] + xr);
  223. xr = MUL(t[20],xp[2]);
  224. t[20] = (t[8] - xr);
  225. t[ 8] = (t[8] + xr);
  226. xr = MUL(t[12],xp[3]);
  227. t[12] = (t[16] - xr);
  228. t[16] = (t[16] + xr);
  229. t++;
  230. } while (t != t1);
  231. xp += 4;
  232. for (i = 0; i < 4; i++) {
  233. xr = MUL(tab[30-i*4],xp[0]);
  234. tab[30-i*4] = (tab[i*4] - xr);
  235. tab[ i*4] = (tab[i*4] + xr);
  236. xr = MUL(tab[ 2+i*4],xp[1]);
  237. tab[ 2+i*4] = (tab[28-i*4] - xr);
  238. tab[28-i*4] = (tab[28-i*4] + xr);
  239. xr = MUL(tab[31-i*4],xp[0]);
  240. tab[31-i*4] = (tab[1+i*4] - xr);
  241. tab[ 1+i*4] = (tab[1+i*4] + xr);
  242. xr = MUL(tab[ 3+i*4],xp[1]);
  243. tab[ 3+i*4] = (tab[29-i*4] - xr);
  244. tab[29-i*4] = (tab[29-i*4] + xr);
  245. xp += 2;
  246. }
  247. t = tab + 30;
  248. t1 = tab + 1;
  249. do {
  250. xr = MUL(t1[0], *xp);
  251. t1[0] = (t[0] - xr);
  252. t[0] = (t[0] + xr);
  253. t -= 2;
  254. t1 += 2;
  255. xp++;
  256. } while (t >= tab);
  257. for(i=0;i<32;i++) {
  258. out[i] = tab[bitinv32[i]];
  259. }
  260. }
  261. #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
  262. static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
  263. {
  264. short *p, *q;
  265. int sum, offset, i, j;
  266. int tmp[64];
  267. int tmp1[32];
  268. int *out;
  269. offset = s->samples_offset[ch];
  270. out = &s->sb_samples[ch][0][0][0];
  271. for(j=0;j<36;j++) {
  272. /* 32 samples at once */
  273. for(i=0;i<32;i++) {
  274. s->samples_buf[ch][offset + (31 - i)] = samples[0];
  275. samples += incr;
  276. }
  277. /* filter */
  278. p = s->samples_buf[ch] + offset;
  279. q = filter_bank;
  280. /* maxsum = 23169 */
  281. for(i=0;i<64;i++) {
  282. sum = p[0*64] * q[0*64];
  283. sum += p[1*64] * q[1*64];
  284. sum += p[2*64] * q[2*64];
  285. sum += p[3*64] * q[3*64];
  286. sum += p[4*64] * q[4*64];
  287. sum += p[5*64] * q[5*64];
  288. sum += p[6*64] * q[6*64];
  289. sum += p[7*64] * q[7*64];
  290. tmp[i] = sum;
  291. p++;
  292. q++;
  293. }
  294. tmp1[0] = tmp[16] >> WSHIFT;
  295. for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
  296. for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
  297. idct32(out, tmp1);
  298. /* advance of 32 samples */
  299. offset -= 32;
  300. out += 32;
  301. /* handle the wrap around */
  302. if (offset < 0) {
  303. memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
  304. s->samples_buf[ch], (512 - 32) * 2);
  305. offset = SAMPLES_BUF_SIZE - 512;
  306. }
  307. }
  308. s->samples_offset[ch] = offset;
  309. }
  310. static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
  311. unsigned char scale_factors[SBLIMIT][3],
  312. int sb_samples[3][12][SBLIMIT],
  313. int sblimit)
  314. {
  315. int *p, vmax, v, n, i, j, k, code;
  316. int index, d1, d2;
  317. unsigned char *sf = &scale_factors[0][0];
  318. for(j=0;j<sblimit;j++) {
  319. for(i=0;i<3;i++) {
  320. /* find the max absolute value */
  321. p = &sb_samples[i][0][j];
  322. vmax = abs(*p);
  323. for(k=1;k<12;k++) {
  324. p += SBLIMIT;
  325. v = abs(*p);
  326. if (v > vmax)
  327. vmax = v;
  328. }
  329. /* compute the scale factor index using log 2 computations */
  330. if (vmax > 1) {
  331. n = av_log2(vmax);
  332. /* n is the position of the MSB of vmax. now
  333. use at most 2 compares to find the index */
  334. index = (21 - n) * 3 - 3;
  335. if (index >= 0) {
  336. while (vmax <= scale_factor_table[index+1])
  337. index++;
  338. } else {
  339. index = 0; /* very unlikely case of overflow */
  340. }
  341. } else {
  342. index = 62; /* value 63 is not allowed */
  343. }
  344. av_dlog(NULL, "%2d:%d in=%x %x %d\n",
  345. j, i, vmax, scale_factor_table[index], index);
  346. /* store the scale factor */
  347. assert(index >=0 && index <= 63);
  348. sf[i] = index;
  349. }
  350. /* compute the transmission factor : look if the scale factors
  351. are close enough to each other */
  352. d1 = scale_diff_table[sf[0] - sf[1] + 64];
  353. d2 = scale_diff_table[sf[1] - sf[2] + 64];
  354. /* handle the 25 cases */
  355. switch(d1 * 5 + d2) {
  356. case 0*5+0:
  357. case 0*5+4:
  358. case 3*5+4:
  359. case 4*5+0:
  360. case 4*5+4:
  361. code = 0;
  362. break;
  363. case 0*5+1:
  364. case 0*5+2:
  365. case 4*5+1:
  366. case 4*5+2:
  367. code = 3;
  368. sf[2] = sf[1];
  369. break;
  370. case 0*5+3:
  371. case 4*5+3:
  372. code = 3;
  373. sf[1] = sf[2];
  374. break;
  375. case 1*5+0:
  376. case 1*5+4:
  377. case 2*5+4:
  378. code = 1;
  379. sf[1] = sf[0];
  380. break;
  381. case 1*5+1:
  382. case 1*5+2:
  383. case 2*5+0:
  384. case 2*5+1:
  385. case 2*5+2:
  386. code = 2;
  387. sf[1] = sf[2] = sf[0];
  388. break;
  389. case 2*5+3:
  390. case 3*5+3:
  391. code = 2;
  392. sf[0] = sf[1] = sf[2];
  393. break;
  394. case 3*5+0:
  395. case 3*5+1:
  396. case 3*5+2:
  397. code = 2;
  398. sf[0] = sf[2] = sf[1];
  399. break;
  400. case 1*5+3:
  401. code = 2;
  402. if (sf[0] > sf[2])
  403. sf[0] = sf[2];
  404. sf[1] = sf[2] = sf[0];
  405. break;
  406. default:
  407. assert(0); //cannot happen
  408. code = 0; /* kill warning */
  409. }
  410. av_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
  411. sf[0], sf[1], sf[2], d1, d2, code);
  412. scale_code[j] = code;
  413. sf += 3;
  414. }
  415. }
  416. /* The most important function : psycho acoustic module. In this
  417. encoder there is basically none, so this is the worst you can do,
  418. but also this is the simpler. */
  419. static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
  420. {
  421. int i;
  422. for(i=0;i<s->sblimit;i++) {
  423. smr[i] = (int)(fixed_smr[i] * 10);
  424. }
  425. }
  426. #define SB_NOTALLOCATED 0
  427. #define SB_ALLOCATED 1
  428. #define SB_NOMORE 2
  429. /* Try to maximize the smr while using a number of bits inferior to
  430. the frame size. I tried to make the code simpler, faster and
  431. smaller than other encoders :-) */
  432. static void compute_bit_allocation(MpegAudioContext *s,
  433. short smr1[MPA_MAX_CHANNELS][SBLIMIT],
  434. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  435. int *padding)
  436. {
  437. int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
  438. int incr;
  439. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  440. unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
  441. const unsigned char *alloc;
  442. memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
  443. memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
  444. memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
  445. /* compute frame size and padding */
  446. max_frame_size = s->frame_size;
  447. s->frame_frac += s->frame_frac_incr;
  448. if (s->frame_frac >= 65536) {
  449. s->frame_frac -= 65536;
  450. s->do_padding = 1;
  451. max_frame_size += 8;
  452. } else {
  453. s->do_padding = 0;
  454. }
  455. /* compute the header + bit alloc size */
  456. current_frame_size = 32;
  457. alloc = s->alloc_table;
  458. for(i=0;i<s->sblimit;i++) {
  459. incr = alloc[0];
  460. current_frame_size += incr * s->nb_channels;
  461. alloc += 1 << incr;
  462. }
  463. for(;;) {
  464. /* look for the subband with the largest signal to mask ratio */
  465. max_sb = -1;
  466. max_ch = -1;
  467. max_smr = INT_MIN;
  468. for(ch=0;ch<s->nb_channels;ch++) {
  469. for(i=0;i<s->sblimit;i++) {
  470. if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
  471. max_smr = smr[ch][i];
  472. max_sb = i;
  473. max_ch = ch;
  474. }
  475. }
  476. }
  477. if (max_sb < 0)
  478. break;
  479. av_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
  480. current_frame_size, max_frame_size, max_sb, max_ch,
  481. bit_alloc[max_ch][max_sb]);
  482. /* find alloc table entry (XXX: not optimal, should use
  483. pointer table) */
  484. alloc = s->alloc_table;
  485. for(i=0;i<max_sb;i++) {
  486. alloc += 1 << alloc[0];
  487. }
  488. if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
  489. /* nothing was coded for this band: add the necessary bits */
  490. incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
  491. incr += total_quant_bits[alloc[1]];
  492. } else {
  493. /* increments bit allocation */
  494. b = bit_alloc[max_ch][max_sb];
  495. incr = total_quant_bits[alloc[b + 1]] -
  496. total_quant_bits[alloc[b]];
  497. }
  498. if (current_frame_size + incr <= max_frame_size) {
  499. /* can increase size */
  500. b = ++bit_alloc[max_ch][max_sb];
  501. current_frame_size += incr;
  502. /* decrease smr by the resolution we added */
  503. smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
  504. /* max allocation size reached ? */
  505. if (b == ((1 << alloc[0]) - 1))
  506. subband_status[max_ch][max_sb] = SB_NOMORE;
  507. else
  508. subband_status[max_ch][max_sb] = SB_ALLOCATED;
  509. } else {
  510. /* cannot increase the size of this subband */
  511. subband_status[max_ch][max_sb] = SB_NOMORE;
  512. }
  513. }
  514. *padding = max_frame_size - current_frame_size;
  515. assert(*padding >= 0);
  516. }
  517. /*
  518. * Output the mpeg audio layer 2 frame. Note how the code is small
  519. * compared to other encoders :-)
  520. */
  521. static void encode_frame(MpegAudioContext *s,
  522. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
  523. int padding)
  524. {
  525. int i, j, k, l, bit_alloc_bits, b, ch;
  526. unsigned char *sf;
  527. int q[3];
  528. PutBitContext *p = &s->pb;
  529. /* header */
  530. put_bits(p, 12, 0xfff);
  531. put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
  532. put_bits(p, 2, 4-2); /* layer 2 */
  533. put_bits(p, 1, 1); /* no error protection */
  534. put_bits(p, 4, s->bitrate_index);
  535. put_bits(p, 2, s->freq_index);
  536. put_bits(p, 1, s->do_padding); /* use padding */
  537. put_bits(p, 1, 0); /* private_bit */
  538. put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
  539. put_bits(p, 2, 0); /* mode_ext */
  540. put_bits(p, 1, 0); /* no copyright */
  541. put_bits(p, 1, 1); /* original */
  542. put_bits(p, 2, 0); /* no emphasis */
  543. /* bit allocation */
  544. j = 0;
  545. for(i=0;i<s->sblimit;i++) {
  546. bit_alloc_bits = s->alloc_table[j];
  547. for(ch=0;ch<s->nb_channels;ch++) {
  548. put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
  549. }
  550. j += 1 << bit_alloc_bits;
  551. }
  552. /* scale codes */
  553. for(i=0;i<s->sblimit;i++) {
  554. for(ch=0;ch<s->nb_channels;ch++) {
  555. if (bit_alloc[ch][i])
  556. put_bits(p, 2, s->scale_code[ch][i]);
  557. }
  558. }
  559. /* scale factors */
  560. for(i=0;i<s->sblimit;i++) {
  561. for(ch=0;ch<s->nb_channels;ch++) {
  562. if (bit_alloc[ch][i]) {
  563. sf = &s->scale_factors[ch][i][0];
  564. switch(s->scale_code[ch][i]) {
  565. case 0:
  566. put_bits(p, 6, sf[0]);
  567. put_bits(p, 6, sf[1]);
  568. put_bits(p, 6, sf[2]);
  569. break;
  570. case 3:
  571. case 1:
  572. put_bits(p, 6, sf[0]);
  573. put_bits(p, 6, sf[2]);
  574. break;
  575. case 2:
  576. put_bits(p, 6, sf[0]);
  577. break;
  578. }
  579. }
  580. }
  581. }
  582. /* quantization & write sub band samples */
  583. for(k=0;k<3;k++) {
  584. for(l=0;l<12;l+=3) {
  585. j = 0;
  586. for(i=0;i<s->sblimit;i++) {
  587. bit_alloc_bits = s->alloc_table[j];
  588. for(ch=0;ch<s->nb_channels;ch++) {
  589. b = bit_alloc[ch][i];
  590. if (b) {
  591. int qindex, steps, m, sample, bits;
  592. /* we encode 3 sub band samples of the same sub band at a time */
  593. qindex = s->alloc_table[j+b];
  594. steps = ff_mpa_quant_steps[qindex];
  595. for(m=0;m<3;m++) {
  596. sample = s->sb_samples[ch][k][l + m][i];
  597. /* divide by scale factor */
  598. #ifdef USE_FLOATS
  599. {
  600. float a;
  601. a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
  602. q[m] = (int)((a + 1.0) * steps * 0.5);
  603. }
  604. #else
  605. {
  606. int q1, e, shift, mult;
  607. e = s->scale_factors[ch][i][k];
  608. shift = scale_factor_shift[e];
  609. mult = scale_factor_mult[e];
  610. /* normalize to P bits */
  611. if (shift < 0)
  612. q1 = sample << (-shift);
  613. else
  614. q1 = sample >> shift;
  615. q1 = (q1 * mult) >> P;
  616. q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
  617. }
  618. #endif
  619. if (q[m] >= steps)
  620. q[m] = steps - 1;
  621. assert(q[m] >= 0 && q[m] < steps);
  622. }
  623. bits = ff_mpa_quant_bits[qindex];
  624. if (bits < 0) {
  625. /* group the 3 values to save bits */
  626. put_bits(p, -bits,
  627. q[0] + steps * (q[1] + steps * q[2]));
  628. } else {
  629. put_bits(p, bits, q[0]);
  630. put_bits(p, bits, q[1]);
  631. put_bits(p, bits, q[2]);
  632. }
  633. }
  634. }
  635. /* next subband in alloc table */
  636. j += 1 << bit_alloc_bits;
  637. }
  638. }
  639. }
  640. /* padding */
  641. for(i=0;i<padding;i++)
  642. put_bits(p, 1, 0);
  643. /* flush */
  644. flush_put_bits(p);
  645. }
  646. static int MPA_encode_frame(AVCodecContext *avctx,
  647. unsigned char *frame, int buf_size, void *data)
  648. {
  649. MpegAudioContext *s = avctx->priv_data;
  650. const short *samples = data;
  651. short smr[MPA_MAX_CHANNELS][SBLIMIT];
  652. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  653. int padding, i;
  654. for(i=0;i<s->nb_channels;i++) {
  655. filter(s, i, samples + i, s->nb_channels);
  656. }
  657. for(i=0;i<s->nb_channels;i++) {
  658. compute_scale_factors(s->scale_code[i], s->scale_factors[i],
  659. s->sb_samples[i], s->sblimit);
  660. }
  661. for(i=0;i<s->nb_channels;i++) {
  662. psycho_acoustic_model(s, smr[i]);
  663. }
  664. compute_bit_allocation(s, smr, bit_alloc, &padding);
  665. init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
  666. encode_frame(s, bit_alloc, padding);
  667. return put_bits_ptr(&s->pb) - s->pb.buf;
  668. }
  669. static av_cold int MPA_encode_close(AVCodecContext *avctx)
  670. {
  671. av_freep(&avctx->coded_frame);
  672. return 0;
  673. }
  674. static const AVCodecDefault mp2_defaults[] = {
  675. { "b", "128k" },
  676. { NULL },
  677. };
  678. AVCodec ff_mp2_encoder = {
  679. .name = "mp2",
  680. .type = AVMEDIA_TYPE_AUDIO,
  681. .id = CODEC_ID_MP2,
  682. .priv_data_size = sizeof(MpegAudioContext),
  683. .init = MPA_encode_init,
  684. .encode = MPA_encode_frame,
  685. .close = MPA_encode_close,
  686. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
  687. .supported_samplerates= (const int[]){44100, 48000, 32000, 22050, 24000, 16000, 0},
  688. .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  689. .defaults = mp2_defaults,
  690. };