You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

270 lines
7.7KB

  1. /**
  2. * LPC utility code
  3. * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/lls.h"
  22. #define LPC_USE_DOUBLE
  23. #include "lpc.h"
  24. /**
  25. * Apply Welch window function to audio block
  26. */
  27. static void lpc_apply_welch_window_c(const int32_t *data, int len,
  28. double *w_data)
  29. {
  30. int i, n2;
  31. double w;
  32. double c;
  33. assert(!(len&1)); //the optimization in r11881 does not support odd len
  34. //if someone wants odd len extend the change in r11881
  35. n2 = (len >> 1);
  36. c = 2.0 / (len - 1.0);
  37. w_data+=n2;
  38. data+=n2;
  39. for(i=0; i<n2; i++) {
  40. w = c - n2 + i;
  41. w = 1.0 - (w * w);
  42. w_data[-i-1] = data[-i-1] * w;
  43. w_data[+i ] = data[+i ] * w;
  44. }
  45. }
  46. /**
  47. * Calculate autocorrelation data from audio samples
  48. * A Welch window function is applied before calculation.
  49. */
  50. static void lpc_compute_autocorr_c(const double *data, int len, int lag,
  51. double *autoc)
  52. {
  53. int i, j;
  54. for(j=0; j<lag; j+=2){
  55. double sum0 = 1.0, sum1 = 1.0;
  56. for(i=j; i<len; i++){
  57. sum0 += data[i] * data[i-j];
  58. sum1 += data[i] * data[i-j-1];
  59. }
  60. autoc[j ] = sum0;
  61. autoc[j+1] = sum1;
  62. }
  63. if(j==lag){
  64. double sum = 1.0;
  65. for(i=j-1; i<len; i+=2){
  66. sum += data[i ] * data[i-j ]
  67. + data[i+1] * data[i-j+1];
  68. }
  69. autoc[j] = sum;
  70. }
  71. }
  72. /**
  73. * Quantize LPC coefficients
  74. */
  75. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  76. int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
  77. {
  78. int i;
  79. double cmax, error;
  80. int32_t qmax;
  81. int sh;
  82. /* define maximum levels */
  83. qmax = (1 << (precision - 1)) - 1;
  84. /* find maximum coefficient value */
  85. cmax = 0.0;
  86. for(i=0; i<order; i++) {
  87. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  88. }
  89. /* if maximum value quantizes to zero, return all zeros */
  90. if(cmax * (1 << max_shift) < 1.0) {
  91. *shift = zero_shift;
  92. memset(lpc_out, 0, sizeof(int32_t) * order);
  93. return;
  94. }
  95. /* calculate level shift which scales max coeff to available bits */
  96. sh = max_shift;
  97. while((cmax * (1 << sh) > qmax) && (sh > 0)) {
  98. sh--;
  99. }
  100. /* since negative shift values are unsupported in decoder, scale down
  101. coefficients instead */
  102. if(sh == 0 && cmax > qmax) {
  103. double scale = ((double)qmax) / cmax;
  104. for(i=0; i<order; i++) {
  105. lpc_in[i] *= scale;
  106. }
  107. }
  108. /* output quantized coefficients and level shift */
  109. error=0;
  110. for(i=0; i<order; i++) {
  111. error -= lpc_in[i] * (1 << sh);
  112. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  113. error -= lpc_out[i];
  114. }
  115. *shift = sh;
  116. }
  117. static int estimate_best_order(double *ref, int min_order, int max_order)
  118. {
  119. int i, est;
  120. est = min_order;
  121. for(i=max_order-1; i>=min_order-1; i--) {
  122. if(ref[i] > 0.10) {
  123. est = i+1;
  124. break;
  125. }
  126. }
  127. return est;
  128. }
  129. /**
  130. * Calculate LPC coefficients for multiple orders
  131. *
  132. * @param lpc_type LPC method for determining coefficients,
  133. * see #FFLPCType for details
  134. */
  135. int ff_lpc_calc_coefs(LPCContext *s,
  136. const int32_t *samples, int blocksize, int min_order,
  137. int max_order, int precision,
  138. int32_t coefs[][MAX_LPC_ORDER], int *shift,
  139. enum FFLPCType lpc_type, int lpc_passes,
  140. int omethod, int max_shift, int zero_shift)
  141. {
  142. double autoc[MAX_LPC_ORDER+1];
  143. double ref[MAX_LPC_ORDER];
  144. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  145. int i, j, pass;
  146. int opt_order;
  147. assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
  148. lpc_type > FF_LPC_TYPE_FIXED);
  149. /* reinit LPC context if parameters have changed */
  150. if (blocksize != s->blocksize || max_order != s->max_order ||
  151. lpc_type != s->lpc_type) {
  152. ff_lpc_end(s);
  153. ff_lpc_init(s, blocksize, max_order, lpc_type);
  154. }
  155. if (lpc_type == FF_LPC_TYPE_LEVINSON) {
  156. double *windowed_samples = s->windowed_samples + max_order;
  157. s->lpc_apply_welch_window(samples, blocksize, windowed_samples);
  158. s->lpc_compute_autocorr(windowed_samples, blocksize, max_order, autoc);
  159. compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
  160. for(i=0; i<max_order; i++)
  161. ref[i] = fabs(lpc[i][i]);
  162. } else if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
  163. LLSModel m[2];
  164. double var[MAX_LPC_ORDER+1], av_uninit(weight);
  165. for(pass=0; pass<lpc_passes; pass++){
  166. av_init_lls(&m[pass&1], max_order);
  167. weight=0;
  168. for(i=max_order; i<blocksize; i++){
  169. for(j=0; j<=max_order; j++)
  170. var[j]= samples[i-j];
  171. if(pass){
  172. double eval, inv, rinv;
  173. eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  174. eval= (512>>pass) + fabs(eval - var[0]);
  175. inv = 1/eval;
  176. rinv = sqrt(inv);
  177. for(j=0; j<=max_order; j++)
  178. var[j] *= rinv;
  179. weight += inv;
  180. }else
  181. weight++;
  182. av_update_lls(&m[pass&1], var, 1.0);
  183. }
  184. av_solve_lls(&m[pass&1], 0.001, 0);
  185. }
  186. for(i=0; i<max_order; i++){
  187. for(j=0; j<max_order; j++)
  188. lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
  189. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  190. }
  191. for(i=max_order-1; i>0; i--)
  192. ref[i] = ref[i-1] - ref[i];
  193. }
  194. opt_order = max_order;
  195. if(omethod == ORDER_METHOD_EST) {
  196. opt_order = estimate_best_order(ref, min_order, max_order);
  197. i = opt_order-1;
  198. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  199. } else {
  200. for(i=min_order-1; i<max_order; i++) {
  201. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  202. }
  203. }
  204. return opt_order;
  205. }
  206. av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
  207. enum FFLPCType lpc_type)
  208. {
  209. s->blocksize = blocksize;
  210. s->max_order = max_order;
  211. s->lpc_type = lpc_type;
  212. if (lpc_type == FF_LPC_TYPE_LEVINSON) {
  213. s->windowed_samples = av_mallocz((blocksize + max_order + 2) *
  214. sizeof(*s->windowed_samples));
  215. if (!s->windowed_samples)
  216. return AVERROR(ENOMEM);
  217. } else {
  218. s->windowed_samples = NULL;
  219. }
  220. s->lpc_apply_welch_window = lpc_apply_welch_window_c;
  221. s->lpc_compute_autocorr = lpc_compute_autocorr_c;
  222. if (HAVE_MMX)
  223. ff_lpc_init_x86(s);
  224. return 0;
  225. }
  226. av_cold void ff_lpc_end(LPCContext *s)
  227. {
  228. av_freep(&s->windowed_samples);
  229. }