You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1494 lines
49KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor{
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext{
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. }HYuvContext;
  78. static const unsigned char classic_shift_luma[] = {
  79. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  80. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  81. 69,68, 0
  82. };
  83. static const unsigned char classic_shift_chroma[] = {
  84. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  85. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  86. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  87. };
  88. static const unsigned char classic_add_luma[256] = {
  89. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  90. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  91. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  92. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  93. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  94. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  95. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  96. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  97. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  98. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  99. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  100. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  101. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  102. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  103. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  104. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  105. };
  106. static const unsigned char classic_add_chroma[256] = {
  107. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  108. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  109. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  110. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  111. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  112. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  113. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  114. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  115. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  116. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  117. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  118. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  119. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  120. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  121. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  122. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  123. };
  124. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  125. int i;
  126. if(w<32){
  127. for(i=0; i<w; i++){
  128. const int temp= src[i];
  129. dst[i]= temp - left;
  130. left= temp;
  131. }
  132. return left;
  133. }else{
  134. for(i=0; i<16; i++){
  135. const int temp= src[i];
  136. dst[i]= temp - left;
  137. left= temp;
  138. }
  139. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  140. return src[w-1];
  141. }
  142. }
  143. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  144. int i;
  145. int r,g,b;
  146. r= *red;
  147. g= *green;
  148. b= *blue;
  149. for(i=0; i<FFMIN(w,4); i++){
  150. const int rt= src[i*4+R];
  151. const int gt= src[i*4+G];
  152. const int bt= src[i*4+B];
  153. dst[i*4+R]= rt - r;
  154. dst[i*4+G]= gt - g;
  155. dst[i*4+B]= bt - b;
  156. r = rt;
  157. g = gt;
  158. b = bt;
  159. }
  160. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  161. *red= src[(w-1)*4+R];
  162. *green= src[(w-1)*4+G];
  163. *blue= src[(w-1)*4+B];
  164. }
  165. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  166. int i, val, repeat;
  167. for(i=0; i<256;){
  168. repeat= get_bits(gb, 3);
  169. val = get_bits(gb, 5);
  170. if(repeat==0)
  171. repeat= get_bits(gb, 8);
  172. //printf("%d %d\n", val, repeat);
  173. if(i+repeat > 256) {
  174. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  175. return -1;
  176. }
  177. while (repeat--)
  178. dst[i++] = val;
  179. }
  180. return 0;
  181. }
  182. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  183. int len, index;
  184. uint32_t bits=0;
  185. for(len=32; len>0; len--){
  186. for(index=0; index<256; index++){
  187. if(len_table[index]==len)
  188. dst[index]= bits++;
  189. }
  190. if(bits & 1){
  191. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  192. return -1;
  193. }
  194. bits >>= 1;
  195. }
  196. return 0;
  197. }
  198. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  199. typedef struct {
  200. uint64_t val;
  201. int name;
  202. } HeapElem;
  203. static void heap_sift(HeapElem *h, int root, int size)
  204. {
  205. while(root*2+1 < size) {
  206. int child = root*2+1;
  207. if(child < size-1 && h[child].val > h[child+1].val)
  208. child++;
  209. if(h[root].val > h[child].val) {
  210. FFSWAP(HeapElem, h[root], h[child]);
  211. root = child;
  212. } else
  213. break;
  214. }
  215. }
  216. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  217. HeapElem h[256];
  218. int up[2*256];
  219. int len[2*256];
  220. int offset, i, next;
  221. int size = 256;
  222. for(offset=1; ; offset<<=1){
  223. for(i=0; i<size; i++){
  224. h[i].name = i;
  225. h[i].val = (stats[i] << 8) + offset;
  226. }
  227. for(i=size/2-1; i>=0; i--)
  228. heap_sift(h, i, size);
  229. for(next=size; next<size*2-1; next++){
  230. // merge the two smallest entries, and put it back in the heap
  231. uint64_t min1v = h[0].val;
  232. up[h[0].name] = next;
  233. h[0].val = INT64_MAX;
  234. heap_sift(h, 0, size);
  235. up[h[0].name] = next;
  236. h[0].name = next;
  237. h[0].val += min1v;
  238. heap_sift(h, 0, size);
  239. }
  240. len[2*size-2] = 0;
  241. for(i=2*size-3; i>=size; i--)
  242. len[i] = len[up[i]] + 1;
  243. for(i=0; i<size; i++) {
  244. dst[i] = len[up[i]] + 1;
  245. if(dst[i] >= 32) break;
  246. }
  247. if(i==size) break;
  248. }
  249. }
  250. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  251. static void generate_joint_tables(HYuvContext *s){
  252. uint16_t symbols[1<<VLC_BITS];
  253. uint16_t bits[1<<VLC_BITS];
  254. uint8_t len[1<<VLC_BITS];
  255. if(s->bitstream_bpp < 24){
  256. int p, i, y, u;
  257. for(p=0; p<3; p++){
  258. for(i=y=0; y<256; y++){
  259. int len0 = s->len[0][y];
  260. int limit = VLC_BITS - len0;
  261. if(limit <= 0)
  262. continue;
  263. for(u=0; u<256; u++){
  264. int len1 = s->len[p][u];
  265. if(len1 > limit)
  266. continue;
  267. len[i] = len0 + len1;
  268. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  269. symbols[i] = (y<<8) + u;
  270. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  271. i++;
  272. }
  273. }
  274. free_vlc(&s->vlc[3+p]);
  275. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  276. }
  277. }else{
  278. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  279. int i, b, g, r, code;
  280. int p0 = s->decorrelate;
  281. int p1 = !s->decorrelate;
  282. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  283. // cover all the combinations that fit in 11 bits total, and it doesn't
  284. // matter if we miss a few rare codes.
  285. for(i=0, g=-16; g<16; g++){
  286. int len0 = s->len[p0][g&255];
  287. int limit0 = VLC_BITS - len0;
  288. if(limit0 < 2)
  289. continue;
  290. for(b=-16; b<16; b++){
  291. int len1 = s->len[p1][b&255];
  292. int limit1 = limit0 - len1;
  293. if(limit1 < 1)
  294. continue;
  295. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  296. for(r=-16; r<16; r++){
  297. int len2 = s->len[2][r&255];
  298. if(len2 > limit1)
  299. continue;
  300. len[i] = len0 + len1 + len2;
  301. bits[i] = (code << len2) + s->bits[2][r&255];
  302. if(s->decorrelate){
  303. map[i][G] = g;
  304. map[i][B] = g+b;
  305. map[i][R] = g+r;
  306. }else{
  307. map[i][B] = g;
  308. map[i][G] = b;
  309. map[i][R] = r;
  310. }
  311. i++;
  312. }
  313. }
  314. }
  315. free_vlc(&s->vlc[3]);
  316. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  317. }
  318. }
  319. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  320. GetBitContext gb;
  321. int i;
  322. init_get_bits(&gb, src, length*8);
  323. for(i=0; i<3; i++){
  324. if(read_len_table(s->len[i], &gb)<0)
  325. return -1;
  326. if(generate_bits_table(s->bits[i], s->len[i])<0){
  327. return -1;
  328. }
  329. free_vlc(&s->vlc[i]);
  330. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  331. }
  332. generate_joint_tables(s);
  333. return (get_bits_count(&gb)+7)/8;
  334. }
  335. static int read_old_huffman_tables(HYuvContext *s){
  336. #if 1
  337. GetBitContext gb;
  338. int i;
  339. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  340. if(read_len_table(s->len[0], &gb)<0)
  341. return -1;
  342. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  343. if(read_len_table(s->len[1], &gb)<0)
  344. return -1;
  345. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  346. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  347. if(s->bitstream_bpp >= 24){
  348. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  349. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  350. }
  351. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  352. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  353. for(i=0; i<3; i++){
  354. free_vlc(&s->vlc[i]);
  355. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  356. }
  357. generate_joint_tables(s);
  358. return 0;
  359. #else
  360. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  361. return -1;
  362. #endif
  363. }
  364. static av_cold void alloc_temp(HYuvContext *s){
  365. int i;
  366. if(s->bitstream_bpp<24){
  367. for(i=0; i<3; i++){
  368. s->temp[i]= av_malloc(s->width + 16);
  369. }
  370. }else{
  371. s->temp[0]= av_mallocz(4*s->width + 16);
  372. }
  373. }
  374. static av_cold int common_init(AVCodecContext *avctx){
  375. HYuvContext *s = avctx->priv_data;
  376. s->avctx= avctx;
  377. s->flags= avctx->flags;
  378. dsputil_init(&s->dsp, avctx);
  379. s->width= avctx->width;
  380. s->height= avctx->height;
  381. assert(s->width>0 && s->height>0);
  382. return 0;
  383. }
  384. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  385. static av_cold int decode_init(AVCodecContext *avctx)
  386. {
  387. HYuvContext *s = avctx->priv_data;
  388. common_init(avctx);
  389. memset(s->vlc, 0, 3*sizeof(VLC));
  390. avctx->coded_frame= &s->picture;
  391. avcodec_get_frame_defaults(&s->picture);
  392. s->interlaced= s->height > 288;
  393. s->bgr32=1;
  394. //if(avctx->extradata)
  395. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  396. if(avctx->extradata_size){
  397. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  398. s->version=1; // do such files exist at all?
  399. else
  400. s->version=2;
  401. }else
  402. s->version=0;
  403. if(s->version==2){
  404. int method, interlace;
  405. if (avctx->extradata_size < 4)
  406. return -1;
  407. method= ((uint8_t*)avctx->extradata)[0];
  408. s->decorrelate= method&64 ? 1 : 0;
  409. s->predictor= method&63;
  410. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  411. if(s->bitstream_bpp==0)
  412. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  413. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  414. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  415. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  416. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  417. return -1;
  418. }else{
  419. switch(avctx->bits_per_coded_sample&7){
  420. case 1:
  421. s->predictor= LEFT;
  422. s->decorrelate= 0;
  423. break;
  424. case 2:
  425. s->predictor= LEFT;
  426. s->decorrelate= 1;
  427. break;
  428. case 3:
  429. s->predictor= PLANE;
  430. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  431. break;
  432. case 4:
  433. s->predictor= MEDIAN;
  434. s->decorrelate= 0;
  435. break;
  436. default:
  437. s->predictor= LEFT; //OLD
  438. s->decorrelate= 0;
  439. break;
  440. }
  441. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  442. s->context= 0;
  443. if(read_old_huffman_tables(s) < 0)
  444. return -1;
  445. }
  446. switch(s->bitstream_bpp){
  447. case 12:
  448. avctx->pix_fmt = PIX_FMT_YUV420P;
  449. break;
  450. case 16:
  451. if(s->yuy2){
  452. avctx->pix_fmt = PIX_FMT_YUYV422;
  453. }else{
  454. avctx->pix_fmt = PIX_FMT_YUV422P;
  455. }
  456. break;
  457. case 24:
  458. case 32:
  459. if(s->bgr32){
  460. avctx->pix_fmt = PIX_FMT_RGB32;
  461. }else{
  462. avctx->pix_fmt = PIX_FMT_BGR24;
  463. }
  464. break;
  465. default:
  466. assert(0);
  467. }
  468. alloc_temp(s);
  469. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  470. return 0;
  471. }
  472. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  473. {
  474. HYuvContext *s = avctx->priv_data;
  475. int i;
  476. avctx->coded_frame= &s->picture;
  477. alloc_temp(s);
  478. for (i = 0; i < 6; i++)
  479. s->vlc[i].table = NULL;
  480. if(s->version==2){
  481. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  482. return -1;
  483. }else{
  484. if(read_old_huffman_tables(s) < 0)
  485. return -1;
  486. }
  487. return 0;
  488. }
  489. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  490. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  491. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  492. int i;
  493. int index= 0;
  494. for(i=0; i<256;){
  495. int val= len[i];
  496. int repeat=0;
  497. for(; i<256 && len[i]==val && repeat<255; i++)
  498. repeat++;
  499. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  500. if(repeat>7){
  501. buf[index++]= val;
  502. buf[index++]= repeat;
  503. }else{
  504. buf[index++]= val | (repeat<<5);
  505. }
  506. }
  507. return index;
  508. }
  509. static av_cold int encode_init(AVCodecContext *avctx)
  510. {
  511. HYuvContext *s = avctx->priv_data;
  512. int i, j;
  513. common_init(avctx);
  514. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  515. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  516. s->version=2;
  517. avctx->coded_frame= &s->picture;
  518. switch(avctx->pix_fmt){
  519. case PIX_FMT_YUV420P:
  520. s->bitstream_bpp= 12;
  521. break;
  522. case PIX_FMT_YUV422P:
  523. s->bitstream_bpp= 16;
  524. break;
  525. case PIX_FMT_RGB32:
  526. s->bitstream_bpp= 24;
  527. break;
  528. default:
  529. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  530. return -1;
  531. }
  532. avctx->bits_per_coded_sample= s->bitstream_bpp;
  533. s->decorrelate= s->bitstream_bpp >= 24;
  534. s->predictor= avctx->prediction_method;
  535. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  536. if(avctx->context_model==1){
  537. s->context= avctx->context_model;
  538. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  539. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  540. return -1;
  541. }
  542. }else s->context= 0;
  543. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  544. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  545. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  546. return -1;
  547. }
  548. if(avctx->context_model){
  549. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  550. return -1;
  551. }
  552. if(s->interlaced != ( s->height > 288 ))
  553. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  554. }
  555. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  556. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  557. return -1;
  558. }
  559. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  560. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  561. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  562. if(s->context)
  563. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  564. ((uint8_t*)avctx->extradata)[3]= 0;
  565. s->avctx->extradata_size= 4;
  566. if(avctx->stats_in){
  567. char *p= avctx->stats_in;
  568. for(i=0; i<3; i++)
  569. for(j=0; j<256; j++)
  570. s->stats[i][j]= 1;
  571. for(;;){
  572. for(i=0; i<3; i++){
  573. char *next;
  574. for(j=0; j<256; j++){
  575. s->stats[i][j]+= strtol(p, &next, 0);
  576. if(next==p) return -1;
  577. p=next;
  578. }
  579. }
  580. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  581. }
  582. }else{
  583. for(i=0; i<3; i++)
  584. for(j=0; j<256; j++){
  585. int d= FFMIN(j, 256-j);
  586. s->stats[i][j]= 100000000/(d+1);
  587. }
  588. }
  589. for(i=0; i<3; i++){
  590. generate_len_table(s->len[i], s->stats[i]);
  591. if(generate_bits_table(s->bits[i], s->len[i])<0){
  592. return -1;
  593. }
  594. s->avctx->extradata_size+=
  595. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  596. }
  597. if(s->context){
  598. for(i=0; i<3; i++){
  599. int pels = s->width*s->height / (i?40:10);
  600. for(j=0; j<256; j++){
  601. int d= FFMIN(j, 256-j);
  602. s->stats[i][j]= pels/(d+1);
  603. }
  604. }
  605. }else{
  606. for(i=0; i<3; i++)
  607. for(j=0; j<256; j++)
  608. s->stats[i][j]= 0;
  609. }
  610. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  611. alloc_temp(s);
  612. s->picture_number=0;
  613. return 0;
  614. }
  615. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  616. /* TODO instead of restarting the read when the code isn't in the first level
  617. * of the joint table, jump into the 2nd level of the individual table. */
  618. #define READ_2PIX(dst0, dst1, plane1){\
  619. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  620. if(code != 0xffff){\
  621. dst0 = code>>8;\
  622. dst1 = code;\
  623. }else{\
  624. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  625. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  626. }\
  627. }
  628. static void decode_422_bitstream(HYuvContext *s, int count){
  629. int i;
  630. count/=2;
  631. if(count >= (get_bits_left(&s->gb))/(31*4)){
  632. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  633. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  634. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  635. }
  636. }else{
  637. for(i=0; i<count; i++){
  638. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  639. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  640. }
  641. }
  642. }
  643. static void decode_gray_bitstream(HYuvContext *s, int count){
  644. int i;
  645. count/=2;
  646. if(count >= (get_bits_left(&s->gb))/(31*2)){
  647. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  648. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  649. }
  650. }else{
  651. for(i=0; i<count; i++){
  652. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  653. }
  654. }
  655. }
  656. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  657. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  658. int i;
  659. const uint8_t *y = s->temp[0] + offset;
  660. const uint8_t *u = s->temp[1] + offset/2;
  661. const uint8_t *v = s->temp[2] + offset/2;
  662. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  663. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  664. return -1;
  665. }
  666. #define LOAD4\
  667. int y0 = y[2*i];\
  668. int y1 = y[2*i+1];\
  669. int u0 = u[i];\
  670. int v0 = v[i];
  671. count/=2;
  672. if(s->flags&CODEC_FLAG_PASS1){
  673. for(i=0; i<count; i++){
  674. LOAD4;
  675. s->stats[0][y0]++;
  676. s->stats[1][u0]++;
  677. s->stats[0][y1]++;
  678. s->stats[2][v0]++;
  679. }
  680. }
  681. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  682. return 0;
  683. if(s->context){
  684. for(i=0; i<count; i++){
  685. LOAD4;
  686. s->stats[0][y0]++;
  687. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  688. s->stats[1][u0]++;
  689. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  690. s->stats[0][y1]++;
  691. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  692. s->stats[2][v0]++;
  693. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  694. }
  695. }else{
  696. for(i=0; i<count; i++){
  697. LOAD4;
  698. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  699. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  700. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  701. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  702. }
  703. }
  704. return 0;
  705. }
  706. static int encode_gray_bitstream(HYuvContext *s, int count){
  707. int i;
  708. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  709. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  710. return -1;
  711. }
  712. #define LOAD2\
  713. int y0 = s->temp[0][2*i];\
  714. int y1 = s->temp[0][2*i+1];
  715. #define STAT2\
  716. s->stats[0][y0]++;\
  717. s->stats[0][y1]++;
  718. #define WRITE2\
  719. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  720. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  721. count/=2;
  722. if(s->flags&CODEC_FLAG_PASS1){
  723. for(i=0; i<count; i++){
  724. LOAD2;
  725. STAT2;
  726. }
  727. }
  728. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  729. return 0;
  730. if(s->context){
  731. for(i=0; i<count; i++){
  732. LOAD2;
  733. STAT2;
  734. WRITE2;
  735. }
  736. }else{
  737. for(i=0; i<count; i++){
  738. LOAD2;
  739. WRITE2;
  740. }
  741. }
  742. return 0;
  743. }
  744. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  745. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  746. int i;
  747. for(i=0; i<count; i++){
  748. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  749. if(code != -1){
  750. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  751. }else if(decorrelate){
  752. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  753. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  754. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  755. }else{
  756. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  757. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  758. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  759. }
  760. if(alpha)
  761. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  762. }
  763. }
  764. static void decode_bgr_bitstream(HYuvContext *s, int count){
  765. if(s->decorrelate){
  766. if(s->bitstream_bpp==24)
  767. decode_bgr_1(s, count, 1, 0);
  768. else
  769. decode_bgr_1(s, count, 1, 1);
  770. }else{
  771. if(s->bitstream_bpp==24)
  772. decode_bgr_1(s, count, 0, 0);
  773. else
  774. decode_bgr_1(s, count, 0, 1);
  775. }
  776. }
  777. static int encode_bgr_bitstream(HYuvContext *s, int count){
  778. int i;
  779. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  780. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  781. return -1;
  782. }
  783. #define LOAD3\
  784. int g= s->temp[0][4*i+G];\
  785. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  786. int r= (s->temp[0][4*i+R] - g) & 0xff;
  787. #define STAT3\
  788. s->stats[0][b]++;\
  789. s->stats[1][g]++;\
  790. s->stats[2][r]++;
  791. #define WRITE3\
  792. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  793. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  794. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  795. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  796. for(i=0; i<count; i++){
  797. LOAD3;
  798. STAT3;
  799. }
  800. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  801. for(i=0; i<count; i++){
  802. LOAD3;
  803. STAT3;
  804. WRITE3;
  805. }
  806. }else{
  807. for(i=0; i<count; i++){
  808. LOAD3;
  809. WRITE3;
  810. }
  811. }
  812. return 0;
  813. }
  814. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  815. static void draw_slice(HYuvContext *s, int y){
  816. int h, cy;
  817. int offset[4];
  818. if(s->avctx->draw_horiz_band==NULL)
  819. return;
  820. h= y - s->last_slice_end;
  821. y -= h;
  822. if(s->bitstream_bpp==12){
  823. cy= y>>1;
  824. }else{
  825. cy= y;
  826. }
  827. offset[0] = s->picture.linesize[0]*y;
  828. offset[1] = s->picture.linesize[1]*cy;
  829. offset[2] = s->picture.linesize[2]*cy;
  830. offset[3] = 0;
  831. emms_c();
  832. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  833. s->last_slice_end= y + h;
  834. }
  835. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  836. const uint8_t *buf = avpkt->data;
  837. int buf_size = avpkt->size;
  838. HYuvContext *s = avctx->priv_data;
  839. const int width= s->width;
  840. const int width2= s->width>>1;
  841. const int height= s->height;
  842. int fake_ystride, fake_ustride, fake_vstride;
  843. AVFrame * const p= &s->picture;
  844. int table_size= 0;
  845. AVFrame *picture = data;
  846. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  847. if (!s->bitstream_buffer)
  848. return AVERROR(ENOMEM);
  849. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  850. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  851. if(p->data[0])
  852. ff_thread_release_buffer(avctx, p);
  853. p->reference= 0;
  854. if(ff_thread_get_buffer(avctx, p) < 0){
  855. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  856. return -1;
  857. }
  858. if(s->context){
  859. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  860. if(table_size < 0)
  861. return -1;
  862. }
  863. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  864. return -1;
  865. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  866. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  867. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  868. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  869. s->last_slice_end= 0;
  870. if(s->bitstream_bpp<24){
  871. int y, cy;
  872. int lefty, leftu, leftv;
  873. int lefttopy, lefttopu, lefttopv;
  874. if(s->yuy2){
  875. p->data[0][3]= get_bits(&s->gb, 8);
  876. p->data[0][2]= get_bits(&s->gb, 8);
  877. p->data[0][1]= get_bits(&s->gb, 8);
  878. p->data[0][0]= get_bits(&s->gb, 8);
  879. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  880. return -1;
  881. }else{
  882. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  883. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  884. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  885. p->data[0][0]= get_bits(&s->gb, 8);
  886. switch(s->predictor){
  887. case LEFT:
  888. case PLANE:
  889. decode_422_bitstream(s, width-2);
  890. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  891. if(!(s->flags&CODEC_FLAG_GRAY)){
  892. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  893. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  894. }
  895. for(cy=y=1; y<s->height; y++,cy++){
  896. uint8_t *ydst, *udst, *vdst;
  897. if(s->bitstream_bpp==12){
  898. decode_gray_bitstream(s, width);
  899. ydst= p->data[0] + p->linesize[0]*y;
  900. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  901. if(s->predictor == PLANE){
  902. if(y>s->interlaced)
  903. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  904. }
  905. y++;
  906. if(y>=s->height) break;
  907. }
  908. draw_slice(s, y);
  909. ydst= p->data[0] + p->linesize[0]*y;
  910. udst= p->data[1] + p->linesize[1]*cy;
  911. vdst= p->data[2] + p->linesize[2]*cy;
  912. decode_422_bitstream(s, width);
  913. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  914. if(!(s->flags&CODEC_FLAG_GRAY)){
  915. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  916. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  917. }
  918. if(s->predictor == PLANE){
  919. if(cy>s->interlaced){
  920. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  921. if(!(s->flags&CODEC_FLAG_GRAY)){
  922. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  923. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  924. }
  925. }
  926. }
  927. }
  928. draw_slice(s, height);
  929. break;
  930. case MEDIAN:
  931. /* first line except first 2 pixels is left predicted */
  932. decode_422_bitstream(s, width-2);
  933. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  934. if(!(s->flags&CODEC_FLAG_GRAY)){
  935. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  936. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  937. }
  938. cy=y=1;
  939. /* second line is left predicted for interlaced case */
  940. if(s->interlaced){
  941. decode_422_bitstream(s, width);
  942. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  943. if(!(s->flags&CODEC_FLAG_GRAY)){
  944. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  945. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  946. }
  947. y++; cy++;
  948. }
  949. /* next 4 pixels are left predicted too */
  950. decode_422_bitstream(s, 4);
  951. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  952. if(!(s->flags&CODEC_FLAG_GRAY)){
  953. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  954. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  955. }
  956. /* next line except the first 4 pixels is median predicted */
  957. lefttopy= p->data[0][3];
  958. decode_422_bitstream(s, width-4);
  959. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  960. if(!(s->flags&CODEC_FLAG_GRAY)){
  961. lefttopu= p->data[1][1];
  962. lefttopv= p->data[2][1];
  963. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  964. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  965. }
  966. y++; cy++;
  967. for(; y<height; y++,cy++){
  968. uint8_t *ydst, *udst, *vdst;
  969. if(s->bitstream_bpp==12){
  970. while(2*cy > y){
  971. decode_gray_bitstream(s, width);
  972. ydst= p->data[0] + p->linesize[0]*y;
  973. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  974. y++;
  975. }
  976. if(y>=height) break;
  977. }
  978. draw_slice(s, y);
  979. decode_422_bitstream(s, width);
  980. ydst= p->data[0] + p->linesize[0]*y;
  981. udst= p->data[1] + p->linesize[1]*cy;
  982. vdst= p->data[2] + p->linesize[2]*cy;
  983. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  984. if(!(s->flags&CODEC_FLAG_GRAY)){
  985. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  986. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  987. }
  988. }
  989. draw_slice(s, height);
  990. break;
  991. }
  992. }
  993. }else{
  994. int y;
  995. int leftr, leftg, leftb, lefta;
  996. const int last_line= (height-1)*p->linesize[0];
  997. if(s->bitstream_bpp==32){
  998. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  999. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1000. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1001. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1002. }else{
  1003. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1004. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1005. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1006. lefta= p->data[0][last_line+A]= 255;
  1007. skip_bits(&s->gb, 8);
  1008. }
  1009. if(s->bgr32){
  1010. switch(s->predictor){
  1011. case LEFT:
  1012. case PLANE:
  1013. decode_bgr_bitstream(s, width-1);
  1014. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1015. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1016. decode_bgr_bitstream(s, width);
  1017. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1018. if(s->predictor == PLANE){
  1019. if(s->bitstream_bpp!=32) lefta=0;
  1020. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1021. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1022. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1023. }
  1024. }
  1025. }
  1026. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1027. break;
  1028. default:
  1029. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1030. }
  1031. }else{
  1032. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1033. return -1;
  1034. }
  1035. }
  1036. emms_c();
  1037. *picture= *p;
  1038. *data_size = sizeof(AVFrame);
  1039. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1040. }
  1041. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1042. static int common_end(HYuvContext *s){
  1043. int i;
  1044. for(i=0; i<3; i++){
  1045. av_freep(&s->temp[i]);
  1046. }
  1047. return 0;
  1048. }
  1049. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1050. static av_cold int decode_end(AVCodecContext *avctx)
  1051. {
  1052. HYuvContext *s = avctx->priv_data;
  1053. int i;
  1054. if (s->picture.data[0])
  1055. avctx->release_buffer(avctx, &s->picture);
  1056. common_end(s);
  1057. av_freep(&s->bitstream_buffer);
  1058. for(i=0; i<6; i++){
  1059. free_vlc(&s->vlc[i]);
  1060. }
  1061. return 0;
  1062. }
  1063. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1064. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1065. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1066. HYuvContext *s = avctx->priv_data;
  1067. AVFrame *pict = data;
  1068. const int width= s->width;
  1069. const int width2= s->width>>1;
  1070. const int height= s->height;
  1071. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1072. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1073. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1074. AVFrame * const p= &s->picture;
  1075. int i, j, size=0;
  1076. *p = *pict;
  1077. p->pict_type= AV_PICTURE_TYPE_I;
  1078. p->key_frame= 1;
  1079. if(s->context){
  1080. for(i=0; i<3; i++){
  1081. generate_len_table(s->len[i], s->stats[i]);
  1082. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1083. return -1;
  1084. size+= store_table(s, s->len[i], &buf[size]);
  1085. }
  1086. for(i=0; i<3; i++)
  1087. for(j=0; j<256; j++)
  1088. s->stats[i][j] >>= 1;
  1089. }
  1090. init_put_bits(&s->pb, buf+size, buf_size-size);
  1091. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1092. int lefty, leftu, leftv, y, cy;
  1093. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1094. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1095. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1096. put_bits(&s->pb, 8, p->data[0][0]);
  1097. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1098. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1099. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1100. encode_422_bitstream(s, 2, width-2);
  1101. if(s->predictor==MEDIAN){
  1102. int lefttopy, lefttopu, lefttopv;
  1103. cy=y=1;
  1104. if(s->interlaced){
  1105. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1106. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1107. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1108. encode_422_bitstream(s, 0, width);
  1109. y++; cy++;
  1110. }
  1111. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1112. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1113. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1114. encode_422_bitstream(s, 0, 4);
  1115. lefttopy= p->data[0][3];
  1116. lefttopu= p->data[1][1];
  1117. lefttopv= p->data[2][1];
  1118. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1119. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1120. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1121. encode_422_bitstream(s, 0, width-4);
  1122. y++; cy++;
  1123. for(; y<height; y++,cy++){
  1124. uint8_t *ydst, *udst, *vdst;
  1125. if(s->bitstream_bpp==12){
  1126. while(2*cy > y){
  1127. ydst= p->data[0] + p->linesize[0]*y;
  1128. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1129. encode_gray_bitstream(s, width);
  1130. y++;
  1131. }
  1132. if(y>=height) break;
  1133. }
  1134. ydst= p->data[0] + p->linesize[0]*y;
  1135. udst= p->data[1] + p->linesize[1]*cy;
  1136. vdst= p->data[2] + p->linesize[2]*cy;
  1137. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1138. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1139. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1140. encode_422_bitstream(s, 0, width);
  1141. }
  1142. }else{
  1143. for(cy=y=1; y<height; y++,cy++){
  1144. uint8_t *ydst, *udst, *vdst;
  1145. /* encode a luma only line & y++ */
  1146. if(s->bitstream_bpp==12){
  1147. ydst= p->data[0] + p->linesize[0]*y;
  1148. if(s->predictor == PLANE && s->interlaced < y){
  1149. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1150. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1151. }else{
  1152. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1153. }
  1154. encode_gray_bitstream(s, width);
  1155. y++;
  1156. if(y>=height) break;
  1157. }
  1158. ydst= p->data[0] + p->linesize[0]*y;
  1159. udst= p->data[1] + p->linesize[1]*cy;
  1160. vdst= p->data[2] + p->linesize[2]*cy;
  1161. if(s->predictor == PLANE && s->interlaced < cy){
  1162. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1163. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1164. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1165. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1166. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1167. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1168. }else{
  1169. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1170. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1171. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1172. }
  1173. encode_422_bitstream(s, 0, width);
  1174. }
  1175. }
  1176. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1177. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1178. const int stride = -p->linesize[0];
  1179. const int fake_stride = -fake_ystride;
  1180. int y;
  1181. int leftr, leftg, leftb;
  1182. put_bits(&s->pb, 8, leftr= data[R]);
  1183. put_bits(&s->pb, 8, leftg= data[G]);
  1184. put_bits(&s->pb, 8, leftb= data[B]);
  1185. put_bits(&s->pb, 8, 0);
  1186. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1187. encode_bgr_bitstream(s, width-1);
  1188. for(y=1; y<s->height; y++){
  1189. uint8_t *dst = data + y*stride;
  1190. if(s->predictor == PLANE && s->interlaced < y){
  1191. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1192. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1193. }else{
  1194. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1195. }
  1196. encode_bgr_bitstream(s, width);
  1197. }
  1198. }else{
  1199. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1200. }
  1201. emms_c();
  1202. size+= (put_bits_count(&s->pb)+31)/8;
  1203. put_bits(&s->pb, 16, 0);
  1204. put_bits(&s->pb, 15, 0);
  1205. size/= 4;
  1206. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1207. int j;
  1208. char *p= avctx->stats_out;
  1209. char *end= p + 1024*30;
  1210. for(i=0; i<3; i++){
  1211. for(j=0; j<256; j++){
  1212. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1213. p+= strlen(p);
  1214. s->stats[i][j]= 0;
  1215. }
  1216. snprintf(p, end-p, "\n");
  1217. p++;
  1218. }
  1219. } else
  1220. avctx->stats_out[0] = '\0';
  1221. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1222. flush_put_bits(&s->pb);
  1223. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1224. }
  1225. s->picture_number++;
  1226. return size*4;
  1227. }
  1228. static av_cold int encode_end(AVCodecContext *avctx)
  1229. {
  1230. HYuvContext *s = avctx->priv_data;
  1231. common_end(s);
  1232. av_freep(&avctx->extradata);
  1233. av_freep(&avctx->stats_out);
  1234. return 0;
  1235. }
  1236. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1237. #if CONFIG_HUFFYUV_DECODER
  1238. AVCodec ff_huffyuv_decoder = {
  1239. .name = "huffyuv",
  1240. .type = AVMEDIA_TYPE_VIDEO,
  1241. .id = CODEC_ID_HUFFYUV,
  1242. .priv_data_size = sizeof(HYuvContext),
  1243. .init = decode_init,
  1244. .close = decode_end,
  1245. .decode = decode_frame,
  1246. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1247. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1248. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1249. };
  1250. #endif
  1251. #if CONFIG_FFVHUFF_DECODER
  1252. AVCodec ff_ffvhuff_decoder = {
  1253. .name = "ffvhuff",
  1254. .type = AVMEDIA_TYPE_VIDEO,
  1255. .id = CODEC_ID_FFVHUFF,
  1256. .priv_data_size = sizeof(HYuvContext),
  1257. .init = decode_init,
  1258. .close = decode_end,
  1259. .decode = decode_frame,
  1260. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1261. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1262. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1263. };
  1264. #endif
  1265. #if CONFIG_HUFFYUV_ENCODER
  1266. AVCodec ff_huffyuv_encoder = {
  1267. .name = "huffyuv",
  1268. .type = AVMEDIA_TYPE_VIDEO,
  1269. .id = CODEC_ID_HUFFYUV,
  1270. .priv_data_size = sizeof(HYuvContext),
  1271. .init = encode_init,
  1272. .encode = encode_frame,
  1273. .close = encode_end,
  1274. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1275. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1276. };
  1277. #endif
  1278. #if CONFIG_FFVHUFF_ENCODER
  1279. AVCodec ff_ffvhuff_encoder = {
  1280. .name = "ffvhuff",
  1281. .type = AVMEDIA_TYPE_VIDEO,
  1282. .id = CODEC_ID_FFVHUFF,
  1283. .priv_data_size = sizeof(HYuvContext),
  1284. .init = encode_init,
  1285. .encode = encode_frame,
  1286. .close = encode_end,
  1287. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1288. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1289. };
  1290. #endif