You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4178 lines
161KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/imgutils.h"
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h264.h"
  32. #include "h264data.h"
  33. #include "h264_mvpred.h"
  34. #include "golomb.h"
  35. #include "mathops.h"
  36. #include "rectangle.h"
  37. #include "thread.h"
  38. #include "vdpau_internal.h"
  39. #include "libavutil/avassert.h"
  40. #include "cabac.h"
  41. //#undef NDEBUG
  42. #include <assert.h>
  43. static const uint8_t rem6[QP_MAX_NUM+1]={
  44. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  45. };
  46. static const uint8_t div6[QP_MAX_NUM+1]={
  47. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9,10,10,10,10,
  48. };
  49. static const enum PixelFormat hwaccel_pixfmt_list_h264_jpeg_420[] = {
  50. PIX_FMT_DXVA2_VLD,
  51. PIX_FMT_VAAPI_VLD,
  52. PIX_FMT_YUVJ420P,
  53. PIX_FMT_NONE
  54. };
  55. /**
  56. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  57. */
  58. int ff_h264_check_intra4x4_pred_mode(H264Context *h){
  59. MpegEncContext * const s = &h->s;
  60. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  61. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  62. int i;
  63. if(!(h->top_samples_available&0x8000)){
  64. for(i=0; i<4; i++){
  65. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  66. if(status<0){
  67. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  68. return -1;
  69. } else if(status){
  70. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  71. }
  72. }
  73. }
  74. if((h->left_samples_available&0x8888)!=0x8888){
  75. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  76. for(i=0; i<4; i++){
  77. if(!(h->left_samples_available&mask[i])){
  78. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  79. if(status<0){
  80. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  81. return -1;
  82. } else if(status){
  83. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  84. }
  85. }
  86. }
  87. }
  88. return 0;
  89. } //FIXME cleanup like check_intra_pred_mode
  90. static int check_intra_pred_mode(H264Context *h, int mode, int is_chroma){
  91. MpegEncContext * const s = &h->s;
  92. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  93. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  94. if(mode > 6U) {
  95. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  96. return -1;
  97. }
  98. if(!(h->top_samples_available&0x8000)){
  99. mode= top[ mode ];
  100. if(mode<0){
  101. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  102. return -1;
  103. }
  104. }
  105. if((h->left_samples_available&0x8080) != 0x8080){
  106. mode= left[ mode ];
  107. if(is_chroma && (h->left_samples_available&0x8080)){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  108. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  109. }
  110. if(mode<0){
  111. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  112. return -1;
  113. }
  114. }
  115. return mode;
  116. }
  117. /**
  118. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  119. */
  120. int ff_h264_check_intra16x16_pred_mode(H264Context *h, int mode)
  121. {
  122. return check_intra_pred_mode(h, mode, 0);
  123. }
  124. /**
  125. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  126. */
  127. int ff_h264_check_intra_chroma_pred_mode(H264Context *h, int mode)
  128. {
  129. return check_intra_pred_mode(h, mode, 1);
  130. }
  131. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  132. int i, si, di;
  133. uint8_t *dst;
  134. int bufidx;
  135. // src[0]&0x80; //forbidden bit
  136. h->nal_ref_idc= src[0]>>5;
  137. h->nal_unit_type= src[0]&0x1F;
  138. src++; length--;
  139. #if HAVE_FAST_UNALIGNED
  140. # if HAVE_FAST_64BIT
  141. # define RS 7
  142. for(i=0; i+1<length; i+=9){
  143. if(!((~AV_RN64A(src+i) & (AV_RN64A(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
  144. # else
  145. # define RS 3
  146. for(i=0; i+1<length; i+=5){
  147. if(!((~AV_RN32A(src+i) & (AV_RN32A(src+i) - 0x01000101U)) & 0x80008080U))
  148. # endif
  149. continue;
  150. if(i>0 && !src[i]) i--;
  151. while(src[i]) i++;
  152. #else
  153. # define RS 0
  154. for(i=0; i+1<length; i+=2){
  155. if(src[i]) continue;
  156. if(i>0 && src[i-1]==0) i--;
  157. #endif
  158. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  159. if(src[i+2]!=3){
  160. /* startcode, so we must be past the end */
  161. length=i;
  162. }
  163. break;
  164. }
  165. i-= RS;
  166. }
  167. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  168. si=h->rbsp_buffer_size[bufidx];
  169. av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE+MAX_MBPAIR_SIZE);
  170. dst= h->rbsp_buffer[bufidx];
  171. if(si != h->rbsp_buffer_size[bufidx])
  172. memset(dst + length, 0, FF_INPUT_BUFFER_PADDING_SIZE+MAX_MBPAIR_SIZE);
  173. if (dst == NULL){
  174. return NULL;
  175. }
  176. if(i>=length-1){ //no escaped 0
  177. *dst_length= length;
  178. *consumed= length+1; //+1 for the header
  179. if(h->s.avctx->flags2 & CODEC_FLAG2_FAST){
  180. return src;
  181. }else{
  182. memcpy(dst, src, length);
  183. return dst;
  184. }
  185. }
  186. //printf("decoding esc\n");
  187. memcpy(dst, src, i);
  188. si=di=i;
  189. while(si+2<length){
  190. //remove escapes (very rare 1:2^22)
  191. if(src[si+2]>3){
  192. dst[di++]= src[si++];
  193. dst[di++]= src[si++];
  194. }else if(src[si]==0 && src[si+1]==0){
  195. if(src[si+2]==3){ //escape
  196. dst[di++]= 0;
  197. dst[di++]= 0;
  198. si+=3;
  199. continue;
  200. }else //next start code
  201. goto nsc;
  202. }
  203. dst[di++]= src[si++];
  204. }
  205. while(si<length)
  206. dst[di++]= src[si++];
  207. nsc:
  208. memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  209. *dst_length= di;
  210. *consumed= si + 1;//+1 for the header
  211. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  212. return dst;
  213. }
  214. /**
  215. * Identify the exact end of the bitstream
  216. * @return the length of the trailing, or 0 if damaged
  217. */
  218. static int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  219. int v= *src;
  220. int r;
  221. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  222. for(r=1; r<9; r++){
  223. if(v&1) return r;
  224. v>>=1;
  225. }
  226. return 0;
  227. }
  228. static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, int height,
  229. int y_offset, int list){
  230. int raw_my= h->mv_cache[list][ scan8[n] ][1];
  231. int filter_height= (raw_my&3) ? 2 : 0;
  232. int full_my= (raw_my>>2) + y_offset;
  233. int top = full_my - filter_height, bottom = full_my + height + filter_height;
  234. return FFMAX(abs(top), bottom);
  235. }
  236. static inline void get_lowest_part_y(H264Context *h, int refs[2][48], int n, int height,
  237. int y_offset, int list0, int list1, int *nrefs){
  238. MpegEncContext * const s = &h->s;
  239. int my;
  240. y_offset += 16*(s->mb_y >> MB_FIELD);
  241. if(list0){
  242. int ref_n = h->ref_cache[0][ scan8[n] ];
  243. Picture *ref= &h->ref_list[0][ref_n];
  244. // Error resilience puts the current picture in the ref list.
  245. // Don't try to wait on these as it will cause a deadlock.
  246. // Fields can wait on each other, though.
  247. if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
  248. (ref->f.reference & 3) != s->picture_structure) {
  249. my = get_lowest_part_list_y(h, ref, n, height, y_offset, 0);
  250. if (refs[0][ref_n] < 0) nrefs[0] += 1;
  251. refs[0][ref_n] = FFMAX(refs[0][ref_n], my);
  252. }
  253. }
  254. if(list1){
  255. int ref_n = h->ref_cache[1][ scan8[n] ];
  256. Picture *ref= &h->ref_list[1][ref_n];
  257. if (ref->f.thread_opaque != s->current_picture.f.thread_opaque ||
  258. (ref->f.reference & 3) != s->picture_structure) {
  259. my = get_lowest_part_list_y(h, ref, n, height, y_offset, 1);
  260. if (refs[1][ref_n] < 0) nrefs[1] += 1;
  261. refs[1][ref_n] = FFMAX(refs[1][ref_n], my);
  262. }
  263. }
  264. }
  265. /**
  266. * Wait until all reference frames are available for MC operations.
  267. *
  268. * @param h the H264 context
  269. */
  270. static void await_references(H264Context *h){
  271. MpegEncContext * const s = &h->s;
  272. const int mb_xy= h->mb_xy;
  273. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  274. int refs[2][48];
  275. int nrefs[2] = {0};
  276. int ref, list;
  277. memset(refs, -1, sizeof(refs));
  278. if(IS_16X16(mb_type)){
  279. get_lowest_part_y(h, refs, 0, 16, 0,
  280. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
  281. }else if(IS_16X8(mb_type)){
  282. get_lowest_part_y(h, refs, 0, 8, 0,
  283. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
  284. get_lowest_part_y(h, refs, 8, 8, 8,
  285. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
  286. }else if(IS_8X16(mb_type)){
  287. get_lowest_part_y(h, refs, 0, 16, 0,
  288. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1), nrefs);
  289. get_lowest_part_y(h, refs, 4, 16, 0,
  290. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1), nrefs);
  291. }else{
  292. int i;
  293. assert(IS_8X8(mb_type));
  294. for(i=0; i<4; i++){
  295. const int sub_mb_type= h->sub_mb_type[i];
  296. const int n= 4*i;
  297. int y_offset= (i&2)<<2;
  298. if(IS_SUB_8X8(sub_mb_type)){
  299. get_lowest_part_y(h, refs, n , 8, y_offset,
  300. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  301. }else if(IS_SUB_8X4(sub_mb_type)){
  302. get_lowest_part_y(h, refs, n , 4, y_offset,
  303. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  304. get_lowest_part_y(h, refs, n+2, 4, y_offset+4,
  305. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  306. }else if(IS_SUB_4X8(sub_mb_type)){
  307. get_lowest_part_y(h, refs, n , 8, y_offset,
  308. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  309. get_lowest_part_y(h, refs, n+1, 8, y_offset,
  310. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  311. }else{
  312. int j;
  313. assert(IS_SUB_4X4(sub_mb_type));
  314. for(j=0; j<4; j++){
  315. int sub_y_offset= y_offset + 2*(j&2);
  316. get_lowest_part_y(h, refs, n+j, 4, sub_y_offset,
  317. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1), nrefs);
  318. }
  319. }
  320. }
  321. }
  322. for(list=h->list_count-1; list>=0; list--){
  323. for(ref=0; ref<48 && nrefs[list]; ref++){
  324. int row = refs[list][ref];
  325. if(row >= 0){
  326. Picture *ref_pic = &h->ref_list[list][ref];
  327. int ref_field = ref_pic->f.reference - 1;
  328. int ref_field_picture = ref_pic->field_picture;
  329. int pic_height = 16*s->mb_height >> ref_field_picture;
  330. row <<= MB_MBAFF;
  331. nrefs[list]--;
  332. if(!FIELD_PICTURE && ref_field_picture){ // frame referencing two fields
  333. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) - !(row&1), pic_height-1), 1);
  334. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN((row >> 1) , pic_height-1), 0);
  335. }else if(FIELD_PICTURE && !ref_field_picture){ // field referencing one field of a frame
  336. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row*2 + ref_field , pic_height-1), 0);
  337. }else if(FIELD_PICTURE){
  338. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), ref_field);
  339. }else{
  340. ff_thread_await_progress((AVFrame*)ref_pic, FFMIN(row, pic_height-1), 0);
  341. }
  342. }
  343. }
  344. }
  345. }
  346. #if 0
  347. /**
  348. * DCT transforms the 16 dc values.
  349. * @param qp quantization parameter ??? FIXME
  350. */
  351. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  352. // const int qmul= dequant_coeff[qp][0];
  353. int i;
  354. int temp[16]; //FIXME check if this is a good idea
  355. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  356. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  357. for(i=0; i<4; i++){
  358. const int offset= y_offset[i];
  359. const int z0= block[offset+stride*0] + block[offset+stride*4];
  360. const int z1= block[offset+stride*0] - block[offset+stride*4];
  361. const int z2= block[offset+stride*1] - block[offset+stride*5];
  362. const int z3= block[offset+stride*1] + block[offset+stride*5];
  363. temp[4*i+0]= z0+z3;
  364. temp[4*i+1]= z1+z2;
  365. temp[4*i+2]= z1-z2;
  366. temp[4*i+3]= z0-z3;
  367. }
  368. for(i=0; i<4; i++){
  369. const int offset= x_offset[i];
  370. const int z0= temp[4*0+i] + temp[4*2+i];
  371. const int z1= temp[4*0+i] - temp[4*2+i];
  372. const int z2= temp[4*1+i] - temp[4*3+i];
  373. const int z3= temp[4*1+i] + temp[4*3+i];
  374. block[stride*0 +offset]= (z0 + z3)>>1;
  375. block[stride*2 +offset]= (z1 + z2)>>1;
  376. block[stride*8 +offset]= (z1 - z2)>>1;
  377. block[stride*10+offset]= (z0 - z3)>>1;
  378. }
  379. }
  380. #endif
  381. #undef xStride
  382. #undef stride
  383. #if 0
  384. static void chroma_dc_dct_c(DCTELEM *block){
  385. const int stride= 16*2;
  386. const int xStride= 16;
  387. int a,b,c,d,e;
  388. a= block[stride*0 + xStride*0];
  389. b= block[stride*0 + xStride*1];
  390. c= block[stride*1 + xStride*0];
  391. d= block[stride*1 + xStride*1];
  392. e= a-b;
  393. a= a+b;
  394. b= c-d;
  395. c= c+d;
  396. block[stride*0 + xStride*0]= (a+c);
  397. block[stride*0 + xStride*1]= (e+b);
  398. block[stride*1 + xStride*0]= (a-c);
  399. block[stride*1 + xStride*1]= (e-b);
  400. }
  401. #endif
  402. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  403. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  404. int src_x_offset, int src_y_offset,
  405. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op,
  406. int pixel_shift, int chroma444){
  407. MpegEncContext * const s = &h->s;
  408. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  409. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  410. const int luma_xy= (mx&3) + ((my&3)<<2);
  411. int offset = ((mx>>2) << pixel_shift) + (my>>2)*h->mb_linesize;
  412. uint8_t * src_y = pic->f.data[0] + offset;
  413. uint8_t * src_cb, * src_cr;
  414. int extra_width= h->emu_edge_width;
  415. int extra_height= h->emu_edge_height;
  416. int emu=0;
  417. const int full_mx= mx>>2;
  418. const int full_my= my>>2;
  419. const int pic_width = 16*s->mb_width;
  420. const int pic_height = 16*s->mb_height >> MB_FIELD;
  421. if(mx&7) extra_width -= 3;
  422. if(my&7) extra_height -= 3;
  423. if( full_mx < 0-extra_width
  424. || full_my < 0-extra_height
  425. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  426. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  427. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_y - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  428. src_y= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
  429. emu=1;
  430. }
  431. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  432. if(!square){
  433. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  434. }
  435. if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  436. if(chroma444){
  437. src_cb = pic->f.data[1] + offset;
  438. if(emu){
  439. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
  440. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  441. src_cb= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
  442. }
  443. qpix_op[luma_xy](dest_cb, src_cb, h->mb_linesize); //FIXME try variable height perhaps?
  444. if(!square){
  445. qpix_op[luma_xy](dest_cb + delta, src_cb + delta, h->mb_linesize);
  446. }
  447. src_cr = pic->f.data[2] + offset;
  448. if(emu){
  449. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr - (2 << pixel_shift) - 2*h->mb_linesize, h->mb_linesize,
  450. 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  451. src_cr= s->edge_emu_buffer + (2 << pixel_shift) + 2*h->mb_linesize;
  452. }
  453. qpix_op[luma_xy](dest_cr, src_cr, h->mb_linesize); //FIXME try variable height perhaps?
  454. if(!square){
  455. qpix_op[luma_xy](dest_cr + delta, src_cr + delta, h->mb_linesize);
  456. }
  457. return;
  458. }
  459. if(MB_FIELD){
  460. // chroma offset when predicting from a field of opposite parity
  461. my += 2 * ((s->mb_y & 1) - (pic->f.reference - 1));
  462. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  463. }
  464. src_cb = pic->f.data[1] + ((mx >> 3) << pixel_shift) + (my >> 3) * h->mb_uvlinesize;
  465. src_cr = pic->f.data[2] + ((mx >> 3) << pixel_shift) + (my >> 3) * h->mb_uvlinesize;
  466. if(emu){
  467. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  468. src_cb= s->edge_emu_buffer;
  469. }
  470. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  471. if(emu){
  472. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  473. src_cr= s->edge_emu_buffer;
  474. }
  475. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  476. }
  477. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  478. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  479. int x_offset, int y_offset,
  480. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  481. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  482. int list0, int list1, int pixel_shift, int chroma444){
  483. MpegEncContext * const s = &h->s;
  484. qpel_mc_func *qpix_op= qpix_put;
  485. h264_chroma_mc_func chroma_op= chroma_put;
  486. dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  487. if(chroma444){
  488. dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  489. dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  490. }else{
  491. dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  492. dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  493. }
  494. x_offset += 8*s->mb_x;
  495. y_offset += 8*(s->mb_y >> MB_FIELD);
  496. if(list0){
  497. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  498. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  499. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  500. qpix_op, chroma_op, pixel_shift, chroma444);
  501. qpix_op= qpix_avg;
  502. chroma_op= chroma_avg;
  503. }
  504. if(list1){
  505. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  506. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  507. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  508. qpix_op, chroma_op, pixel_shift, chroma444);
  509. }
  510. }
  511. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  512. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  513. int x_offset, int y_offset,
  514. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  515. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  516. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  517. int list0, int list1, int pixel_shift, int chroma444){
  518. MpegEncContext * const s = &h->s;
  519. dest_y += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  520. if(chroma444){
  521. chroma_weight_avg = luma_weight_avg;
  522. chroma_weight_op = luma_weight_op;
  523. dest_cb += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  524. dest_cr += (2*x_offset << pixel_shift) + 2*y_offset*h->mb_linesize;
  525. }else{
  526. dest_cb += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  527. dest_cr += ( x_offset << pixel_shift) + y_offset*h->mb_uvlinesize;
  528. }
  529. x_offset += 8*s->mb_x;
  530. y_offset += 8*(s->mb_y >> MB_FIELD);
  531. if(list0 && list1){
  532. /* don't optimize for luma-only case, since B-frames usually
  533. * use implicit weights => chroma too. */
  534. uint8_t *tmp_cb = s->obmc_scratchpad;
  535. uint8_t *tmp_cr = s->obmc_scratchpad + (16 << pixel_shift);
  536. uint8_t *tmp_y = s->obmc_scratchpad + 16*h->mb_uvlinesize;
  537. int refn0 = h->ref_cache[0][ scan8[n] ];
  538. int refn1 = h->ref_cache[1][ scan8[n] ];
  539. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  540. dest_y, dest_cb, dest_cr,
  541. x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma444);
  542. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  543. tmp_y, tmp_cb, tmp_cr,
  544. x_offset, y_offset, qpix_put, chroma_put, pixel_shift, chroma444);
  545. if(h->use_weight == 2){
  546. int weight0 = h->implicit_weight[refn0][refn1][s->mb_y&1];
  547. int weight1 = 64 - weight0;
  548. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  549. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  550. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  551. }else{
  552. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  553. h->luma_weight[refn0][0][0] , h->luma_weight[refn1][1][0],
  554. h->luma_weight[refn0][0][1] + h->luma_weight[refn1][1][1]);
  555. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  556. h->chroma_weight[refn0][0][0][0] , h->chroma_weight[refn1][1][0][0],
  557. h->chroma_weight[refn0][0][0][1] + h->chroma_weight[refn1][1][0][1]);
  558. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  559. h->chroma_weight[refn0][0][1][0] , h->chroma_weight[refn1][1][1][0],
  560. h->chroma_weight[refn0][0][1][1] + h->chroma_weight[refn1][1][1][1]);
  561. }
  562. }else{
  563. int list = list1 ? 1 : 0;
  564. int refn = h->ref_cache[list][ scan8[n] ];
  565. Picture *ref= &h->ref_list[list][refn];
  566. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  567. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  568. qpix_put, chroma_put, pixel_shift, chroma444);
  569. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  570. h->luma_weight[refn][list][0], h->luma_weight[refn][list][1]);
  571. if(h->use_weight_chroma){
  572. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  573. h->chroma_weight[refn][list][0][0], h->chroma_weight[refn][list][0][1]);
  574. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  575. h->chroma_weight[refn][list][1][0], h->chroma_weight[refn][list][1][1]);
  576. }
  577. }
  578. }
  579. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  580. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  581. int x_offset, int y_offset,
  582. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  583. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  584. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  585. int list0, int list1, int pixel_shift, int chroma444){
  586. if((h->use_weight==2 && list0 && list1
  587. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ][h->s.mb_y&1] != 32))
  588. || h->use_weight==1)
  589. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  590. x_offset, y_offset, qpix_put, chroma_put,
  591. weight_op[0], weight_op[3], weight_avg[0],
  592. weight_avg[3], list0, list1, pixel_shift, chroma444);
  593. else
  594. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  595. x_offset, y_offset, qpix_put, chroma_put, qpix_avg,
  596. chroma_avg, list0, list1, pixel_shift, chroma444);
  597. }
  598. static inline void prefetch_motion(H264Context *h, int list, int pixel_shift, int chroma444){
  599. /* fetch pixels for estimated mv 4 macroblocks ahead
  600. * optimized for 64byte cache lines */
  601. MpegEncContext * const s = &h->s;
  602. const int refn = h->ref_cache[list][scan8[0]];
  603. if(refn >= 0){
  604. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  605. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  606. uint8_t **src = h->ref_list[list][refn].f.data;
  607. int off= (mx << pixel_shift) + (my + (s->mb_x&3)*4)*h->mb_linesize + (64 << pixel_shift);
  608. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  609. if(chroma444){
  610. s->dsp.prefetch(src[1]+off, s->linesize, 4);
  611. s->dsp.prefetch(src[2]+off, s->linesize, 4);
  612. }else{
  613. off= (((mx>>1)+64)<<pixel_shift) + ((my>>1) + (s->mb_x&7))*s->uvlinesize;
  614. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  615. }
  616. }
  617. }
  618. static av_always_inline void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  619. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  620. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  621. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  622. int pixel_shift, int chroma444){
  623. MpegEncContext * const s = &h->s;
  624. const int mb_xy= h->mb_xy;
  625. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  626. assert(IS_INTER(mb_type));
  627. if(HAVE_PTHREADS && (s->avctx->active_thread_type & FF_THREAD_FRAME))
  628. await_references(h);
  629. prefetch_motion(h, 0, pixel_shift, chroma444);
  630. if(IS_16X16(mb_type)){
  631. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  632. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  633. weight_op, weight_avg,
  634. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
  635. pixel_shift, chroma444);
  636. }else if(IS_16X8(mb_type)){
  637. mc_part(h, 0, 0, 4, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 0,
  638. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  639. &weight_op[1], &weight_avg[1],
  640. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
  641. pixel_shift, chroma444);
  642. mc_part(h, 8, 0, 4, 8 << pixel_shift, dest_y, dest_cb, dest_cr, 0, 4,
  643. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  644. &weight_op[1], &weight_avg[1],
  645. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
  646. pixel_shift, chroma444);
  647. }else if(IS_8X16(mb_type)){
  648. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  649. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  650. &weight_op[2], &weight_avg[2],
  651. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1),
  652. pixel_shift, chroma444);
  653. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  654. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  655. &weight_op[2], &weight_avg[2],
  656. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1),
  657. pixel_shift, chroma444);
  658. }else{
  659. int i;
  660. assert(IS_8X8(mb_type));
  661. for(i=0; i<4; i++){
  662. const int sub_mb_type= h->sub_mb_type[i];
  663. const int n= 4*i;
  664. int x_offset= (i&1)<<2;
  665. int y_offset= (i&2)<<1;
  666. if(IS_SUB_8X8(sub_mb_type)){
  667. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  668. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  669. &weight_op[3], &weight_avg[3],
  670. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  671. pixel_shift, chroma444);
  672. }else if(IS_SUB_8X4(sub_mb_type)){
  673. mc_part(h, n , 0, 2, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  674. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  675. &weight_op[4], &weight_avg[4],
  676. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  677. pixel_shift, chroma444);
  678. mc_part(h, n+2, 0, 2, 4 << pixel_shift, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  679. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  680. &weight_op[4], &weight_avg[4],
  681. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  682. pixel_shift, chroma444);
  683. }else if(IS_SUB_4X8(sub_mb_type)){
  684. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  685. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  686. &weight_op[5], &weight_avg[5],
  687. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  688. pixel_shift, chroma444);
  689. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  690. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  691. &weight_op[5], &weight_avg[5],
  692. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  693. pixel_shift, chroma444);
  694. }else{
  695. int j;
  696. assert(IS_SUB_4X4(sub_mb_type));
  697. for(j=0; j<4; j++){
  698. int sub_x_offset= x_offset + 2*(j&1);
  699. int sub_y_offset= y_offset + (j&2);
  700. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  701. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  702. &weight_op[6], &weight_avg[6],
  703. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1),
  704. pixel_shift, chroma444);
  705. }
  706. }
  707. }
  708. }
  709. prefetch_motion(h, 1, pixel_shift, chroma444);
  710. }
  711. static void free_tables(H264Context *h, int free_rbsp){
  712. int i;
  713. H264Context *hx;
  714. av_freep(&h->intra4x4_pred_mode);
  715. av_freep(&h->chroma_pred_mode_table);
  716. av_freep(&h->cbp_table);
  717. av_freep(&h->mvd_table[0]);
  718. av_freep(&h->mvd_table[1]);
  719. av_freep(&h->direct_table);
  720. av_freep(&h->non_zero_count);
  721. av_freep(&h->slice_table_base);
  722. h->slice_table= NULL;
  723. av_freep(&h->list_counts);
  724. av_freep(&h->mb2b_xy);
  725. av_freep(&h->mb2br_xy);
  726. for(i = 0; i < MAX_THREADS; i++) {
  727. hx = h->thread_context[i];
  728. if(!hx) continue;
  729. av_freep(&hx->top_borders[1]);
  730. av_freep(&hx->top_borders[0]);
  731. av_freep(&hx->s.obmc_scratchpad);
  732. if (free_rbsp){
  733. av_freep(&hx->rbsp_buffer[1]);
  734. av_freep(&hx->rbsp_buffer[0]);
  735. hx->rbsp_buffer_size[0] = 0;
  736. hx->rbsp_buffer_size[1] = 0;
  737. }
  738. if (i) av_freep(&h->thread_context[i]);
  739. }
  740. }
  741. static void init_dequant8_coeff_table(H264Context *h){
  742. int i,j,q,x;
  743. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  744. for(i=0; i<6; i++ ){
  745. h->dequant8_coeff[i] = h->dequant8_buffer[i];
  746. for(j=0; j<i; j++){
  747. if(!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i], 64*sizeof(uint8_t))){
  748. h->dequant8_coeff[i] = h->dequant8_buffer[j];
  749. break;
  750. }
  751. }
  752. if(j<i)
  753. continue;
  754. for(q=0; q<max_qp+1; q++){
  755. int shift = div6[q];
  756. int idx = rem6[q];
  757. for(x=0; x<64; x++)
  758. h->dequant8_coeff[i][q][(x>>3)|((x&7)<<3)] =
  759. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  760. h->pps.scaling_matrix8[i][x]) << shift;
  761. }
  762. }
  763. }
  764. static void init_dequant4_coeff_table(H264Context *h){
  765. int i,j,q,x;
  766. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  767. for(i=0; i<6; i++ ){
  768. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  769. for(j=0; j<i; j++){
  770. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  771. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  772. break;
  773. }
  774. }
  775. if(j<i)
  776. continue;
  777. for(q=0; q<max_qp+1; q++){
  778. int shift = div6[q] + 2;
  779. int idx = rem6[q];
  780. for(x=0; x<16; x++)
  781. h->dequant4_coeff[i][q][(x>>2)|((x<<2)&0xF)] =
  782. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  783. h->pps.scaling_matrix4[i][x]) << shift;
  784. }
  785. }
  786. }
  787. static void init_dequant_tables(H264Context *h){
  788. int i,x;
  789. init_dequant4_coeff_table(h);
  790. if(h->pps.transform_8x8_mode)
  791. init_dequant8_coeff_table(h);
  792. if(h->sps.transform_bypass){
  793. for(i=0; i<6; i++)
  794. for(x=0; x<16; x++)
  795. h->dequant4_coeff[i][0][x] = 1<<6;
  796. if(h->pps.transform_8x8_mode)
  797. for(i=0; i<6; i++)
  798. for(x=0; x<64; x++)
  799. h->dequant8_coeff[i][0][x] = 1<<6;
  800. }
  801. }
  802. int ff_h264_alloc_tables(H264Context *h){
  803. MpegEncContext * const s = &h->s;
  804. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  805. const int row_mb_num= 2*s->mb_stride*s->avctx->thread_count;
  806. int x,y;
  807. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, row_mb_num * 8 * sizeof(uint8_t), fail)
  808. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 48 * sizeof(uint8_t), fail)
  809. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
  810. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
  811. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
  812. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 16*row_mb_num * sizeof(uint8_t), fail);
  813. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 16*row_mb_num * sizeof(uint8_t), fail);
  814. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 4*big_mb_num * sizeof(uint8_t) , fail);
  815. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
  816. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  817. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  818. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
  819. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2br_xy , big_mb_num * sizeof(uint32_t), fail);
  820. for(y=0; y<s->mb_height; y++){
  821. for(x=0; x<s->mb_width; x++){
  822. const int mb_xy= x + y*s->mb_stride;
  823. const int b_xy = 4*x + 4*y*h->b_stride;
  824. h->mb2b_xy [mb_xy]= b_xy;
  825. h->mb2br_xy[mb_xy]= 8*(FMO ? mb_xy : (mb_xy % (2*s->mb_stride)));
  826. }
  827. }
  828. s->obmc_scratchpad = NULL;
  829. if(!h->dequant4_coeff[0])
  830. init_dequant_tables(h);
  831. return 0;
  832. fail:
  833. free_tables(h, 1);
  834. return -1;
  835. }
  836. /**
  837. * Mimic alloc_tables(), but for every context thread.
  838. */
  839. static void clone_tables(H264Context *dst, H264Context *src, int i){
  840. MpegEncContext * const s = &src->s;
  841. dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i*8*2*s->mb_stride;
  842. dst->non_zero_count = src->non_zero_count;
  843. dst->slice_table = src->slice_table;
  844. dst->cbp_table = src->cbp_table;
  845. dst->mb2b_xy = src->mb2b_xy;
  846. dst->mb2br_xy = src->mb2br_xy;
  847. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  848. dst->mvd_table[0] = src->mvd_table[0] + i*8*2*s->mb_stride;
  849. dst->mvd_table[1] = src->mvd_table[1] + i*8*2*s->mb_stride;
  850. dst->direct_table = src->direct_table;
  851. dst->list_counts = src->list_counts;
  852. dst->s.obmc_scratchpad = NULL;
  853. ff_h264_pred_init(&dst->hpc, src->s.codec_id, src->sps.bit_depth_luma, src->sps.chroma_format_idc);
  854. }
  855. /**
  856. * Init context
  857. * Allocate buffers which are not shared amongst multiple threads.
  858. */
  859. static int context_init(H264Context *h){
  860. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
  861. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * 16*3 * sizeof(uint8_t)*2, fail)
  862. h->ref_cache[0][scan8[5 ]+1] = h->ref_cache[0][scan8[7 ]+1] = h->ref_cache[0][scan8[13]+1] =
  863. h->ref_cache[1][scan8[5 ]+1] = h->ref_cache[1][scan8[7 ]+1] = h->ref_cache[1][scan8[13]+1] = PART_NOT_AVAILABLE;
  864. return 0;
  865. fail:
  866. return -1; // free_tables will clean up for us
  867. }
  868. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size);
  869. static av_cold void common_init(H264Context *h){
  870. MpegEncContext * const s = &h->s;
  871. s->width = s->avctx->width;
  872. s->height = s->avctx->height;
  873. s->codec_id= s->avctx->codec->id;
  874. s->avctx->bits_per_raw_sample = 8;
  875. h->cur_chroma_format_idc = 1;
  876. ff_h264dsp_init(&h->h264dsp,
  877. s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc);
  878. ff_h264_pred_init(&h->hpc, s->codec_id,
  879. s->avctx->bits_per_raw_sample, h->cur_chroma_format_idc);
  880. h->dequant_coeff_pps= -1;
  881. s->unrestricted_mv=1;
  882. s->decode=1; //FIXME
  883. s->dsp.dct_bits = 16;
  884. dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
  885. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  886. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  887. }
  888. int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size)
  889. {
  890. AVCodecContext *avctx = h->s.avctx;
  891. if(!buf || size <= 0)
  892. return -1;
  893. if(buf[0] == 1){
  894. int i, cnt, nalsize;
  895. const unsigned char *p = buf;
  896. h->is_avc = 1;
  897. if(size < 7) {
  898. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  899. return -1;
  900. }
  901. /* sps and pps in the avcC always have length coded with 2 bytes,
  902. so put a fake nal_length_size = 2 while parsing them */
  903. h->nal_length_size = 2;
  904. // Decode sps from avcC
  905. cnt = *(p+5) & 0x1f; // Number of sps
  906. p += 6;
  907. for (i = 0; i < cnt; i++) {
  908. nalsize = AV_RB16(p) + 2;
  909. if(nalsize > size - (p-buf))
  910. return -1;
  911. if(decode_nal_units(h, p, nalsize) < 0) {
  912. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  913. return -1;
  914. }
  915. p += nalsize;
  916. }
  917. // Decode pps from avcC
  918. cnt = *(p++); // Number of pps
  919. for (i = 0; i < cnt; i++) {
  920. nalsize = AV_RB16(p) + 2;
  921. if(nalsize > size - (p-buf))
  922. return -1;
  923. if (decode_nal_units(h, p, nalsize) < 0) {
  924. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  925. return -1;
  926. }
  927. p += nalsize;
  928. }
  929. // Now store right nal length size, that will be use to parse all other nals
  930. h->nal_length_size = (buf[4] & 0x03) + 1;
  931. } else {
  932. h->is_avc = 0;
  933. if(decode_nal_units(h, buf, size) < 0)
  934. return -1;
  935. }
  936. return 0;
  937. }
  938. av_cold int ff_h264_decode_init(AVCodecContext *avctx){
  939. H264Context *h= avctx->priv_data;
  940. MpegEncContext * const s = &h->s;
  941. MPV_decode_defaults(s);
  942. s->avctx = avctx;
  943. common_init(h);
  944. s->out_format = FMT_H264;
  945. s->workaround_bugs= avctx->workaround_bugs;
  946. // set defaults
  947. // s->decode_mb= ff_h263_decode_mb;
  948. s->quarter_sample = 1;
  949. if(!avctx->has_b_frames)
  950. s->low_delay= 1;
  951. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  952. ff_h264_decode_init_vlc();
  953. h->pixel_shift = 0;
  954. h->sps.bit_depth_luma = avctx->bits_per_raw_sample = 8;
  955. h->thread_context[0] = h;
  956. h->outputed_poc = h->next_outputed_poc = INT_MIN;
  957. h->prev_poc_msb= 1<<16;
  958. h->x264_build = -1;
  959. ff_h264_reset_sei(h);
  960. if(avctx->codec_id == CODEC_ID_H264){
  961. if(avctx->ticks_per_frame == 1){
  962. s->avctx->time_base.den *=2;
  963. }
  964. avctx->ticks_per_frame = 2;
  965. }
  966. if(avctx->extradata_size > 0 && avctx->extradata &&
  967. ff_h264_decode_extradata(h, avctx->extradata, avctx->extradata_size))
  968. return -1;
  969. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  970. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  971. s->low_delay = 0;
  972. }
  973. return 0;
  974. }
  975. #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b)+(size))))
  976. static void copy_picture_range(Picture **to, Picture **from, int count, MpegEncContext *new_base, MpegEncContext *old_base)
  977. {
  978. int i;
  979. for (i=0; i<count; i++){
  980. assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
  981. IN_RANGE(from[i], old_base->picture, sizeof(Picture) * old_base->picture_count) ||
  982. !from[i]));
  983. to[i] = REBASE_PICTURE(from[i], new_base, old_base);
  984. }
  985. }
  986. static void copy_parameter_set(void **to, void **from, int count, int size)
  987. {
  988. int i;
  989. for (i=0; i<count; i++){
  990. if (to[i] && !from[i]) av_freep(&to[i]);
  991. else if (from[i] && !to[i]) to[i] = av_malloc(size);
  992. if (from[i]) memcpy(to[i], from[i], size);
  993. }
  994. }
  995. static int decode_init_thread_copy(AVCodecContext *avctx){
  996. H264Context *h= avctx->priv_data;
  997. if (!avctx->is_copy) return 0;
  998. memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
  999. memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
  1000. return 0;
  1001. }
  1002. #define copy_fields(to, from, start_field, end_field) memcpy(&to->start_field, &from->start_field, (char*)&to->end_field - (char*)&to->start_field)
  1003. static int decode_update_thread_context(AVCodecContext *dst, const AVCodecContext *src){
  1004. H264Context *h= dst->priv_data, *h1= src->priv_data;
  1005. MpegEncContext * const s = &h->s, * const s1 = &h1->s;
  1006. int inited = s->context_initialized, err;
  1007. int i;
  1008. if(dst == src || !s1->context_initialized) return 0;
  1009. err = ff_mpeg_update_thread_context(dst, src);
  1010. if(err) return err;
  1011. //FIXME handle width/height changing
  1012. if(!inited){
  1013. for(i = 0; i < MAX_SPS_COUNT; i++)
  1014. av_freep(h->sps_buffers + i);
  1015. for(i = 0; i < MAX_PPS_COUNT; i++)
  1016. av_freep(h->pps_buffers + i);
  1017. memcpy(&h->s + 1, &h1->s + 1, sizeof(H264Context) - sizeof(MpegEncContext)); //copy all fields after MpegEnc
  1018. memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
  1019. memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
  1020. if (ff_h264_alloc_tables(h) < 0) {
  1021. av_log(dst, AV_LOG_ERROR, "Could not allocate memory for h264\n");
  1022. return AVERROR(ENOMEM);
  1023. }
  1024. context_init(h);
  1025. for(i=0; i<2; i++){
  1026. h->rbsp_buffer[i] = NULL;
  1027. h->rbsp_buffer_size[i] = 0;
  1028. }
  1029. h->thread_context[0] = h;
  1030. // frame_start may not be called for the next thread (if it's decoding a bottom field)
  1031. // so this has to be allocated here
  1032. h->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
  1033. s->dsp.clear_blocks(h->mb);
  1034. s->dsp.clear_blocks(h->mb+(24*16<<h->pixel_shift));
  1035. }
  1036. //extradata/NAL handling
  1037. h->is_avc = h1->is_avc;
  1038. //SPS/PPS
  1039. copy_parameter_set((void**)h->sps_buffers, (void**)h1->sps_buffers, MAX_SPS_COUNT, sizeof(SPS));
  1040. h->sps = h1->sps;
  1041. copy_parameter_set((void**)h->pps_buffers, (void**)h1->pps_buffers, MAX_PPS_COUNT, sizeof(PPS));
  1042. h->pps = h1->pps;
  1043. //Dequantization matrices
  1044. //FIXME these are big - can they be only copied when PPS changes?
  1045. copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
  1046. for(i=0; i<6; i++)
  1047. h->dequant4_coeff[i] = h->dequant4_buffer[0] + (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
  1048. for(i=0; i<6; i++)
  1049. h->dequant8_coeff[i] = h->dequant8_buffer[0] + (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
  1050. h->dequant_coeff_pps = h1->dequant_coeff_pps;
  1051. //POC timing
  1052. copy_fields(h, h1, poc_lsb, redundant_pic_count);
  1053. //reference lists
  1054. copy_fields(h, h1, ref_count, list_count);
  1055. copy_fields(h, h1, ref_list, intra_gb);
  1056. copy_fields(h, h1, short_ref, cabac_init_idc);
  1057. copy_picture_range(h->short_ref, h1->short_ref, 32, s, s1);
  1058. copy_picture_range(h->long_ref, h1->long_ref, 32, s, s1);
  1059. copy_picture_range(h->delayed_pic, h1->delayed_pic, MAX_DELAYED_PIC_COUNT+2, s, s1);
  1060. h->last_slice_type = h1->last_slice_type;
  1061. h->sync = h1->sync;
  1062. if(!s->current_picture_ptr) return 0;
  1063. if(!s->dropable) {
  1064. err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1065. h->prev_poc_msb = h->poc_msb;
  1066. h->prev_poc_lsb = h->poc_lsb;
  1067. }
  1068. h->prev_frame_num_offset= h->frame_num_offset;
  1069. h->prev_frame_num = h->frame_num;
  1070. h->outputed_poc = h->next_outputed_poc;
  1071. return err;
  1072. }
  1073. int ff_h264_frame_start(H264Context *h){
  1074. MpegEncContext * const s = &h->s;
  1075. int i;
  1076. const int pixel_shift = h->pixel_shift;
  1077. int thread_count = (s->avctx->active_thread_type & FF_THREAD_SLICE) ? s->avctx->thread_count : 1;
  1078. if(MPV_frame_start(s, s->avctx) < 0)
  1079. return -1;
  1080. ff_er_frame_start(s);
  1081. /*
  1082. * MPV_frame_start uses pict_type to derive key_frame.
  1083. * This is incorrect for H.264; IDR markings must be used.
  1084. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  1085. * See decode_nal_units().
  1086. */
  1087. s->current_picture_ptr->f.key_frame = 0;
  1088. s->current_picture_ptr->mmco_reset= 0;
  1089. assert(s->linesize && s->uvlinesize);
  1090. for(i=0; i<16; i++){
  1091. h->block_offset[i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  1092. h->block_offset[48+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  1093. }
  1094. for(i=0; i<16; i++){
  1095. h->block_offset[16+i]=
  1096. h->block_offset[32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1097. h->block_offset[48+16+i]=
  1098. h->block_offset[48+32+i]= (4*((scan8[i] - scan8[0])&7) << pixel_shift) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  1099. }
  1100. /* can't be in alloc_tables because linesize isn't known there.
  1101. * FIXME: redo bipred weight to not require extra buffer? */
  1102. for(i = 0; i < thread_count; i++)
  1103. if(h->thread_context[i] && !h->thread_context[i]->s.obmc_scratchpad)
  1104. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*6*s->linesize);
  1105. /* some macroblocks can be accessed before they're available in case of lost slices, mbaff or threading*/
  1106. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  1107. // s->decode = (s->flags & CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.f.reference /*|| h->contains_intra*/ || 1;
  1108. // We mark the current picture as non-reference after allocating it, so
  1109. // that if we break out due to an error it can be released automatically
  1110. // in the next MPV_frame_start().
  1111. // SVQ3 as well as most other codecs have only last/next/current and thus
  1112. // get released even with set reference, besides SVQ3 and others do not
  1113. // mark frames as reference later "naturally".
  1114. if(s->codec_id != CODEC_ID_SVQ3)
  1115. s->current_picture_ptr->f.reference = 0;
  1116. s->current_picture_ptr->field_poc[0]=
  1117. s->current_picture_ptr->field_poc[1]= INT_MAX;
  1118. h->next_output_pic = NULL;
  1119. assert(s->current_picture_ptr->long_ref==0);
  1120. return 0;
  1121. }
  1122. /**
  1123. * Run setup operations that must be run after slice header decoding.
  1124. * This includes finding the next displayed frame.
  1125. *
  1126. * @param h h264 master context
  1127. * @param setup_finished enough NALs have been read that we can call
  1128. * ff_thread_finish_setup()
  1129. */
  1130. static void decode_postinit(H264Context *h, int setup_finished){
  1131. MpegEncContext * const s = &h->s;
  1132. Picture *out = s->current_picture_ptr;
  1133. Picture *cur = s->current_picture_ptr;
  1134. int i, pics, out_of_order, out_idx;
  1135. s->current_picture_ptr->f.qscale_type = FF_QSCALE_TYPE_H264;
  1136. s->current_picture_ptr->f.pict_type = s->pict_type;
  1137. if (h->next_output_pic) return;
  1138. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  1139. //FIXME: if we have two PAFF fields in one packet, we can't start the next thread here.
  1140. //If we have one field per packet, we can. The check in decode_nal_units() is not good enough
  1141. //to find this yet, so we assume the worst for now.
  1142. //if (setup_finished)
  1143. // ff_thread_finish_setup(s->avctx);
  1144. return;
  1145. }
  1146. cur->f.interlaced_frame = 0;
  1147. cur->f.repeat_pict = 0;
  1148. /* Signal interlacing information externally. */
  1149. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  1150. if(h->sps.pic_struct_present_flag){
  1151. switch (h->sei_pic_struct)
  1152. {
  1153. case SEI_PIC_STRUCT_FRAME:
  1154. break;
  1155. case SEI_PIC_STRUCT_TOP_FIELD:
  1156. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  1157. cur->f.interlaced_frame = 1;
  1158. break;
  1159. case SEI_PIC_STRUCT_TOP_BOTTOM:
  1160. case SEI_PIC_STRUCT_BOTTOM_TOP:
  1161. if (FIELD_OR_MBAFF_PICTURE)
  1162. cur->f.interlaced_frame = 1;
  1163. else
  1164. // try to flag soft telecine progressive
  1165. cur->f.interlaced_frame = h->prev_interlaced_frame;
  1166. break;
  1167. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  1168. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  1169. // Signal the possibility of telecined film externally (pic_struct 5,6)
  1170. // From these hints, let the applications decide if they apply deinterlacing.
  1171. cur->f.repeat_pict = 1;
  1172. break;
  1173. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  1174. // Force progressive here, as doubling interlaced frame is a bad idea.
  1175. cur->f.repeat_pict = 2;
  1176. break;
  1177. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  1178. cur->f.repeat_pict = 4;
  1179. break;
  1180. }
  1181. if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
  1182. cur->f.interlaced_frame = (h->sei_ct_type & (1 << 1)) != 0;
  1183. }else{
  1184. /* Derive interlacing flag from used decoding process. */
  1185. cur->f.interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  1186. }
  1187. h->prev_interlaced_frame = cur->f.interlaced_frame;
  1188. if (cur->field_poc[0] != cur->field_poc[1]){
  1189. /* Derive top_field_first from field pocs. */
  1190. cur->f.top_field_first = cur->field_poc[0] < cur->field_poc[1];
  1191. }else{
  1192. if (cur->f.interlaced_frame || h->sps.pic_struct_present_flag) {
  1193. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  1194. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  1195. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  1196. cur->f.top_field_first = 1;
  1197. else
  1198. cur->f.top_field_first = 0;
  1199. }else{
  1200. /* Most likely progressive */
  1201. cur->f.top_field_first = 0;
  1202. }
  1203. }
  1204. //FIXME do something with unavailable reference frames
  1205. /* Sort B-frames into display order */
  1206. if(h->sps.bitstream_restriction_flag
  1207. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  1208. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  1209. s->low_delay = 0;
  1210. }
  1211. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  1212. && !h->sps.bitstream_restriction_flag){
  1213. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  1214. s->low_delay= 0;
  1215. }
  1216. pics = 0;
  1217. while(h->delayed_pic[pics]) pics++;
  1218. av_assert0(pics <= MAX_DELAYED_PIC_COUNT);
  1219. h->delayed_pic[pics++] = cur;
  1220. if (cur->f.reference == 0)
  1221. cur->f.reference = DELAYED_PIC_REF;
  1222. out = h->delayed_pic[0];
  1223. out_idx = 0;
  1224. for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  1225. if(h->delayed_pic[i]->poc < out->poc){
  1226. out = h->delayed_pic[i];
  1227. out_idx = i;
  1228. }
  1229. if (s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset))
  1230. h->next_outputed_poc= INT_MIN;
  1231. out_of_order = out->poc < h->next_outputed_poc;
  1232. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  1233. { }
  1234. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  1235. || (s->low_delay &&
  1236. ((h->next_outputed_poc != INT_MIN && out->poc > h->next_outputed_poc + 2)
  1237. || cur->f.pict_type == AV_PICTURE_TYPE_B)))
  1238. {
  1239. s->low_delay = 0;
  1240. s->avctx->has_b_frames++;
  1241. }
  1242. if(out_of_order || pics > s->avctx->has_b_frames){
  1243. out->f.reference &= ~DELAYED_PIC_REF;
  1244. out->owner2 = s; // for frame threading, the owner must be the second field's thread
  1245. // or else the first thread can release the picture and reuse it unsafely
  1246. for(i=out_idx; h->delayed_pic[i]; i++)
  1247. h->delayed_pic[i] = h->delayed_pic[i+1];
  1248. }
  1249. if(!out_of_order && pics > s->avctx->has_b_frames){
  1250. h->next_output_pic = out;
  1251. if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f.key_frame || h->delayed_pic[0]->mmco_reset)) {
  1252. h->next_outputed_poc = INT_MIN;
  1253. } else
  1254. h->next_outputed_poc = out->poc;
  1255. }else{
  1256. av_log(s->avctx, AV_LOG_DEBUG, "no picture\n");
  1257. }
  1258. if (h->next_output_pic && h->next_output_pic->sync) {
  1259. h->sync |= 2;
  1260. }
  1261. if (setup_finished)
  1262. ff_thread_finish_setup(s->avctx);
  1263. }
  1264. static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  1265. MpegEncContext * const s = &h->s;
  1266. uint8_t *top_border;
  1267. int top_idx = 1;
  1268. const int pixel_shift = h->pixel_shift;
  1269. int chroma444 = CHROMA444;
  1270. int chroma422 = CHROMA422;
  1271. src_y -= linesize;
  1272. src_cb -= uvlinesize;
  1273. src_cr -= uvlinesize;
  1274. if(!simple && FRAME_MBAFF){
  1275. if(s->mb_y&1){
  1276. if(!MB_MBAFF){
  1277. top_border = h->top_borders[0][s->mb_x];
  1278. AV_COPY128(top_border, src_y + 15*linesize);
  1279. if (pixel_shift)
  1280. AV_COPY128(top_border+16, src_y+15*linesize+16);
  1281. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1282. if(chroma444){
  1283. if (pixel_shift){
  1284. AV_COPY128(top_border+32, src_cb + 15*uvlinesize);
  1285. AV_COPY128(top_border+48, src_cb + 15*uvlinesize+16);
  1286. AV_COPY128(top_border+64, src_cr + 15*uvlinesize);
  1287. AV_COPY128(top_border+80, src_cr + 15*uvlinesize+16);
  1288. } else {
  1289. AV_COPY128(top_border+16, src_cb + 15*uvlinesize);
  1290. AV_COPY128(top_border+32, src_cr + 15*uvlinesize);
  1291. }
  1292. } else if(chroma422){
  1293. if (pixel_shift) {
  1294. AV_COPY128(top_border+32, src_cb + 15*uvlinesize);
  1295. AV_COPY128(top_border+48, src_cr + 15*uvlinesize);
  1296. } else {
  1297. AV_COPY64(top_border+16, src_cb + 15*uvlinesize);
  1298. AV_COPY64(top_border+24, src_cr + 15*uvlinesize);
  1299. }
  1300. } else {
  1301. if (pixel_shift) {
  1302. AV_COPY128(top_border+32, src_cb+7*uvlinesize);
  1303. AV_COPY128(top_border+48, src_cr+7*uvlinesize);
  1304. } else {
  1305. AV_COPY64(top_border+16, src_cb+7*uvlinesize);
  1306. AV_COPY64(top_border+24, src_cr+7*uvlinesize);
  1307. }
  1308. }
  1309. }
  1310. }
  1311. }else if(MB_MBAFF){
  1312. top_idx = 0;
  1313. }else
  1314. return;
  1315. }
  1316. top_border = h->top_borders[top_idx][s->mb_x];
  1317. // There are two lines saved, the line above the the top macroblock of a pair,
  1318. // and the line above the bottom macroblock
  1319. AV_COPY128(top_border, src_y + 16*linesize);
  1320. if (pixel_shift)
  1321. AV_COPY128(top_border+16, src_y+16*linesize+16);
  1322. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1323. if(chroma444){
  1324. if (pixel_shift){
  1325. AV_COPY128(top_border+32, src_cb + 16*linesize);
  1326. AV_COPY128(top_border+48, src_cb + 16*linesize+16);
  1327. AV_COPY128(top_border+64, src_cr + 16*linesize);
  1328. AV_COPY128(top_border+80, src_cr + 16*linesize+16);
  1329. } else {
  1330. AV_COPY128(top_border+16, src_cb + 16*linesize);
  1331. AV_COPY128(top_border+32, src_cr + 16*linesize);
  1332. }
  1333. } else if(chroma422) {
  1334. if (pixel_shift) {
  1335. AV_COPY128(top_border+32, src_cb+16*uvlinesize);
  1336. AV_COPY128(top_border+48, src_cr+16*uvlinesize);
  1337. } else {
  1338. AV_COPY64(top_border+16, src_cb+16*uvlinesize);
  1339. AV_COPY64(top_border+24, src_cr+16*uvlinesize);
  1340. }
  1341. } else {
  1342. if (pixel_shift) {
  1343. AV_COPY128(top_border+32, src_cb+8*uvlinesize);
  1344. AV_COPY128(top_border+48, src_cr+8*uvlinesize);
  1345. } else {
  1346. AV_COPY64(top_border+16, src_cb+8*uvlinesize);
  1347. AV_COPY64(top_border+24, src_cr+8*uvlinesize);
  1348. }
  1349. }
  1350. }
  1351. }
  1352. static av_always_inline void xchg_mb_border(H264Context *h, uint8_t *src_y,
  1353. uint8_t *src_cb, uint8_t *src_cr,
  1354. int linesize, int uvlinesize,
  1355. int xchg, int chroma444,
  1356. int simple, int pixel_shift){
  1357. MpegEncContext * const s = &h->s;
  1358. int deblock_topleft;
  1359. int deblock_top;
  1360. int top_idx = 1;
  1361. uint8_t *top_border_m1;
  1362. uint8_t *top_border;
  1363. if(!simple && FRAME_MBAFF){
  1364. if(s->mb_y&1){
  1365. if(!MB_MBAFF)
  1366. return;
  1367. }else{
  1368. top_idx = MB_MBAFF ? 0 : 1;
  1369. }
  1370. }
  1371. if(h->deblocking_filter == 2) {
  1372. deblock_topleft = h->slice_table[h->mb_xy - 1 - s->mb_stride] == h->slice_num;
  1373. deblock_top = h->top_type;
  1374. } else {
  1375. deblock_topleft = (s->mb_x > 0);
  1376. deblock_top = (s->mb_y > !!MB_FIELD);
  1377. }
  1378. src_y -= linesize + 1 + pixel_shift;
  1379. src_cb -= uvlinesize + 1 + pixel_shift;
  1380. src_cr -= uvlinesize + 1 + pixel_shift;
  1381. top_border_m1 = h->top_borders[top_idx][s->mb_x-1];
  1382. top_border = h->top_borders[top_idx][s->mb_x];
  1383. #define XCHG(a,b,xchg)\
  1384. if (pixel_shift) {\
  1385. if (xchg) {\
  1386. AV_SWAP64(b+0,a+0);\
  1387. AV_SWAP64(b+8,a+8);\
  1388. } else {\
  1389. AV_COPY128(b,a); \
  1390. }\
  1391. } else \
  1392. if (xchg) AV_SWAP64(b,a);\
  1393. else AV_COPY64(b,a);
  1394. if(deblock_top){
  1395. if(deblock_topleft){
  1396. XCHG(top_border_m1 + (8 << pixel_shift), src_y - (7 << pixel_shift), 1);
  1397. }
  1398. XCHG(top_border + (0 << pixel_shift), src_y + (1 << pixel_shift), xchg);
  1399. XCHG(top_border + (8 << pixel_shift), src_y + (9 << pixel_shift), 1);
  1400. if(s->mb_x+1 < s->mb_width){
  1401. XCHG(h->top_borders[top_idx][s->mb_x+1], src_y + (17 << pixel_shift), 1);
  1402. }
  1403. }
  1404. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1405. if(chroma444){
  1406. if(deblock_topleft){
  1407. XCHG(top_border_m1 + (24 << pixel_shift), src_cb - (7 << pixel_shift), 1);
  1408. XCHG(top_border_m1 + (40 << pixel_shift), src_cr - (7 << pixel_shift), 1);
  1409. }
  1410. XCHG(top_border + (16 << pixel_shift), src_cb + (1 << pixel_shift), xchg);
  1411. XCHG(top_border + (24 << pixel_shift), src_cb + (9 << pixel_shift), 1);
  1412. XCHG(top_border + (32 << pixel_shift), src_cr + (1 << pixel_shift), xchg);
  1413. XCHG(top_border + (40 << pixel_shift), src_cr + (9 << pixel_shift), 1);
  1414. if(s->mb_x+1 < s->mb_width){
  1415. XCHG(h->top_borders[top_idx][s->mb_x+1] + (16 << pixel_shift), src_cb + (17 << pixel_shift), 1);
  1416. XCHG(h->top_borders[top_idx][s->mb_x+1] + (32 << pixel_shift), src_cr + (17 << pixel_shift), 1);
  1417. }
  1418. } else {
  1419. if(deblock_top){
  1420. if(deblock_topleft){
  1421. XCHG(top_border_m1 + (16 << pixel_shift), src_cb - (7 << pixel_shift), 1);
  1422. XCHG(top_border_m1 + (24 << pixel_shift), src_cr - (7 << pixel_shift), 1);
  1423. }
  1424. XCHG(top_border + (16 << pixel_shift), src_cb+1+pixel_shift, 1);
  1425. XCHG(top_border + (24 << pixel_shift), src_cr+1+pixel_shift, 1);
  1426. }
  1427. }
  1428. }
  1429. }
  1430. static av_always_inline int dctcoef_get(DCTELEM *mb, int high_bit_depth, int index) {
  1431. if (high_bit_depth) {
  1432. return AV_RN32A(((int32_t*)mb) + index);
  1433. } else
  1434. return AV_RN16A(mb + index);
  1435. }
  1436. static av_always_inline void dctcoef_set(DCTELEM *mb, int high_bit_depth, int index, int value) {
  1437. if (high_bit_depth) {
  1438. AV_WN32A(((int32_t*)mb) + index, value);
  1439. } else
  1440. AV_WN16A(mb + index, value);
  1441. }
  1442. static av_always_inline void hl_decode_mb_predict_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
  1443. int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
  1444. {
  1445. MpegEncContext * const s = &h->s;
  1446. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  1447. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  1448. int i;
  1449. int qscale = p == 0 ? s->qscale : h->chroma_qp[p-1];
  1450. block_offset += 16*p;
  1451. if(IS_INTRA4x4(mb_type)){
  1452. if(simple || !s->encoding){
  1453. if(IS_8x8DCT(mb_type)){
  1454. if(transform_bypass){
  1455. idct_dc_add =
  1456. idct_add = s->dsp.add_pixels8;
  1457. }else{
  1458. idct_dc_add = h->h264dsp.h264_idct8_dc_add;
  1459. idct_add = h->h264dsp.h264_idct8_add;
  1460. }
  1461. for(i=0; i<16; i+=4){
  1462. uint8_t * const ptr= dest_y + block_offset[i];
  1463. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1464. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1465. h->hpc.pred8x8l_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1466. }else{
  1467. const int nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
  1468. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  1469. (h->topright_samples_available<<i)&0x4000, linesize);
  1470. if(nnz){
  1471. if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
  1472. idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1473. else
  1474. idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1475. }
  1476. }
  1477. }
  1478. }else{
  1479. if(transform_bypass){
  1480. idct_dc_add =
  1481. idct_add = s->dsp.add_pixels4;
  1482. }else{
  1483. idct_dc_add = h->h264dsp.h264_idct_dc_add;
  1484. idct_add = h->h264dsp.h264_idct_add;
  1485. }
  1486. for(i=0; i<16; i++){
  1487. uint8_t * const ptr= dest_y + block_offset[i];
  1488. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1489. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1490. h->hpc.pred4x4_add[dir](ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1491. }else{
  1492. uint8_t *topright;
  1493. int nnz, tr;
  1494. uint64_t tr_high;
  1495. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  1496. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  1497. assert(s->mb_y || linesize <= block_offset[i]);
  1498. if(!topright_avail){
  1499. if (pixel_shift) {
  1500. tr_high= ((uint16_t*)ptr)[3 - linesize/2]*0x0001000100010001ULL;
  1501. topright= (uint8_t*) &tr_high;
  1502. } else {
  1503. tr= ptr[3 - linesize]*0x01010101u;
  1504. topright= (uint8_t*) &tr;
  1505. }
  1506. }else
  1507. topright= ptr + (4 << pixel_shift) - linesize;
  1508. }else
  1509. topright= NULL;
  1510. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  1511. nnz = h->non_zero_count_cache[ scan8[i+p*16] ];
  1512. if(nnz){
  1513. if(is_h264){
  1514. if(nnz == 1 && dctcoef_get(h->mb, pixel_shift, i*16+p*256))
  1515. idct_dc_add(ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1516. else
  1517. idct_add (ptr, h->mb + (i*16+p*256 << pixel_shift), linesize);
  1518. }else
  1519. ff_svq3_add_idct_c(ptr, h->mb + i*16+p*256, linesize, qscale, 0);
  1520. }
  1521. }
  1522. }
  1523. }
  1524. }
  1525. }else{
  1526. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  1527. if(is_h264){
  1528. if(h->non_zero_count_cache[ scan8[LUMA_DC_BLOCK_INDEX+p] ]){
  1529. if(!transform_bypass)
  1530. h->h264dsp.h264_luma_dc_dequant_idct(h->mb+(p*256 << pixel_shift), h->mb_luma_dc[p], h->dequant4_coeff[p][qscale][0]);
  1531. else{
  1532. static const uint8_t dc_mapping[16] = { 0*16, 1*16, 4*16, 5*16, 2*16, 3*16, 6*16, 7*16,
  1533. 8*16, 9*16,12*16,13*16,10*16,11*16,14*16,15*16};
  1534. for(i = 0; i < 16; i++)
  1535. dctcoef_set(h->mb+p*256, pixel_shift, dc_mapping[i], dctcoef_get(h->mb_luma_dc[p], pixel_shift, i));
  1536. }
  1537. }
  1538. }else
  1539. ff_svq3_luma_dc_dequant_idct_c(h->mb+p*256, h->mb_luma_dc[p], qscale);
  1540. }
  1541. }
  1542. static av_always_inline void hl_decode_mb_idct_luma(H264Context *h, int mb_type, int is_h264, int simple, int transform_bypass,
  1543. int pixel_shift, int *block_offset, int linesize, uint8_t *dest_y, int p)
  1544. {
  1545. MpegEncContext * const s = &h->s;
  1546. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  1547. int i;
  1548. block_offset += 16*p;
  1549. if(!IS_INTRA4x4(mb_type)){
  1550. if(is_h264){
  1551. if(IS_INTRA16x16(mb_type)){
  1552. if(transform_bypass){
  1553. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  1554. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize);
  1555. }else{
  1556. for(i=0; i<16; i++){
  1557. if(h->non_zero_count_cache[ scan8[i+p*16] ] || dctcoef_get(h->mb, pixel_shift, i*16+p*256))
  1558. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
  1559. }
  1560. }
  1561. }else{
  1562. h->h264dsp.h264_idct_add16intra(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
  1563. }
  1564. }else if(h->cbp&15){
  1565. if(transform_bypass){
  1566. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  1567. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  1568. for(i=0; i<16; i+=di){
  1569. if(h->non_zero_count_cache[ scan8[i+p*16] ]){
  1570. idct_add(dest_y + block_offset[i], h->mb + (i*16+p*256 << pixel_shift), linesize);
  1571. }
  1572. }
  1573. }else{
  1574. if(IS_8x8DCT(mb_type)){
  1575. h->h264dsp.h264_idct8_add4(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
  1576. }else{
  1577. h->h264dsp.h264_idct_add16(dest_y, block_offset, h->mb + (p*256 << pixel_shift), linesize, h->non_zero_count_cache+p*5*8);
  1578. }
  1579. }
  1580. }
  1581. }else{
  1582. for(i=0; i<16; i++){
  1583. if(h->non_zero_count_cache[ scan8[i+p*16] ] || h->mb[i*16+p*256]){ //FIXME benchmark weird rule, & below
  1584. uint8_t * const ptr= dest_y + block_offset[i];
  1585. ff_svq3_add_idct_c(ptr, h->mb + i*16 + p*256, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  1586. }
  1587. }
  1588. }
  1589. }
  1590. }
  1591. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple, int pixel_shift){
  1592. MpegEncContext * const s = &h->s;
  1593. const int mb_x= s->mb_x;
  1594. const int mb_y= s->mb_y;
  1595. const int mb_xy= h->mb_xy;
  1596. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  1597. uint8_t *dest_y, *dest_cb, *dest_cr;
  1598. int linesize, uvlinesize /*dct_offset*/;
  1599. int i, j;
  1600. int *block_offset = &h->block_offset[0];
  1601. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  1602. /* is_h264 should always be true if SVQ3 is disabled. */
  1603. const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
  1604. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  1605. const int block_h = 16>>s->chroma_y_shift;
  1606. dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
  1607. dest_cb = s->current_picture.f.data[1] + (mb_x << pixel_shift)*8 + mb_y * s->uvlinesize * block_h;
  1608. dest_cr = s->current_picture.f.data[2] + (mb_x << pixel_shift)*8 + mb_y * s->uvlinesize * block_h;
  1609. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
  1610. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + (64 << pixel_shift), dest_cr - dest_cb, 2);
  1611. h->list_counts[mb_xy]= h->list_count;
  1612. if (!simple && MB_FIELD) {
  1613. linesize = h->mb_linesize = s->linesize * 2;
  1614. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  1615. block_offset = &h->block_offset[48];
  1616. if(mb_y&1){ //FIXME move out of this function?
  1617. dest_y -= s->linesize*15;
  1618. dest_cb-= s->uvlinesize*(block_h-1);
  1619. dest_cr-= s->uvlinesize*(block_h-1);
  1620. }
  1621. if(FRAME_MBAFF) {
  1622. int list;
  1623. for(list=0; list<h->list_count; list++){
  1624. if(!USES_LIST(mb_type, list))
  1625. continue;
  1626. if(IS_16X16(mb_type)){
  1627. int8_t *ref = &h->ref_cache[list][scan8[0]];
  1628. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  1629. }else{
  1630. for(i=0; i<16; i+=4){
  1631. int ref = h->ref_cache[list][scan8[i]];
  1632. if(ref >= 0)
  1633. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  1634. }
  1635. }
  1636. }
  1637. }
  1638. } else {
  1639. linesize = h->mb_linesize = s->linesize;
  1640. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  1641. // dct_offset = s->linesize * 16;
  1642. }
  1643. if (!simple && IS_INTRA_PCM(mb_type)) {
  1644. const int bit_depth = h->sps.bit_depth_luma;
  1645. if (pixel_shift) {
  1646. int j;
  1647. GetBitContext gb;
  1648. init_get_bits(&gb, (uint8_t*)h->mb, 384*bit_depth);
  1649. for (i = 0; i < 16; i++) {
  1650. uint16_t *tmp_y = (uint16_t*)(dest_y + i*linesize);
  1651. for (j = 0; j < 16; j++)
  1652. tmp_y[j] = get_bits(&gb, bit_depth);
  1653. }
  1654. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1655. if (!h->sps.chroma_format_idc) {
  1656. for (i = 0; i < 8; i++) {
  1657. uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
  1658. uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
  1659. for (j = 0; j < 8; j++) {
  1660. tmp_cb[j] = tmp_cr[j] = 1 << (bit_depth - 1);
  1661. }
  1662. }
  1663. } else {
  1664. for (i = 0; i < block_h; i++) {
  1665. uint16_t *tmp_cb = (uint16_t*)(dest_cb + i*uvlinesize);
  1666. for (j = 0; j < 8; j++)
  1667. tmp_cb[j] = get_bits(&gb, bit_depth);
  1668. }
  1669. for (i = 0; i < block_h; i++) {
  1670. uint16_t *tmp_cr = (uint16_t*)(dest_cr + i*uvlinesize);
  1671. for (j = 0; j < 8; j++)
  1672. tmp_cr[j] = get_bits(&gb, bit_depth);
  1673. }
  1674. }
  1675. }
  1676. } else {
  1677. for (i=0; i<16; i++) {
  1678. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  1679. }
  1680. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1681. if (!h->sps.chroma_format_idc) {
  1682. for (i=0; i<8; i++) {
  1683. memset(dest_cb+ i*uvlinesize, 1 << (bit_depth - 1), 8);
  1684. memset(dest_cr+ i*uvlinesize, 1 << (bit_depth - 1), 8);
  1685. }
  1686. } else {
  1687. for (i=0; i<block_h; i++) {
  1688. memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
  1689. memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
  1690. }
  1691. }
  1692. }
  1693. }
  1694. } else {
  1695. if(IS_INTRA(mb_type)){
  1696. if(h->deblocking_filter)
  1697. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, 0, simple, pixel_shift);
  1698. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1699. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  1700. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  1701. }
  1702. hl_decode_mb_predict_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
  1703. if(h->deblocking_filter)
  1704. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, 0, simple, pixel_shift);
  1705. }else if(is_h264){
  1706. hl_motion(h, dest_y, dest_cb, dest_cr,
  1707. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1708. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1709. h->h264dsp.weight_h264_pixels_tab,
  1710. h->h264dsp.biweight_h264_pixels_tab, pixel_shift, 0);
  1711. }
  1712. hl_decode_mb_idct_luma(h, mb_type, is_h264, simple, transform_bypass, pixel_shift, block_offset, linesize, dest_y, 0);
  1713. if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  1714. uint8_t *dest[2] = {dest_cb, dest_cr};
  1715. if(transform_bypass){
  1716. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  1717. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + (16*16*1 << pixel_shift), uvlinesize);
  1718. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 32, h->mb + (16*16*2 << pixel_shift), uvlinesize);
  1719. }else{
  1720. idct_add = s->dsp.add_pixels4;
  1721. for(j=1; j<3; j++){
  1722. for(i=j*16; i<j*16+4; i++){
  1723. if(h->non_zero_count_cache[ scan8[i] ] || dctcoef_get(h->mb, pixel_shift, i*16))
  1724. idct_add (dest[j-1] + block_offset[i], h->mb + (i*16 << pixel_shift), uvlinesize);
  1725. }
  1726. }
  1727. }
  1728. }else{
  1729. if(is_h264){
  1730. int qp[2];
  1731. if (CHROMA422) {
  1732. qp[0] = h->chroma_qp[0]+3;
  1733. qp[1] = h->chroma_qp[1]+3;
  1734. } else {
  1735. qp[0] = h->chroma_qp[0];
  1736. qp[1] = h->chroma_qp[1];
  1737. }
  1738. if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+0] ])
  1739. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*1 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][qp[0]][0]);
  1740. if(h->non_zero_count_cache[ scan8[CHROMA_DC_BLOCK_INDEX+1] ])
  1741. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + (16*16*2 << pixel_shift), h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][qp[1]][0]);
  1742. h->h264dsp.h264_idct_add8(dest, block_offset,
  1743. h->mb, uvlinesize,
  1744. h->non_zero_count_cache);
  1745. }
  1746. #if CONFIG_SVQ3_DECODER
  1747. else{
  1748. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*1, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  1749. h->h264dsp.h264_chroma_dc_dequant_idct(h->mb + 16*16*2, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  1750. for(j=1; j<3; j++){
  1751. for(i=j*16; i<j*16+4; i++){
  1752. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  1753. uint8_t * const ptr= dest[j-1] + block_offset[i];
  1754. ff_svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[0][s->qscale + 12] - 12, 2);
  1755. }
  1756. }
  1757. }
  1758. }
  1759. #endif
  1760. }
  1761. }
  1762. }
  1763. if(h->cbp || IS_INTRA(mb_type))
  1764. {
  1765. s->dsp.clear_blocks(h->mb);
  1766. s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
  1767. }
  1768. }
  1769. static av_always_inline void hl_decode_mb_444_internal(H264Context *h, int simple, int pixel_shift){
  1770. MpegEncContext * const s = &h->s;
  1771. const int mb_x= s->mb_x;
  1772. const int mb_y= s->mb_y;
  1773. const int mb_xy= h->mb_xy;
  1774. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  1775. uint8_t *dest[3];
  1776. int linesize;
  1777. int i, j, p;
  1778. int *block_offset = &h->block_offset[0];
  1779. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  1780. const int plane_count = (simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) ? 3 : 1;
  1781. for (p = 0; p < plane_count; p++)
  1782. {
  1783. dest[p] = s->current_picture.f.data[p] + ((mb_x << pixel_shift) + mb_y * s->linesize) * 16;
  1784. s->dsp.prefetch(dest[p] + (s->mb_x&3)*4*s->linesize + (64 << pixel_shift), s->linesize, 4);
  1785. }
  1786. h->list_counts[mb_xy]= h->list_count;
  1787. if (!simple && MB_FIELD) {
  1788. linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize * 2;
  1789. block_offset = &h->block_offset[48];
  1790. if(mb_y&1) //FIXME move out of this function?
  1791. for (p = 0; p < 3; p++)
  1792. dest[p] -= s->linesize*15;
  1793. if(FRAME_MBAFF) {
  1794. int list;
  1795. for(list=0; list<h->list_count; list++){
  1796. if(!USES_LIST(mb_type, list))
  1797. continue;
  1798. if(IS_16X16(mb_type)){
  1799. int8_t *ref = &h->ref_cache[list][scan8[0]];
  1800. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  1801. }else{
  1802. for(i=0; i<16; i+=4){
  1803. int ref = h->ref_cache[list][scan8[i]];
  1804. if(ref >= 0)
  1805. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  1806. }
  1807. }
  1808. }
  1809. }
  1810. } else {
  1811. linesize = h->mb_linesize = h->mb_uvlinesize = s->linesize;
  1812. }
  1813. if (!simple && IS_INTRA_PCM(mb_type)) {
  1814. if (pixel_shift) {
  1815. const int bit_depth = h->sps.bit_depth_luma;
  1816. GetBitContext gb;
  1817. init_get_bits(&gb, (uint8_t*)h->mb, 768*bit_depth);
  1818. for (p = 0; p < plane_count; p++) {
  1819. for (i = 0; i < 16; i++) {
  1820. uint16_t *tmp = (uint16_t*)(dest[p] + i*linesize);
  1821. for (j = 0; j < 16; j++)
  1822. tmp[j] = get_bits(&gb, bit_depth);
  1823. }
  1824. }
  1825. } else {
  1826. for (p = 0; p < plane_count; p++) {
  1827. for (i = 0; i < 16; i++) {
  1828. memcpy(dest[p] + i*linesize, h->mb + p*128 + i*8, 16);
  1829. }
  1830. }
  1831. }
  1832. } else {
  1833. if(IS_INTRA(mb_type)){
  1834. if(h->deblocking_filter)
  1835. xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 1, 1, simple, pixel_shift);
  1836. for (p = 0; p < plane_count; p++)
  1837. hl_decode_mb_predict_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
  1838. if(h->deblocking_filter)
  1839. xchg_mb_border(h, dest[0], dest[1], dest[2], linesize, linesize, 0, 1, simple, pixel_shift);
  1840. }else{
  1841. hl_motion(h, dest[0], dest[1], dest[2],
  1842. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1843. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1844. h->h264dsp.weight_h264_pixels_tab,
  1845. h->h264dsp.biweight_h264_pixels_tab, pixel_shift, 1);
  1846. }
  1847. for (p = 0; p < plane_count; p++)
  1848. hl_decode_mb_idct_luma(h, mb_type, 1, simple, transform_bypass, pixel_shift, block_offset, linesize, dest[p], p);
  1849. }
  1850. if(h->cbp || IS_INTRA(mb_type))
  1851. {
  1852. s->dsp.clear_blocks(h->mb);
  1853. s->dsp.clear_blocks(h->mb+(24*16<<pixel_shift));
  1854. }
  1855. }
  1856. /**
  1857. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  1858. */
  1859. #define hl_decode_mb_simple(sh, bits) \
  1860. static void hl_decode_mb_simple_ ## bits(H264Context *h){ \
  1861. hl_decode_mb_internal(h, 1, sh); \
  1862. }
  1863. hl_decode_mb_simple(0, 8);
  1864. hl_decode_mb_simple(1, 16);
  1865. /**
  1866. * Process a macroblock; this handles edge cases, such as interlacing.
  1867. */
  1868. static void av_noinline hl_decode_mb_complex(H264Context *h){
  1869. hl_decode_mb_internal(h, 0, h->pixel_shift);
  1870. }
  1871. static void av_noinline hl_decode_mb_444_complex(H264Context *h){
  1872. hl_decode_mb_444_internal(h, 0, h->pixel_shift);
  1873. }
  1874. static void av_noinline hl_decode_mb_444_simple(H264Context *h){
  1875. hl_decode_mb_444_internal(h, 1, 0);
  1876. }
  1877. void ff_h264_hl_decode_mb(H264Context *h){
  1878. MpegEncContext * const s = &h->s;
  1879. const int mb_xy= h->mb_xy;
  1880. const int mb_type = s->current_picture.f.mb_type[mb_xy];
  1881. int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  1882. if (CHROMA444) {
  1883. if(is_complex || h->pixel_shift)
  1884. hl_decode_mb_444_complex(h);
  1885. else
  1886. hl_decode_mb_444_simple(h);
  1887. } else if (is_complex) {
  1888. hl_decode_mb_complex(h);
  1889. } else if (h->pixel_shift) {
  1890. hl_decode_mb_simple_16(h);
  1891. } else
  1892. hl_decode_mb_simple_8(h);
  1893. }
  1894. static int pred_weight_table(H264Context *h){
  1895. MpegEncContext * const s = &h->s;
  1896. int list, i;
  1897. int luma_def, chroma_def;
  1898. h->use_weight= 0;
  1899. h->use_weight_chroma= 0;
  1900. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  1901. if(h->sps.chroma_format_idc)
  1902. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  1903. luma_def = 1<<h->luma_log2_weight_denom;
  1904. chroma_def = 1<<h->chroma_log2_weight_denom;
  1905. for(list=0; list<2; list++){
  1906. h->luma_weight_flag[list] = 0;
  1907. h->chroma_weight_flag[list] = 0;
  1908. for(i=0; i<h->ref_count[list]; i++){
  1909. int luma_weight_flag, chroma_weight_flag;
  1910. luma_weight_flag= get_bits1(&s->gb);
  1911. if(luma_weight_flag){
  1912. h->luma_weight[i][list][0]= get_se_golomb(&s->gb);
  1913. h->luma_weight[i][list][1]= get_se_golomb(&s->gb);
  1914. if( h->luma_weight[i][list][0] != luma_def
  1915. || h->luma_weight[i][list][1] != 0) {
  1916. h->use_weight= 1;
  1917. h->luma_weight_flag[list]= 1;
  1918. }
  1919. }else{
  1920. h->luma_weight[i][list][0]= luma_def;
  1921. h->luma_weight[i][list][1]= 0;
  1922. }
  1923. if(h->sps.chroma_format_idc){
  1924. chroma_weight_flag= get_bits1(&s->gb);
  1925. if(chroma_weight_flag){
  1926. int j;
  1927. for(j=0; j<2; j++){
  1928. h->chroma_weight[i][list][j][0]= get_se_golomb(&s->gb);
  1929. h->chroma_weight[i][list][j][1]= get_se_golomb(&s->gb);
  1930. if( h->chroma_weight[i][list][j][0] != chroma_def
  1931. || h->chroma_weight[i][list][j][1] != 0) {
  1932. h->use_weight_chroma= 1;
  1933. h->chroma_weight_flag[list]= 1;
  1934. }
  1935. }
  1936. }else{
  1937. int j;
  1938. for(j=0; j<2; j++){
  1939. h->chroma_weight[i][list][j][0]= chroma_def;
  1940. h->chroma_weight[i][list][j][1]= 0;
  1941. }
  1942. }
  1943. }
  1944. }
  1945. if(h->slice_type_nos != AV_PICTURE_TYPE_B) break;
  1946. }
  1947. h->use_weight= h->use_weight || h->use_weight_chroma;
  1948. return 0;
  1949. }
  1950. /**
  1951. * Initialize implicit_weight table.
  1952. * @param field 0/1 initialize the weight for interlaced MBAFF
  1953. * -1 initializes the rest
  1954. */
  1955. static void implicit_weight_table(H264Context *h, int field){
  1956. MpegEncContext * const s = &h->s;
  1957. int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
  1958. for (i = 0; i < 2; i++) {
  1959. h->luma_weight_flag[i] = 0;
  1960. h->chroma_weight_flag[i] = 0;
  1961. }
  1962. if(field < 0){
  1963. if (s->picture_structure == PICT_FRAME) {
  1964. cur_poc = s->current_picture_ptr->poc;
  1965. } else {
  1966. cur_poc = s->current_picture_ptr->field_poc[s->picture_structure - 1];
  1967. }
  1968. if( h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF
  1969. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  1970. h->use_weight= 0;
  1971. h->use_weight_chroma= 0;
  1972. return;
  1973. }
  1974. ref_start= 0;
  1975. ref_count0= h->ref_count[0];
  1976. ref_count1= h->ref_count[1];
  1977. }else{
  1978. cur_poc = s->current_picture_ptr->field_poc[field];
  1979. ref_start= 16;
  1980. ref_count0= 16+2*h->ref_count[0];
  1981. ref_count1= 16+2*h->ref_count[1];
  1982. }
  1983. h->use_weight= 2;
  1984. h->use_weight_chroma= 2;
  1985. h->luma_log2_weight_denom= 5;
  1986. h->chroma_log2_weight_denom= 5;
  1987. for(ref0=ref_start; ref0 < ref_count0; ref0++){
  1988. int poc0 = h->ref_list[0][ref0].poc;
  1989. for(ref1=ref_start; ref1 < ref_count1; ref1++){
  1990. int w = 32;
  1991. if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
  1992. int poc1 = h->ref_list[1][ref1].poc;
  1993. int td = av_clip(poc1 - poc0, -128, 127);
  1994. if(td){
  1995. int tb = av_clip(cur_poc - poc0, -128, 127);
  1996. int tx = (16384 + (FFABS(td) >> 1)) / td;
  1997. int dist_scale_factor = (tb*tx + 32) >> 8;
  1998. if(dist_scale_factor >= -64 && dist_scale_factor <= 128)
  1999. w = 64 - dist_scale_factor;
  2000. }
  2001. }
  2002. if(field<0){
  2003. h->implicit_weight[ref0][ref1][0]=
  2004. h->implicit_weight[ref0][ref1][1]= w;
  2005. }else{
  2006. h->implicit_weight[ref0][ref1][field]=w;
  2007. }
  2008. }
  2009. }
  2010. }
  2011. /**
  2012. * instantaneous decoder refresh.
  2013. */
  2014. static void idr(H264Context *h){
  2015. ff_h264_remove_all_refs(h);
  2016. h->prev_frame_num= 0;
  2017. h->prev_frame_num_offset= 0;
  2018. h->prev_poc_msb=
  2019. h->prev_poc_lsb= 0;
  2020. }
  2021. /* forget old pics after a seek */
  2022. static void flush_dpb(AVCodecContext *avctx){
  2023. H264Context *h= avctx->priv_data;
  2024. int i;
  2025. for(i=0; i<=MAX_DELAYED_PIC_COUNT; i++) {
  2026. if(h->delayed_pic[i])
  2027. h->delayed_pic[i]->f.reference = 0;
  2028. h->delayed_pic[i]= NULL;
  2029. }
  2030. h->outputed_poc=h->next_outputed_poc= INT_MIN;
  2031. h->prev_interlaced_frame = 1;
  2032. idr(h);
  2033. if(h->s.current_picture_ptr)
  2034. h->s.current_picture_ptr->f.reference = 0;
  2035. h->s.first_field= 0;
  2036. ff_h264_reset_sei(h);
  2037. ff_mpeg_flush(avctx);
  2038. h->recovery_frame= -1;
  2039. h->sync= 0;
  2040. }
  2041. static int init_poc(H264Context *h){
  2042. MpegEncContext * const s = &h->s;
  2043. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  2044. int field_poc[2];
  2045. Picture *cur = s->current_picture_ptr;
  2046. h->frame_num_offset= h->prev_frame_num_offset;
  2047. if(h->frame_num < h->prev_frame_num)
  2048. h->frame_num_offset += max_frame_num;
  2049. if(h->sps.poc_type==0){
  2050. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  2051. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  2052. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  2053. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  2054. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  2055. else
  2056. h->poc_msb = h->prev_poc_msb;
  2057. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  2058. field_poc[0] =
  2059. field_poc[1] = h->poc_msb + h->poc_lsb;
  2060. if(s->picture_structure == PICT_FRAME)
  2061. field_poc[1] += h->delta_poc_bottom;
  2062. }else if(h->sps.poc_type==1){
  2063. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  2064. int i;
  2065. if(h->sps.poc_cycle_length != 0)
  2066. abs_frame_num = h->frame_num_offset + h->frame_num;
  2067. else
  2068. abs_frame_num = 0;
  2069. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  2070. abs_frame_num--;
  2071. expected_delta_per_poc_cycle = 0;
  2072. for(i=0; i < h->sps.poc_cycle_length; i++)
  2073. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  2074. if(abs_frame_num > 0){
  2075. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  2076. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  2077. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  2078. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  2079. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  2080. } else
  2081. expectedpoc = 0;
  2082. if(h->nal_ref_idc == 0)
  2083. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  2084. field_poc[0] = expectedpoc + h->delta_poc[0];
  2085. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  2086. if(s->picture_structure == PICT_FRAME)
  2087. field_poc[1] += h->delta_poc[1];
  2088. }else{
  2089. int poc= 2*(h->frame_num_offset + h->frame_num);
  2090. if(!h->nal_ref_idc)
  2091. poc--;
  2092. field_poc[0]= poc;
  2093. field_poc[1]= poc;
  2094. }
  2095. if(s->picture_structure != PICT_BOTTOM_FIELD)
  2096. s->current_picture_ptr->field_poc[0]= field_poc[0];
  2097. if(s->picture_structure != PICT_TOP_FIELD)
  2098. s->current_picture_ptr->field_poc[1]= field_poc[1];
  2099. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  2100. return 0;
  2101. }
  2102. /**
  2103. * initialize scan tables
  2104. */
  2105. static void init_scan_tables(H264Context *h){
  2106. int i;
  2107. for(i=0; i<16; i++){
  2108. #define T(x) (x>>2) | ((x<<2) & 0xF)
  2109. h->zigzag_scan[i] = T(zigzag_scan[i]);
  2110. h-> field_scan[i] = T( field_scan[i]);
  2111. #undef T
  2112. }
  2113. for(i=0; i<64; i++){
  2114. #define T(x) (x>>3) | ((x&7)<<3)
  2115. h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
  2116. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  2117. h->field_scan8x8[i] = T(field_scan8x8[i]);
  2118. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  2119. #undef T
  2120. }
  2121. if(h->sps.transform_bypass){ //FIXME same ugly
  2122. h->zigzag_scan_q0 = zigzag_scan;
  2123. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  2124. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  2125. h->field_scan_q0 = field_scan;
  2126. h->field_scan8x8_q0 = field_scan8x8;
  2127. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  2128. }else{
  2129. h->zigzag_scan_q0 = h->zigzag_scan;
  2130. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  2131. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  2132. h->field_scan_q0 = h->field_scan;
  2133. h->field_scan8x8_q0 = h->field_scan8x8;
  2134. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  2135. }
  2136. }
  2137. static int field_end(H264Context *h, int in_setup){
  2138. MpegEncContext * const s = &h->s;
  2139. AVCodecContext * const avctx= s->avctx;
  2140. int err = 0;
  2141. s->mb_y= 0;
  2142. if (!in_setup && !s->dropable)
  2143. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, (16*s->mb_height >> FIELD_PICTURE) - 1,
  2144. s->picture_structure==PICT_BOTTOM_FIELD);
  2145. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2146. ff_vdpau_h264_set_reference_frames(s);
  2147. if(in_setup || !(avctx->active_thread_type&FF_THREAD_FRAME)){
  2148. if(!s->dropable) {
  2149. err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  2150. h->prev_poc_msb= h->poc_msb;
  2151. h->prev_poc_lsb= h->poc_lsb;
  2152. }
  2153. h->prev_frame_num_offset= h->frame_num_offset;
  2154. h->prev_frame_num= h->frame_num;
  2155. h->outputed_poc = h->next_outputed_poc;
  2156. }
  2157. if (avctx->hwaccel) {
  2158. if (avctx->hwaccel->end_frame(avctx) < 0)
  2159. av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
  2160. }
  2161. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2162. ff_vdpau_h264_picture_complete(s);
  2163. /*
  2164. * FIXME: Error handling code does not seem to support interlaced
  2165. * when slices span multiple rows
  2166. * The ff_er_add_slice calls don't work right for bottom
  2167. * fields; they cause massive erroneous error concealing
  2168. * Error marking covers both fields (top and bottom).
  2169. * This causes a mismatched s->error_count
  2170. * and a bad error table. Further, the error count goes to
  2171. * INT_MAX when called for bottom field, because mb_y is
  2172. * past end by one (callers fault) and resync_mb_y != 0
  2173. * causes problems for the first MB line, too.
  2174. */
  2175. if (!FIELD_PICTURE)
  2176. ff_er_frame_end(s);
  2177. MPV_frame_end(s);
  2178. h->current_slice=0;
  2179. return err;
  2180. }
  2181. /**
  2182. * Replicate H264 "master" context to thread contexts.
  2183. */
  2184. static void clone_slice(H264Context *dst, H264Context *src)
  2185. {
  2186. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  2187. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  2188. dst->s.current_picture = src->s.current_picture;
  2189. dst->s.linesize = src->s.linesize;
  2190. dst->s.uvlinesize = src->s.uvlinesize;
  2191. dst->s.first_field = src->s.first_field;
  2192. dst->prev_poc_msb = src->prev_poc_msb;
  2193. dst->prev_poc_lsb = src->prev_poc_lsb;
  2194. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  2195. dst->prev_frame_num = src->prev_frame_num;
  2196. dst->short_ref_count = src->short_ref_count;
  2197. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  2198. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  2199. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  2200. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  2201. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  2202. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  2203. }
  2204. /**
  2205. * computes profile from profile_idc and constraint_set?_flags
  2206. *
  2207. * @param sps SPS
  2208. *
  2209. * @return profile as defined by FF_PROFILE_H264_*
  2210. */
  2211. int ff_h264_get_profile(SPS *sps)
  2212. {
  2213. int profile = sps->profile_idc;
  2214. switch(sps->profile_idc) {
  2215. case FF_PROFILE_H264_BASELINE:
  2216. // constraint_set1_flag set to 1
  2217. profile |= (sps->constraint_set_flags & 1<<1) ? FF_PROFILE_H264_CONSTRAINED : 0;
  2218. break;
  2219. case FF_PROFILE_H264_HIGH_10:
  2220. case FF_PROFILE_H264_HIGH_422:
  2221. case FF_PROFILE_H264_HIGH_444_PREDICTIVE:
  2222. // constraint_set3_flag set to 1
  2223. profile |= (sps->constraint_set_flags & 1<<3) ? FF_PROFILE_H264_INTRA : 0;
  2224. break;
  2225. }
  2226. return profile;
  2227. }
  2228. /**
  2229. * decodes a slice header.
  2230. * This will also call MPV_common_init() and frame_start() as needed.
  2231. *
  2232. * @param h h264context
  2233. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  2234. *
  2235. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  2236. */
  2237. static int decode_slice_header(H264Context *h, H264Context *h0){
  2238. MpegEncContext * const s = &h->s;
  2239. MpegEncContext * const s0 = &h0->s;
  2240. unsigned int first_mb_in_slice;
  2241. unsigned int pps_id;
  2242. int num_ref_idx_active_override_flag;
  2243. unsigned int slice_type, tmp, i, j;
  2244. int default_ref_list_done = 0;
  2245. int last_pic_structure;
  2246. s->dropable= h->nal_ref_idc == 0;
  2247. /* FIXME: 2tap qpel isn't implemented for high bit depth. */
  2248. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc && !h->pixel_shift){
  2249. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  2250. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  2251. }else{
  2252. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  2253. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  2254. }
  2255. first_mb_in_slice= get_ue_golomb(&s->gb);
  2256. if(first_mb_in_slice == 0){ //FIXME better field boundary detection
  2257. if(h0->current_slice && FIELD_PICTURE){
  2258. field_end(h, 1);
  2259. }
  2260. h0->current_slice = 0;
  2261. if (!s0->first_field)
  2262. s->current_picture_ptr= NULL;
  2263. }
  2264. slice_type= get_ue_golomb_31(&s->gb);
  2265. if(slice_type > 9){
  2266. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  2267. return -1;
  2268. }
  2269. if(slice_type > 4){
  2270. slice_type -= 5;
  2271. h->slice_type_fixed=1;
  2272. }else
  2273. h->slice_type_fixed=0;
  2274. slice_type= golomb_to_pict_type[ slice_type ];
  2275. if (slice_type == AV_PICTURE_TYPE_I
  2276. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  2277. default_ref_list_done = 1;
  2278. }
  2279. h->slice_type= slice_type;
  2280. h->slice_type_nos= slice_type & 3;
  2281. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  2282. pps_id= get_ue_golomb(&s->gb);
  2283. if(pps_id>=MAX_PPS_COUNT){
  2284. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  2285. return -1;
  2286. }
  2287. if(!h0->pps_buffers[pps_id]) {
  2288. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
  2289. return -1;
  2290. }
  2291. h->pps= *h0->pps_buffers[pps_id];
  2292. if(!h0->sps_buffers[h->pps.sps_id]) {
  2293. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
  2294. return -1;
  2295. }
  2296. h->sps = *h0->sps_buffers[h->pps.sps_id];
  2297. s->avctx->profile = ff_h264_get_profile(&h->sps);
  2298. s->avctx->level = h->sps.level_idc;
  2299. s->avctx->refs = h->sps.ref_frame_count;
  2300. if(h == h0 && h->dequant_coeff_pps != pps_id){
  2301. h->dequant_coeff_pps = pps_id;
  2302. init_dequant_tables(h);
  2303. }
  2304. s->mb_width= h->sps.mb_width;
  2305. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  2306. h->b_stride= s->mb_width*4;
  2307. s->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
  2308. s->width = 16*s->mb_width - (2>>CHROMA444)*FFMIN(h->sps.crop_right, (8<<CHROMA444)-1);
  2309. if(h->sps.frame_mbs_only_flag)
  2310. s->height= 16*s->mb_height - (1<<s->chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>s->chroma_y_shift)-1);
  2311. else
  2312. s->height= 16*s->mb_height - (2<<s->chroma_y_shift)*FFMIN(h->sps.crop_bottom, (16>>s->chroma_y_shift)-1);
  2313. if (s->context_initialized
  2314. && ( s->width != s->avctx->width || s->height != s->avctx->height
  2315. || s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma
  2316. || h->cur_chroma_format_idc != h->sps.chroma_format_idc
  2317. || av_cmp_q(h->sps.sar, s->avctx->sample_aspect_ratio))) {
  2318. if(h != h0) {
  2319. av_log_missing_feature(s->avctx, "Width/height/bit depth/chroma idc changing with threads is", 0);
  2320. return -1; // width / height changed during parallelized decoding
  2321. }
  2322. free_tables(h, 0);
  2323. flush_dpb(s->avctx);
  2324. MPV_common_end(s);
  2325. h->list_count = 0;
  2326. }
  2327. if (!s->context_initialized) {
  2328. if (h != h0) {
  2329. av_log(h->s.avctx, AV_LOG_ERROR, "Cannot (re-)initialize context during parallel decoding.\n");
  2330. return -1;
  2331. }
  2332. avcodec_set_dimensions(s->avctx, s->width, s->height);
  2333. s->avctx->sample_aspect_ratio= h->sps.sar;
  2334. av_assert0(s->avctx->sample_aspect_ratio.den);
  2335. if (s->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
  2336. h->cur_chroma_format_idc != h->sps.chroma_format_idc) {
  2337. if (h->sps.bit_depth_luma >= 8 && h->sps.bit_depth_luma <= 10 &&
  2338. (h->sps.bit_depth_luma != 9 || !CHROMA422)) {
  2339. s->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
  2340. h->cur_chroma_format_idc = h->sps.chroma_format_idc;
  2341. h->pixel_shift = h->sps.bit_depth_luma > 8;
  2342. ff_h264dsp_init(&h->h264dsp, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
  2343. ff_h264_pred_init(&h->hpc, s->codec_id, h->sps.bit_depth_luma, h->sps.chroma_format_idc);
  2344. s->dsp.dct_bits = h->sps.bit_depth_luma > 8 ? 32 : 16;
  2345. dsputil_init(&s->dsp, s->avctx);
  2346. } else {
  2347. av_log(s->avctx, AV_LOG_DEBUG, "Unsupported bit depth: %d chroma_idc: %d\n",
  2348. h->sps.bit_depth_luma, h->sps.chroma_format_idc);
  2349. return -1;
  2350. }
  2351. }
  2352. if(h->sps.video_signal_type_present_flag){
  2353. s->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  2354. if(h->sps.colour_description_present_flag){
  2355. s->avctx->color_primaries = h->sps.color_primaries;
  2356. s->avctx->color_trc = h->sps.color_trc;
  2357. s->avctx->colorspace = h->sps.colorspace;
  2358. }
  2359. }
  2360. if(h->sps.timing_info_present_flag){
  2361. int64_t den= h->sps.time_scale;
  2362. if(h->x264_build < 44U)
  2363. den *= 2;
  2364. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  2365. h->sps.num_units_in_tick, den, 1<<30);
  2366. }
  2367. switch (h->sps.bit_depth_luma) {
  2368. case 9 :
  2369. if (CHROMA444)
  2370. s->avctx->pix_fmt = PIX_FMT_YUV444P9;
  2371. else
  2372. s->avctx->pix_fmt = PIX_FMT_YUV420P9;
  2373. break;
  2374. case 10 :
  2375. if (CHROMA444)
  2376. s->avctx->pix_fmt = PIX_FMT_YUV444P10;
  2377. else if (CHROMA422)
  2378. s->avctx->pix_fmt = PIX_FMT_YUV422P10;
  2379. else
  2380. s->avctx->pix_fmt = PIX_FMT_YUV420P10;
  2381. break;
  2382. default:
  2383. if (CHROMA444){
  2384. s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ444P : PIX_FMT_YUV444P;
  2385. if (s->avctx->colorspace == AVCOL_SPC_RGB) {
  2386. s->avctx->pix_fmt = PIX_FMT_GBR24P;
  2387. av_log(h->s.avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n");
  2388. }
  2389. }else if (CHROMA422) {
  2390. s->avctx->pix_fmt = s->avctx->color_range == AVCOL_RANGE_JPEG ? PIX_FMT_YUVJ422P : PIX_FMT_YUV422P;
  2391. }else{
  2392. s->avctx->pix_fmt = s->avctx->get_format(s->avctx,
  2393. s->avctx->codec->pix_fmts ?
  2394. s->avctx->codec->pix_fmts :
  2395. s->avctx->color_range == AVCOL_RANGE_JPEG ?
  2396. hwaccel_pixfmt_list_h264_jpeg_420 :
  2397. ff_hwaccel_pixfmt_list_420);
  2398. }
  2399. }
  2400. s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
  2401. if (MPV_common_init(s) < 0) {
  2402. av_log(h->s.avctx, AV_LOG_ERROR, "MPV_common_init() failed.\n");
  2403. return -1;
  2404. }
  2405. s->first_field = 0;
  2406. h->prev_interlaced_frame = 1;
  2407. init_scan_tables(h);
  2408. if (ff_h264_alloc_tables(h) < 0) {
  2409. av_log(h->s.avctx, AV_LOG_ERROR, "Could not allocate memory for h264\n");
  2410. return AVERROR(ENOMEM);
  2411. }
  2412. if (!HAVE_THREADS || !(s->avctx->active_thread_type&FF_THREAD_SLICE)) {
  2413. if (context_init(h) < 0) {
  2414. av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
  2415. return -1;
  2416. }
  2417. } else {
  2418. for(i = 1; i < s->avctx->thread_count; i++) {
  2419. H264Context *c;
  2420. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  2421. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  2422. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  2423. c->h264dsp = h->h264dsp;
  2424. c->sps = h->sps;
  2425. c->pps = h->pps;
  2426. c->pixel_shift = h->pixel_shift;
  2427. init_scan_tables(c);
  2428. clone_tables(c, h, i);
  2429. }
  2430. for(i = 0; i < s->avctx->thread_count; i++)
  2431. if (context_init(h->thread_context[i]) < 0) {
  2432. av_log(h->s.avctx, AV_LOG_ERROR, "context_init() failed.\n");
  2433. return -1;
  2434. }
  2435. }
  2436. }
  2437. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  2438. h->mb_mbaff = 0;
  2439. h->mb_aff_frame = 0;
  2440. last_pic_structure = s0->picture_structure;
  2441. if(h->sps.frame_mbs_only_flag){
  2442. s->picture_structure= PICT_FRAME;
  2443. }else{
  2444. if(get_bits1(&s->gb)) { //field_pic_flag
  2445. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  2446. } else {
  2447. s->picture_structure= PICT_FRAME;
  2448. h->mb_aff_frame = h->sps.mb_aff;
  2449. }
  2450. }
  2451. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  2452. if(h0->current_slice == 0){
  2453. // Shorten frame num gaps so we don't have to allocate reference frames just to throw them away
  2454. if(h->frame_num != h->prev_frame_num) {
  2455. int unwrap_prev_frame_num = h->prev_frame_num, max_frame_num = 1<<h->sps.log2_max_frame_num;
  2456. if (unwrap_prev_frame_num > h->frame_num) unwrap_prev_frame_num -= max_frame_num;
  2457. if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
  2458. unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
  2459. if (unwrap_prev_frame_num < 0)
  2460. unwrap_prev_frame_num += max_frame_num;
  2461. h->prev_frame_num = unwrap_prev_frame_num;
  2462. }
  2463. }
  2464. while(h->frame_num != h->prev_frame_num &&
  2465. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  2466. Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
  2467. av_log(h->s.avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  2468. if (ff_h264_frame_start(h) < 0)
  2469. return -1;
  2470. h->prev_frame_num++;
  2471. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  2472. s->current_picture_ptr->frame_num= h->prev_frame_num;
  2473. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 0);
  2474. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, INT_MAX, 1);
  2475. ff_generate_sliding_window_mmcos(h);
  2476. if (ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index) < 0 &&
  2477. s->avctx->error_recognition >= FF_ER_EXPLODE)
  2478. return AVERROR_INVALIDDATA;
  2479. /* Error concealment: if a ref is missing, copy the previous ref in its place.
  2480. * FIXME: avoiding a memcpy would be nice, but ref handling makes many assumptions
  2481. * about there being no actual duplicates.
  2482. * FIXME: this doesn't copy padding for out-of-frame motion vectors. Given we're
  2483. * concealing a lost frame, this probably isn't noticable by comparison, but it should
  2484. * be fixed. */
  2485. if (h->short_ref_count) {
  2486. if (prev) {
  2487. av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize,
  2488. (const uint8_t**)prev->f.data, prev->f.linesize,
  2489. s->avctx->pix_fmt, s->mb_width*16, s->mb_height*16);
  2490. h->short_ref[0]->poc = prev->poc+2;
  2491. }
  2492. h->short_ref[0]->frame_num = h->prev_frame_num;
  2493. }
  2494. }
  2495. /* See if we have a decoded first field looking for a pair... */
  2496. if (s0->first_field) {
  2497. assert(s0->current_picture_ptr);
  2498. assert(s0->current_picture_ptr->f.data[0]);
  2499. assert(s0->current_picture_ptr->f.reference != DELAYED_PIC_REF);
  2500. /* figure out if we have a complementary field pair */
  2501. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  2502. /*
  2503. * Previous field is unmatched. Don't display it, but let it
  2504. * remain for reference if marked as such.
  2505. */
  2506. s0->current_picture_ptr = NULL;
  2507. s0->first_field = FIELD_PICTURE;
  2508. } else {
  2509. if (h->nal_ref_idc &&
  2510. s0->current_picture_ptr->f.reference &&
  2511. s0->current_picture_ptr->frame_num != h->frame_num) {
  2512. /*
  2513. * This and previous field were reference, but had
  2514. * different frame_nums. Consider this field first in
  2515. * pair. Throw away previous field except for reference
  2516. * purposes.
  2517. */
  2518. s0->first_field = 1;
  2519. s0->current_picture_ptr = NULL;
  2520. } else {
  2521. /* Second field in complementary pair */
  2522. s0->first_field = 0;
  2523. }
  2524. }
  2525. } else {
  2526. /* Frame or first field in a potentially complementary pair */
  2527. assert(!s0->current_picture_ptr);
  2528. s0->first_field = FIELD_PICTURE;
  2529. }
  2530. if(!FIELD_PICTURE || s0->first_field) {
  2531. if (ff_h264_frame_start(h) < 0) {
  2532. s0->first_field = 0;
  2533. return -1;
  2534. }
  2535. } else {
  2536. ff_release_unused_pictures(s, 0);
  2537. }
  2538. }
  2539. if(h != h0)
  2540. clone_slice(h, h0);
  2541. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  2542. assert(s->mb_num == s->mb_width * s->mb_height);
  2543. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  2544. first_mb_in_slice >= s->mb_num){
  2545. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  2546. return -1;
  2547. }
  2548. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  2549. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  2550. if (s->picture_structure == PICT_BOTTOM_FIELD)
  2551. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  2552. assert(s->mb_y < s->mb_height);
  2553. if(s->picture_structure==PICT_FRAME){
  2554. h->curr_pic_num= h->frame_num;
  2555. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  2556. }else{
  2557. h->curr_pic_num= 2*h->frame_num + 1;
  2558. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  2559. }
  2560. if(h->nal_unit_type == NAL_IDR_SLICE){
  2561. get_ue_golomb(&s->gb); /* idr_pic_id */
  2562. }
  2563. if(h->sps.poc_type==0){
  2564. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  2565. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  2566. h->delta_poc_bottom= get_se_golomb(&s->gb);
  2567. }
  2568. }
  2569. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  2570. h->delta_poc[0]= get_se_golomb(&s->gb);
  2571. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  2572. h->delta_poc[1]= get_se_golomb(&s->gb);
  2573. }
  2574. init_poc(h);
  2575. if(h->pps.redundant_pic_cnt_present){
  2576. h->redundant_pic_count= get_ue_golomb(&s->gb);
  2577. }
  2578. //set defaults, might be overridden a few lines later
  2579. h->ref_count[0]= h->pps.ref_count[0];
  2580. h->ref_count[1]= h->pps.ref_count[1];
  2581. if(h->slice_type_nos != AV_PICTURE_TYPE_I){
  2582. unsigned max= (16<<(s->picture_structure != PICT_FRAME))-1;
  2583. if(h->slice_type_nos == AV_PICTURE_TYPE_B){
  2584. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  2585. }
  2586. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  2587. if(num_ref_idx_active_override_flag){
  2588. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  2589. if(h->slice_type_nos==AV_PICTURE_TYPE_B)
  2590. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  2591. }
  2592. if(h->ref_count[0]-1 > max || h->ref_count[1]-1 > max){
  2593. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  2594. h->ref_count[0]= h->ref_count[1]= 1;
  2595. return -1;
  2596. }
  2597. if(h->slice_type_nos == AV_PICTURE_TYPE_B)
  2598. h->list_count= 2;
  2599. else
  2600. h->list_count= 1;
  2601. }else
  2602. h->ref_count[1]= h->ref_count[0]= h->list_count= 0;
  2603. if(!default_ref_list_done){
  2604. ff_h264_fill_default_ref_list(h);
  2605. }
  2606. if(h->slice_type_nos!=AV_PICTURE_TYPE_I && ff_h264_decode_ref_pic_list_reordering(h) < 0) {
  2607. h->ref_count[1]= h->ref_count[0]= 0;
  2608. return -1;
  2609. }
  2610. if(h->slice_type_nos!=AV_PICTURE_TYPE_I){
  2611. s->last_picture_ptr= &h->ref_list[0][0];
  2612. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  2613. }
  2614. if(h->slice_type_nos==AV_PICTURE_TYPE_B){
  2615. s->next_picture_ptr= &h->ref_list[1][0];
  2616. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  2617. }
  2618. if( (h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P )
  2619. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== AV_PICTURE_TYPE_B ) )
  2620. pred_weight_table(h);
  2621. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
  2622. implicit_weight_table(h, -1);
  2623. }else {
  2624. h->use_weight = 0;
  2625. for (i = 0; i < 2; i++) {
  2626. h->luma_weight_flag[i] = 0;
  2627. h->chroma_weight_flag[i] = 0;
  2628. }
  2629. }
  2630. if(h->nal_ref_idc && ff_h264_decode_ref_pic_marking(h0, &s->gb) < 0 &&
  2631. s->avctx->error_recognition >= FF_ER_EXPLODE)
  2632. return AVERROR_INVALIDDATA;
  2633. if(FRAME_MBAFF){
  2634. ff_h264_fill_mbaff_ref_list(h);
  2635. if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== AV_PICTURE_TYPE_B){
  2636. implicit_weight_table(h, 0);
  2637. implicit_weight_table(h, 1);
  2638. }
  2639. }
  2640. if(h->slice_type_nos==AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
  2641. ff_h264_direct_dist_scale_factor(h);
  2642. ff_h264_direct_ref_list_init(h);
  2643. if( h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac ){
  2644. tmp = get_ue_golomb_31(&s->gb);
  2645. if(tmp > 2){
  2646. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  2647. return -1;
  2648. }
  2649. h->cabac_init_idc= tmp;
  2650. }
  2651. h->last_qscale_diff = 0;
  2652. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  2653. if(tmp>51+6*(h->sps.bit_depth_luma-8)){
  2654. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  2655. return -1;
  2656. }
  2657. s->qscale= tmp;
  2658. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  2659. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  2660. //FIXME qscale / qp ... stuff
  2661. if(h->slice_type == AV_PICTURE_TYPE_SP){
  2662. get_bits1(&s->gb); /* sp_for_switch_flag */
  2663. }
  2664. if(h->slice_type==AV_PICTURE_TYPE_SP || h->slice_type == AV_PICTURE_TYPE_SI){
  2665. get_se_golomb(&s->gb); /* slice_qs_delta */
  2666. }
  2667. h->deblocking_filter = 1;
  2668. h->slice_alpha_c0_offset = 52;
  2669. h->slice_beta_offset = 52;
  2670. if( h->pps.deblocking_filter_parameters_present ) {
  2671. tmp= get_ue_golomb_31(&s->gb);
  2672. if(tmp > 2){
  2673. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  2674. return -1;
  2675. }
  2676. h->deblocking_filter= tmp;
  2677. if(h->deblocking_filter < 2)
  2678. h->deblocking_filter^= 1; // 1<->0
  2679. if( h->deblocking_filter ) {
  2680. h->slice_alpha_c0_offset += get_se_golomb(&s->gb) << 1;
  2681. h->slice_beta_offset += get_se_golomb(&s->gb) << 1;
  2682. if( h->slice_alpha_c0_offset > 104U
  2683. || h->slice_beta_offset > 104U){
  2684. av_log(s->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset);
  2685. return -1;
  2686. }
  2687. }
  2688. }
  2689. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  2690. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != AV_PICTURE_TYPE_I)
  2691. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B)
  2692. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  2693. h->deblocking_filter= 0;
  2694. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  2695. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  2696. /* Cheat slightly for speed:
  2697. Do not bother to deblock across slices. */
  2698. h->deblocking_filter = 2;
  2699. } else {
  2700. h0->max_contexts = 1;
  2701. if(!h0->single_decode_warning) {
  2702. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  2703. h0->single_decode_warning = 1;
  2704. }
  2705. if (h != h0) {
  2706. av_log(h->s.avctx, AV_LOG_ERROR, "Deblocking switched inside frame.\n");
  2707. return 1;
  2708. }
  2709. }
  2710. }
  2711. h->qp_thresh = 15 + 52 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset)
  2712. - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1])
  2713. + 6 * (h->sps.bit_depth_luma - 8);
  2714. #if 0 //FMO
  2715. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  2716. slice_group_change_cycle= get_bits(&s->gb, ?);
  2717. #endif
  2718. h0->last_slice_type = slice_type;
  2719. h->slice_num = ++h0->current_slice;
  2720. if(h->slice_num)
  2721. h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= s->resync_mb_y;
  2722. if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= s->resync_mb_y
  2723. && h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= s->resync_mb_y
  2724. && h->slice_num >= MAX_SLICES) {
  2725. //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
  2726. av_log(s->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES);
  2727. }
  2728. for(j=0; j<2; j++){
  2729. int id_list[16];
  2730. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  2731. for(i=0; i<16; i++){
  2732. id_list[i]= 60;
  2733. if (h->ref_list[j][i].f.data[0]) {
  2734. int k;
  2735. uint8_t *base = h->ref_list[j][i].f.base[0];
  2736. for(k=0; k<h->short_ref_count; k++)
  2737. if (h->short_ref[k]->f.base[0] == base) {
  2738. id_list[i]= k;
  2739. break;
  2740. }
  2741. for(k=0; k<h->long_ref_count; k++)
  2742. if (h->long_ref[k] && h->long_ref[k]->f.base[0] == base) {
  2743. id_list[i]= h->short_ref_count + k;
  2744. break;
  2745. }
  2746. }
  2747. }
  2748. ref2frm[0]=
  2749. ref2frm[1]= -1;
  2750. for(i=0; i<16; i++)
  2751. ref2frm[i+2]= 4*id_list[i]
  2752. + (h->ref_list[j][i].f.reference & 3);
  2753. ref2frm[18+0]=
  2754. ref2frm[18+1]= -1;
  2755. for(i=16; i<48; i++)
  2756. ref2frm[i+4]= 4*id_list[(i-16)>>1]
  2757. + (h->ref_list[j][i].f.reference & 3);
  2758. }
  2759. //FIXME: fix draw_edges+PAFF+frame threads
  2760. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE || (!h->sps.frame_mbs_only_flag && s->avctx->active_thread_type)) ? 0 : 16;
  2761. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  2762. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  2763. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  2764. h->slice_num,
  2765. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  2766. first_mb_in_slice,
  2767. av_get_picture_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  2768. pps_id, h->frame_num,
  2769. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  2770. h->ref_count[0], h->ref_count[1],
  2771. s->qscale,
  2772. h->deblocking_filter, h->slice_alpha_c0_offset/2-26, h->slice_beta_offset/2-26,
  2773. h->use_weight,
  2774. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  2775. h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  2776. );
  2777. }
  2778. return 0;
  2779. }
  2780. int ff_h264_get_slice_type(const H264Context *h)
  2781. {
  2782. switch (h->slice_type) {
  2783. case AV_PICTURE_TYPE_P: return 0;
  2784. case AV_PICTURE_TYPE_B: return 1;
  2785. case AV_PICTURE_TYPE_I: return 2;
  2786. case AV_PICTURE_TYPE_SP: return 3;
  2787. case AV_PICTURE_TYPE_SI: return 4;
  2788. default: return -1;
  2789. }
  2790. }
  2791. static av_always_inline void fill_filter_caches_inter(H264Context *h, MpegEncContext * const s, int mb_type, int top_xy,
  2792. int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
  2793. {
  2794. int b_stride = h->b_stride;
  2795. int16_t (*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
  2796. int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
  2797. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  2798. if(USES_LIST(top_type, list)){
  2799. const int b_xy= h->mb2b_xy[top_xy] + 3*b_stride;
  2800. const int b8_xy= 4*top_xy + 2;
  2801. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2802. AV_COPY128(mv_dst - 1*8, s->current_picture.f.motion_val[list][b_xy + 0]);
  2803. ref_cache[0 - 1*8]=
  2804. ref_cache[1 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 0]];
  2805. ref_cache[2 - 1*8]=
  2806. ref_cache[3 - 1*8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 1]];
  2807. }else{
  2808. AV_ZERO128(mv_dst - 1*8);
  2809. AV_WN32A(&ref_cache[0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2810. }
  2811. if(!IS_INTERLACED(mb_type^left_type[LTOP])){
  2812. if(USES_LIST(left_type[LTOP], list)){
  2813. const int b_xy= h->mb2b_xy[left_xy[LTOP]] + 3;
  2814. const int b8_xy= 4*left_xy[LTOP] + 1;
  2815. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[LTOP]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2816. AV_COPY32(mv_dst - 1 + 0, s->current_picture.f.motion_val[list][b_xy + b_stride*0]);
  2817. AV_COPY32(mv_dst - 1 + 8, s->current_picture.f.motion_val[list][b_xy + b_stride*1]);
  2818. AV_COPY32(mv_dst - 1 + 16, s->current_picture.f.motion_val[list][b_xy + b_stride*2]);
  2819. AV_COPY32(mv_dst - 1 + 24, s->current_picture.f.motion_val[list][b_xy + b_stride*3]);
  2820. ref_cache[-1 + 0]=
  2821. ref_cache[-1 + 8]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*0]];
  2822. ref_cache[-1 + 16]=
  2823. ref_cache[-1 + 24]= ref2frm[list][s->current_picture.f.ref_index[list][b8_xy + 2*1]];
  2824. }else{
  2825. AV_ZERO32(mv_dst - 1 + 0);
  2826. AV_ZERO32(mv_dst - 1 + 8);
  2827. AV_ZERO32(mv_dst - 1 +16);
  2828. AV_ZERO32(mv_dst - 1 +24);
  2829. ref_cache[-1 + 0]=
  2830. ref_cache[-1 + 8]=
  2831. ref_cache[-1 + 16]=
  2832. ref_cache[-1 + 24]= LIST_NOT_USED;
  2833. }
  2834. }
  2835. }
  2836. if(!USES_LIST(mb_type, list)){
  2837. fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0,0), 4);
  2838. AV_WN32A(&ref_cache[0*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2839. AV_WN32A(&ref_cache[1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2840. AV_WN32A(&ref_cache[2*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2841. AV_WN32A(&ref_cache[3*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  2842. return;
  2843. }
  2844. {
  2845. int8_t *ref = &s->current_picture.f.ref_index[list][4*mb_xy];
  2846. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  2847. uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
  2848. uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]],ref2frm[list][ref[3]])&0x00FF00FF)*0x0101;
  2849. AV_WN32A(&ref_cache[0*8], ref01);
  2850. AV_WN32A(&ref_cache[1*8], ref01);
  2851. AV_WN32A(&ref_cache[2*8], ref23);
  2852. AV_WN32A(&ref_cache[3*8], ref23);
  2853. }
  2854. {
  2855. int16_t (*mv_src)[2] = &s->current_picture.f.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  2856. AV_COPY128(mv_dst + 8*0, mv_src + 0*b_stride);
  2857. AV_COPY128(mv_dst + 8*1, mv_src + 1*b_stride);
  2858. AV_COPY128(mv_dst + 8*2, mv_src + 2*b_stride);
  2859. AV_COPY128(mv_dst + 8*3, mv_src + 3*b_stride);
  2860. }
  2861. }
  2862. /**
  2863. *
  2864. * @return non zero if the loop filter can be skiped
  2865. */
  2866. static int fill_filter_caches(H264Context *h, int mb_type){
  2867. MpegEncContext * const s = &h->s;
  2868. const int mb_xy= h->mb_xy;
  2869. int top_xy, left_xy[LEFT_MBS];
  2870. int top_type, left_type[LEFT_MBS];
  2871. uint8_t *nnz;
  2872. uint8_t *nnz_cache;
  2873. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  2874. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  2875. * stuff, I can't imagine that these complex rules are worth it. */
  2876. left_xy[LBOT] = left_xy[LTOP] = mb_xy-1;
  2877. if(FRAME_MBAFF){
  2878. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.f.mb_type[mb_xy - 1]);
  2879. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  2880. if(s->mb_y&1){
  2881. if (left_mb_field_flag != curr_mb_field_flag) {
  2882. left_xy[LTOP] -= s->mb_stride;
  2883. }
  2884. }else{
  2885. if(curr_mb_field_flag){
  2886. top_xy += s->mb_stride & (((s->current_picture.f.mb_type[top_xy] >> 7) & 1) - 1);
  2887. }
  2888. if (left_mb_field_flag != curr_mb_field_flag) {
  2889. left_xy[LBOT] += s->mb_stride;
  2890. }
  2891. }
  2892. }
  2893. h->top_mb_xy = top_xy;
  2894. h->left_mb_xy[LTOP] = left_xy[LTOP];
  2895. h->left_mb_xy[LBOT] = left_xy[LBOT];
  2896. {
  2897. //for sufficiently low qp, filtering wouldn't do anything
  2898. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  2899. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  2900. int qp = s->current_picture.f.qscale_table[mb_xy];
  2901. if(qp <= qp_thresh
  2902. && (left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh)
  2903. && (top_xy < 0 || ((qp + s->current_picture.f.qscale_table[top_xy ] + 1) >> 1) <= qp_thresh)) {
  2904. if(!FRAME_MBAFF)
  2905. return 1;
  2906. if ((left_xy[LTOP] < 0 || ((qp + s->current_picture.f.qscale_table[left_xy[LBOT] ] + 1) >> 1) <= qp_thresh) &&
  2907. (top_xy < s->mb_stride || ((qp + s->current_picture.f.qscale_table[top_xy - s->mb_stride] + 1) >> 1) <= qp_thresh))
  2908. return 1;
  2909. }
  2910. }
  2911. top_type = s->current_picture.f.mb_type[top_xy];
  2912. left_type[LTOP] = s->current_picture.f.mb_type[left_xy[LTOP]];
  2913. left_type[LBOT] = s->current_picture.f.mb_type[left_xy[LBOT]];
  2914. if(h->deblocking_filter == 2){
  2915. if(h->slice_table[top_xy ] != h->slice_num) top_type= 0;
  2916. if(h->slice_table[left_xy[LBOT]] != h->slice_num) left_type[LTOP]= left_type[LBOT]= 0;
  2917. }else{
  2918. if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0;
  2919. if(h->slice_table[left_xy[LBOT]] == 0xFFFF) left_type[LTOP]= left_type[LBOT] =0;
  2920. }
  2921. h->top_type = top_type;
  2922. h->left_type[LTOP]= left_type[LTOP];
  2923. h->left_type[LBOT]= left_type[LBOT];
  2924. if(IS_INTRA(mb_type))
  2925. return 0;
  2926. fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 0);
  2927. if(h->list_count == 2)
  2928. fill_filter_caches_inter(h, s, mb_type, top_xy, left_xy, top_type, left_type, mb_xy, 1);
  2929. nnz = h->non_zero_count[mb_xy];
  2930. nnz_cache = h->non_zero_count_cache;
  2931. AV_COPY32(&nnz_cache[4+8*1], &nnz[ 0]);
  2932. AV_COPY32(&nnz_cache[4+8*2], &nnz[ 4]);
  2933. AV_COPY32(&nnz_cache[4+8*3], &nnz[ 8]);
  2934. AV_COPY32(&nnz_cache[4+8*4], &nnz[12]);
  2935. h->cbp= h->cbp_table[mb_xy];
  2936. if(top_type){
  2937. nnz = h->non_zero_count[top_xy];
  2938. AV_COPY32(&nnz_cache[4+8*0], &nnz[3*4]);
  2939. }
  2940. if(left_type[LTOP]){
  2941. nnz = h->non_zero_count[left_xy[LTOP]];
  2942. nnz_cache[3+8*1]= nnz[3+0*4];
  2943. nnz_cache[3+8*2]= nnz[3+1*4];
  2944. nnz_cache[3+8*3]= nnz[3+2*4];
  2945. nnz_cache[3+8*4]= nnz[3+3*4];
  2946. }
  2947. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  2948. if(!CABAC && h->pps.transform_8x8_mode){
  2949. if(IS_8x8DCT(top_type)){
  2950. nnz_cache[4+8*0]=
  2951. nnz_cache[5+8*0]= (h->cbp_table[top_xy] & 0x4000) >> 12;
  2952. nnz_cache[6+8*0]=
  2953. nnz_cache[7+8*0]= (h->cbp_table[top_xy] & 0x8000) >> 12;
  2954. }
  2955. if(IS_8x8DCT(left_type[LTOP])){
  2956. nnz_cache[3+8*1]=
  2957. nnz_cache[3+8*2]= (h->cbp_table[left_xy[LTOP]]&0x2000) >> 12; //FIXME check MBAFF
  2958. }
  2959. if(IS_8x8DCT(left_type[LBOT])){
  2960. nnz_cache[3+8*3]=
  2961. nnz_cache[3+8*4]= (h->cbp_table[left_xy[LBOT]]&0x8000) >> 12; //FIXME check MBAFF
  2962. }
  2963. if(IS_8x8DCT(mb_type)){
  2964. nnz_cache[scan8[0 ]]= nnz_cache[scan8[1 ]]=
  2965. nnz_cache[scan8[2 ]]= nnz_cache[scan8[3 ]]= (h->cbp & 0x1000) >> 12;
  2966. nnz_cache[scan8[0+ 4]]= nnz_cache[scan8[1+ 4]]=
  2967. nnz_cache[scan8[2+ 4]]= nnz_cache[scan8[3+ 4]]= (h->cbp & 0x2000) >> 12;
  2968. nnz_cache[scan8[0+ 8]]= nnz_cache[scan8[1+ 8]]=
  2969. nnz_cache[scan8[2+ 8]]= nnz_cache[scan8[3+ 8]]= (h->cbp & 0x4000) >> 12;
  2970. nnz_cache[scan8[0+12]]= nnz_cache[scan8[1+12]]=
  2971. nnz_cache[scan8[2+12]]= nnz_cache[scan8[3+12]]= (h->cbp & 0x8000) >> 12;
  2972. }
  2973. }
  2974. return 0;
  2975. }
  2976. static void loop_filter(H264Context *h, int start_x, int end_x){
  2977. MpegEncContext * const s = &h->s;
  2978. uint8_t *dest_y, *dest_cb, *dest_cr;
  2979. int linesize, uvlinesize, mb_x, mb_y;
  2980. const int end_mb_y= s->mb_y + FRAME_MBAFF;
  2981. const int old_slice_type= h->slice_type;
  2982. const int pixel_shift = h->pixel_shift;
  2983. const int block_h = 16>>s->chroma_y_shift;
  2984. if(h->deblocking_filter) {
  2985. for(mb_x= start_x; mb_x<end_x; mb_x++){
  2986. for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
  2987. int mb_xy, mb_type;
  2988. mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
  2989. h->slice_num= h->slice_table[mb_xy];
  2990. mb_type = s->current_picture.f.mb_type[mb_xy];
  2991. h->list_count= h->list_counts[mb_xy];
  2992. if(FRAME_MBAFF)
  2993. h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  2994. s->mb_x= mb_x;
  2995. s->mb_y= mb_y;
  2996. dest_y = s->current_picture.f.data[0] + ((mb_x << pixel_shift) + mb_y * s->linesize ) * 16;
  2997. dest_cb = s->current_picture.f.data[1] + (mb_x << pixel_shift)*(8<<CHROMA444) + mb_y * s->uvlinesize * block_h;
  2998. dest_cr = s->current_picture.f.data[2] + (mb_x << pixel_shift)*(8<<CHROMA444) + mb_y * s->uvlinesize * block_h;
  2999. //FIXME simplify above
  3000. if (MB_FIELD) {
  3001. linesize = h->mb_linesize = s->linesize * 2;
  3002. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  3003. if(mb_y&1){ //FIXME move out of this function?
  3004. dest_y -= s->linesize*15;
  3005. dest_cb-= s->uvlinesize*(block_h-1);
  3006. dest_cr-= s->uvlinesize*(block_h-1);
  3007. }
  3008. } else {
  3009. linesize = h->mb_linesize = s->linesize;
  3010. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  3011. }
  3012. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
  3013. if(fill_filter_caches(h, mb_type))
  3014. continue;
  3015. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.f.qscale_table[mb_xy]);
  3016. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.f.qscale_table[mb_xy]);
  3017. if (FRAME_MBAFF) {
  3018. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3019. } else {
  3020. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  3021. }
  3022. }
  3023. }
  3024. }
  3025. h->slice_type= old_slice_type;
  3026. s->mb_x= end_x;
  3027. s->mb_y= end_mb_y - FRAME_MBAFF;
  3028. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  3029. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  3030. }
  3031. static void predict_field_decoding_flag(H264Context *h){
  3032. MpegEncContext * const s = &h->s;
  3033. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3034. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  3035. ? s->current_picture.f.mb_type[mb_xy - 1]
  3036. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  3037. ? s->current_picture.f.mb_type[mb_xy - s->mb_stride]
  3038. : 0;
  3039. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  3040. }
  3041. /**
  3042. * Draw edges and report progress for the last MB row.
  3043. */
  3044. static void decode_finish_row(H264Context *h){
  3045. MpegEncContext * const s = &h->s;
  3046. int top = 16*(s->mb_y >> FIELD_PICTURE);
  3047. int height = 16 << FRAME_MBAFF;
  3048. int deblock_border = (16 + 4) << FRAME_MBAFF;
  3049. int pic_height = 16*s->mb_height >> FIELD_PICTURE;
  3050. if (h->deblocking_filter) {
  3051. if((top + height) >= pic_height)
  3052. height += deblock_border;
  3053. top -= deblock_border;
  3054. }
  3055. if (top >= pic_height || (top + height) < h->emu_edge_height)
  3056. return;
  3057. height = FFMIN(height, pic_height - top);
  3058. if (top < h->emu_edge_height) {
  3059. height = top+height;
  3060. top = 0;
  3061. }
  3062. ff_draw_horiz_band(s, top, height);
  3063. if (s->dropable) return;
  3064. ff_thread_report_progress((AVFrame*)s->current_picture_ptr, top + height - 1,
  3065. s->picture_structure==PICT_BOTTOM_FIELD);
  3066. }
  3067. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  3068. H264Context *h = *(void**)arg;
  3069. MpegEncContext * const s = &h->s;
  3070. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  3071. int lf_x_start = s->mb_x;
  3072. s->mb_skip_run= -1;
  3073. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  3074. (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
  3075. if( h->pps.cabac ) {
  3076. /* realign */
  3077. align_get_bits( &s->gb );
  3078. /* init cabac */
  3079. ff_init_cabac_states( &h->cabac);
  3080. ff_init_cabac_decoder( &h->cabac,
  3081. s->gb.buffer + get_bits_count(&s->gb)/8,
  3082. (get_bits_left(&s->gb) + 7)/8);
  3083. ff_h264_init_cabac_states(h);
  3084. for(;;){
  3085. //START_TIMER
  3086. int ret = ff_h264_decode_mb_cabac(h);
  3087. int eos;
  3088. //STOP_TIMER("decode_mb_cabac")
  3089. if(ret>=0) ff_h264_hl_decode_mb(h);
  3090. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  3091. s->mb_y++;
  3092. ret = ff_h264_decode_mb_cabac(h);
  3093. if(ret>=0) ff_h264_hl_decode_mb(h);
  3094. s->mb_y--;
  3095. }
  3096. eos = get_cabac_terminate( &h->cabac );
  3097. if((s->workaround_bugs & FF_BUG_TRUNCATED) && h->cabac.bytestream > h->cabac.bytestream_end + 2){
  3098. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3099. if (s->mb_x >= lf_x_start) loop_filter(h, lf_x_start, s->mb_x + 1);
  3100. return 0;
  3101. }
  3102. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  3103. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  3104. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  3105. return -1;
  3106. }
  3107. if( ++s->mb_x >= s->mb_width ) {
  3108. loop_filter(h, lf_x_start, s->mb_x);
  3109. s->mb_x = lf_x_start = 0;
  3110. decode_finish_row(h);
  3111. ++s->mb_y;
  3112. if(FIELD_OR_MBAFF_PICTURE) {
  3113. ++s->mb_y;
  3114. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  3115. predict_field_decoding_flag(h);
  3116. }
  3117. }
  3118. if( eos || s->mb_y >= s->mb_height ) {
  3119. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3120. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3121. if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
  3122. return 0;
  3123. }
  3124. }
  3125. } else {
  3126. for(;;){
  3127. int ret = ff_h264_decode_mb_cavlc(h);
  3128. if(ret>=0) ff_h264_hl_decode_mb(h);
  3129. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  3130. s->mb_y++;
  3131. ret = ff_h264_decode_mb_cavlc(h);
  3132. if(ret>=0) ff_h264_hl_decode_mb(h);
  3133. s->mb_y--;
  3134. }
  3135. if(ret<0){
  3136. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  3137. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  3138. return -1;
  3139. }
  3140. if(++s->mb_x >= s->mb_width){
  3141. loop_filter(h, lf_x_start, s->mb_x);
  3142. s->mb_x = lf_x_start = 0;
  3143. decode_finish_row(h);
  3144. ++s->mb_y;
  3145. if(FIELD_OR_MBAFF_PICTURE) {
  3146. ++s->mb_y;
  3147. if(FRAME_MBAFF && s->mb_y < s->mb_height)
  3148. predict_field_decoding_flag(h);
  3149. }
  3150. if(s->mb_y >= s->mb_height){
  3151. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3152. if( get_bits_count(&s->gb) == s->gb.size_in_bits
  3153. || get_bits_count(&s->gb) < s->gb.size_in_bits && s->avctx->error_recognition < FF_ER_AGGRESSIVE) {
  3154. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3155. return 0;
  3156. }else{
  3157. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3158. return -1;
  3159. }
  3160. }
  3161. }
  3162. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  3163. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  3164. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  3165. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  3166. if (s->mb_x > lf_x_start) loop_filter(h, lf_x_start, s->mb_x);
  3167. return 0;
  3168. }else{
  3169. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  3170. return -1;
  3171. }
  3172. }
  3173. }
  3174. }
  3175. }
  3176. /**
  3177. * Call decode_slice() for each context.
  3178. *
  3179. * @param h h264 master context
  3180. * @param context_count number of contexts to execute
  3181. */
  3182. static int execute_decode_slices(H264Context *h, int context_count){
  3183. MpegEncContext * const s = &h->s;
  3184. AVCodecContext * const avctx= s->avctx;
  3185. H264Context *hx;
  3186. int i;
  3187. if (s->avctx->hwaccel || s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3188. return 0;
  3189. if(context_count == 1) {
  3190. return decode_slice(avctx, &h);
  3191. } else {
  3192. for(i = 1; i < context_count; i++) {
  3193. hx = h->thread_context[i];
  3194. hx->s.error_recognition = avctx->error_recognition;
  3195. hx->s.error_count = 0;
  3196. hx->x264_build= h->x264_build;
  3197. }
  3198. avctx->execute(avctx, (void *)decode_slice,
  3199. h->thread_context, NULL, context_count, sizeof(void*));
  3200. /* pull back stuff from slices to master context */
  3201. hx = h->thread_context[context_count - 1];
  3202. s->mb_x = hx->s.mb_x;
  3203. s->mb_y = hx->s.mb_y;
  3204. s->dropable = hx->s.dropable;
  3205. s->picture_structure = hx->s.picture_structure;
  3206. for(i = 1; i < context_count; i++)
  3207. h->s.error_count += h->thread_context[i]->s.error_count;
  3208. }
  3209. return 0;
  3210. }
  3211. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  3212. MpegEncContext * const s = &h->s;
  3213. AVCodecContext * const avctx= s->avctx;
  3214. H264Context *hx; ///< thread context
  3215. int buf_index;
  3216. int context_count;
  3217. int next_avc;
  3218. int pass = !(avctx->active_thread_type & FF_THREAD_FRAME);
  3219. int nals_needed=0; ///< number of NALs that need decoding before the next frame thread starts
  3220. int nal_index;
  3221. h->max_contexts = (HAVE_THREADS && (s->avctx->active_thread_type&FF_THREAD_SLICE)) ? avctx->thread_count : 1;
  3222. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  3223. h->current_slice = 0;
  3224. if (!s->first_field)
  3225. s->current_picture_ptr= NULL;
  3226. ff_h264_reset_sei(h);
  3227. }
  3228. for(;pass <= 1;pass++){
  3229. buf_index = 0;
  3230. context_count = 0;
  3231. next_avc = h->is_avc ? 0 : buf_size;
  3232. nal_index = 0;
  3233. for(;;){
  3234. int consumed;
  3235. int dst_length;
  3236. int bit_length;
  3237. const uint8_t *ptr;
  3238. int i, nalsize = 0;
  3239. int err;
  3240. if(buf_index >= next_avc) {
  3241. if(buf_index >= buf_size) break;
  3242. nalsize = 0;
  3243. for(i = 0; i < h->nal_length_size; i++)
  3244. nalsize = (nalsize << 8) | buf[buf_index++];
  3245. if(nalsize <= 0 || nalsize > buf_size - buf_index){
  3246. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  3247. break;
  3248. }
  3249. next_avc= buf_index + nalsize;
  3250. } else {
  3251. // start code prefix search
  3252. for(; buf_index + 3 < next_avc; buf_index++){
  3253. // This should always succeed in the first iteration.
  3254. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  3255. break;
  3256. }
  3257. if(buf_index+3 >= buf_size) break;
  3258. buf_index+=3;
  3259. if(buf_index >= next_avc) continue;
  3260. }
  3261. hx = h->thread_context[context_count];
  3262. ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
  3263. if (ptr==NULL || dst_length < 0){
  3264. return -1;
  3265. }
  3266. i= buf_index + consumed;
  3267. if((s->workaround_bugs & FF_BUG_AUTODETECT) && i+3<next_avc &&
  3268. buf[i]==0x00 && buf[i+1]==0x00 && buf[i+2]==0x01 && buf[i+3]==0xE0)
  3269. s->workaround_bugs |= FF_BUG_TRUNCATED;
  3270. if(!(s->workaround_bugs & FF_BUG_TRUNCATED)){
  3271. while(dst_length > 0 && ptr[dst_length - 1] == 0)
  3272. dst_length--;
  3273. }
  3274. bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
  3275. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  3276. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d/%d at %d/%d length %d\n", hx->nal_unit_type, hx->nal_ref_idc, buf_index, buf_size, dst_length);
  3277. }
  3278. if (h->is_avc && (nalsize != consumed) && nalsize){
  3279. av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  3280. }
  3281. buf_index += consumed;
  3282. nal_index++;
  3283. if(pass == 0) {
  3284. // packets can sometimes contain multiple PPS/SPS
  3285. // e.g. two PAFF field pictures in one packet, or a demuxer which splits NALs strangely
  3286. // if so, when frame threading we can't start the next thread until we've read all of them
  3287. switch (hx->nal_unit_type) {
  3288. case NAL_SPS:
  3289. case NAL_PPS:
  3290. nals_needed = nal_index;
  3291. break;
  3292. case NAL_IDR_SLICE:
  3293. case NAL_SLICE:
  3294. init_get_bits(&hx->s.gb, ptr, bit_length);
  3295. if (!get_ue_golomb(&hx->s.gb))
  3296. nals_needed = nal_index;
  3297. }
  3298. continue;
  3299. }
  3300. //FIXME do not discard SEI id
  3301. if(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0)
  3302. continue;
  3303. again:
  3304. err = 0;
  3305. switch(hx->nal_unit_type){
  3306. case NAL_IDR_SLICE:
  3307. if (h->nal_unit_type != NAL_IDR_SLICE) {
  3308. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  3309. return -1;
  3310. }
  3311. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  3312. case NAL_SLICE:
  3313. init_get_bits(&hx->s.gb, ptr, bit_length);
  3314. hx->intra_gb_ptr=
  3315. hx->inter_gb_ptr= &hx->s.gb;
  3316. hx->s.data_partitioning = 0;
  3317. if((err = decode_slice_header(hx, h)))
  3318. break;
  3319. if (h->sei_recovery_frame_cnt >= 0 && h->recovery_frame < 0) {
  3320. h->recovery_frame = (h->frame_num + h->sei_recovery_frame_cnt) %
  3321. (1 << h->sps.log2_max_frame_num);
  3322. }
  3323. s->current_picture_ptr->f.key_frame |=
  3324. (hx->nal_unit_type == NAL_IDR_SLICE);
  3325. if (h->recovery_frame == h->frame_num) {
  3326. h->sync |= 1;
  3327. h->recovery_frame = -1;
  3328. }
  3329. h->sync |= !!s->current_picture_ptr->f.key_frame;
  3330. h->sync |= 3*!!(s->flags2 & CODEC_FLAG2_SHOW_ALL);
  3331. s->current_picture_ptr->sync = h->sync;
  3332. if (h->current_slice == 1) {
  3333. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)) {
  3334. decode_postinit(h, nal_index >= nals_needed);
  3335. }
  3336. if (s->avctx->hwaccel && s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
  3337. return -1;
  3338. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3339. ff_vdpau_h264_picture_start(s);
  3340. }
  3341. if(hx->redundant_pic_count==0
  3342. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  3343. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
  3344. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
  3345. && avctx->skip_frame < AVDISCARD_ALL){
  3346. if(avctx->hwaccel) {
  3347. if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
  3348. return -1;
  3349. }else
  3350. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3351. static const uint8_t start_code[] = {0x00, 0x00, 0x01};
  3352. ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
  3353. ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
  3354. }else
  3355. context_count++;
  3356. }
  3357. break;
  3358. case NAL_DPA:
  3359. init_get_bits(&hx->s.gb, ptr, bit_length);
  3360. hx->intra_gb_ptr=
  3361. hx->inter_gb_ptr= NULL;
  3362. if ((err = decode_slice_header(hx, h)) < 0)
  3363. break;
  3364. hx->s.data_partitioning = 1;
  3365. break;
  3366. case NAL_DPB:
  3367. init_get_bits(&hx->intra_gb, ptr, bit_length);
  3368. hx->intra_gb_ptr= &hx->intra_gb;
  3369. break;
  3370. case NAL_DPC:
  3371. init_get_bits(&hx->inter_gb, ptr, bit_length);
  3372. hx->inter_gb_ptr= &hx->inter_gb;
  3373. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  3374. && s->context_initialized
  3375. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  3376. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=AV_PICTURE_TYPE_B)
  3377. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==AV_PICTURE_TYPE_I)
  3378. && avctx->skip_frame < AVDISCARD_ALL)
  3379. context_count++;
  3380. break;
  3381. case NAL_SEI:
  3382. init_get_bits(&s->gb, ptr, bit_length);
  3383. ff_h264_decode_sei(h);
  3384. break;
  3385. case NAL_SPS:
  3386. init_get_bits(&s->gb, ptr, bit_length);
  3387. if(ff_h264_decode_seq_parameter_set(h) < 0 && h->is_avc && (nalsize != consumed) && nalsize){
  3388. av_log(h->s.avctx, AV_LOG_DEBUG, "SPS decoding failure, trying alternative mode\n");
  3389. init_get_bits(&s->gb, &buf[buf_index + 1 - consumed], 8*nalsize);
  3390. ff_h264_decode_seq_parameter_set(h);
  3391. }
  3392. if (s->flags& CODEC_FLAG_LOW_DELAY ||
  3393. (h->sps.bitstream_restriction_flag && !h->sps.num_reorder_frames))
  3394. s->low_delay=1;
  3395. if(avctx->has_b_frames < 2)
  3396. avctx->has_b_frames= !s->low_delay;
  3397. break;
  3398. case NAL_PPS:
  3399. init_get_bits(&s->gb, ptr, bit_length);
  3400. ff_h264_decode_picture_parameter_set(h, bit_length);
  3401. break;
  3402. case NAL_AUD:
  3403. case NAL_END_SEQUENCE:
  3404. case NAL_END_STREAM:
  3405. case NAL_FILLER_DATA:
  3406. case NAL_SPS_EXT:
  3407. case NAL_AUXILIARY_SLICE:
  3408. break;
  3409. default:
  3410. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
  3411. }
  3412. if(context_count == h->max_contexts) {
  3413. execute_decode_slices(h, context_count);
  3414. context_count = 0;
  3415. }
  3416. if (err < 0)
  3417. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  3418. else if(err == 1) {
  3419. /* Slice could not be decoded in parallel mode, copy down
  3420. * NAL unit stuff to context 0 and restart. Note that
  3421. * rbsp_buffer is not transferred, but since we no longer
  3422. * run in parallel mode this should not be an issue. */
  3423. h->nal_unit_type = hx->nal_unit_type;
  3424. h->nal_ref_idc = hx->nal_ref_idc;
  3425. hx = h;
  3426. goto again;
  3427. }
  3428. }
  3429. }
  3430. if(context_count)
  3431. execute_decode_slices(h, context_count);
  3432. return buf_index;
  3433. }
  3434. /**
  3435. * returns the number of bytes consumed for building the current frame
  3436. */
  3437. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  3438. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  3439. if(pos+10>buf_size) pos=buf_size; // oops ;)
  3440. return pos;
  3441. }
  3442. static int decode_frame(AVCodecContext *avctx,
  3443. void *data, int *data_size,
  3444. AVPacket *avpkt)
  3445. {
  3446. const uint8_t *buf = avpkt->data;
  3447. int buf_size = avpkt->size;
  3448. H264Context *h = avctx->priv_data;
  3449. MpegEncContext *s = &h->s;
  3450. AVFrame *pict = data;
  3451. int buf_index;
  3452. s->flags= avctx->flags;
  3453. s->flags2= avctx->flags2;
  3454. /* end of stream, output what is still in the buffers */
  3455. out:
  3456. if (buf_size == 0) {
  3457. Picture *out;
  3458. int i, out_idx;
  3459. s->current_picture_ptr = NULL;
  3460. //FIXME factorize this with the output code below
  3461. out = h->delayed_pic[0];
  3462. out_idx = 0;
  3463. for (i = 1; h->delayed_pic[i] && !h->delayed_pic[i]->f.key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  3464. if(h->delayed_pic[i]->poc < out->poc){
  3465. out = h->delayed_pic[i];
  3466. out_idx = i;
  3467. }
  3468. for(i=out_idx; h->delayed_pic[i]; i++)
  3469. h->delayed_pic[i] = h->delayed_pic[i+1];
  3470. if(out){
  3471. *data_size = sizeof(AVFrame);
  3472. *pict= *(AVFrame*)out;
  3473. }
  3474. return 0;
  3475. }
  3476. if(h->is_avc && buf_size >= 9 && AV_RB32(buf)==0x0164001F && buf[5] && buf[8]==0x67)
  3477. return ff_h264_decode_extradata(h, buf, buf_size);
  3478. buf_index=decode_nal_units(h, buf, buf_size);
  3479. if(buf_index < 0)
  3480. return -1;
  3481. if (!s->current_picture_ptr && h->nal_unit_type == NAL_END_SEQUENCE) {
  3482. buf_size = 0;
  3483. goto out;
  3484. }
  3485. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  3486. if (avctx->skip_frame >= AVDISCARD_NONREF)
  3487. return 0;
  3488. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  3489. return -1;
  3490. }
  3491. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  3492. if(s->flags2 & CODEC_FLAG2_CHUNKS) decode_postinit(h, 1);
  3493. field_end(h, 0);
  3494. *data_size = 0; /* Wait for second field. */
  3495. if (h->next_output_pic && h->next_output_pic->sync) {
  3496. if(h->sync>1 || h->next_output_pic->f.pict_type != AV_PICTURE_TYPE_B){
  3497. *data_size = sizeof(AVFrame);
  3498. *pict = *(AVFrame*)h->next_output_pic;
  3499. }
  3500. }
  3501. }
  3502. assert(pict->data[0] || !*data_size);
  3503. ff_print_debug_info(s, pict);
  3504. //printf("out %d\n", (int)pict->data[0]);
  3505. return get_consumed_bytes(s, buf_index, buf_size);
  3506. }
  3507. #if 0
  3508. static inline void fill_mb_avail(H264Context *h){
  3509. MpegEncContext * const s = &h->s;
  3510. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3511. if(s->mb_y){
  3512. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  3513. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  3514. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  3515. }else{
  3516. h->mb_avail[0]=
  3517. h->mb_avail[1]=
  3518. h->mb_avail[2]= 0;
  3519. }
  3520. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  3521. h->mb_avail[4]= 1; //FIXME move out
  3522. h->mb_avail[5]= 0; //FIXME move out
  3523. }
  3524. #endif
  3525. #ifdef TEST
  3526. #undef printf
  3527. #undef random
  3528. #define COUNT 8000
  3529. #define SIZE (COUNT*40)
  3530. extern AVCodec ff_h264_decoder;
  3531. int main(void){
  3532. int i;
  3533. uint8_t temp[SIZE];
  3534. PutBitContext pb;
  3535. GetBitContext gb;
  3536. // int int_temp[10000];
  3537. DSPContext dsp;
  3538. AVCodecContext avctx;
  3539. avcodec_get_context_defaults3(&avctx, &ff_h264_decoder);
  3540. dsputil_init(&dsp, &avctx);
  3541. init_put_bits(&pb, temp, SIZE);
  3542. printf("testing unsigned exp golomb\n");
  3543. for(i=0; i<COUNT; i++){
  3544. START_TIMER
  3545. set_ue_golomb(&pb, i);
  3546. STOP_TIMER("set_ue_golomb");
  3547. }
  3548. flush_put_bits(&pb);
  3549. init_get_bits(&gb, temp, 8*SIZE);
  3550. for(i=0; i<COUNT; i++){
  3551. int j, s;
  3552. s= show_bits(&gb, 24);
  3553. START_TIMER
  3554. j= get_ue_golomb(&gb);
  3555. if(j != i){
  3556. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  3557. // return -1;
  3558. }
  3559. STOP_TIMER("get_ue_golomb");
  3560. }
  3561. init_put_bits(&pb, temp, SIZE);
  3562. printf("testing signed exp golomb\n");
  3563. for(i=0; i<COUNT; i++){
  3564. START_TIMER
  3565. set_se_golomb(&pb, i - COUNT/2);
  3566. STOP_TIMER("set_se_golomb");
  3567. }
  3568. flush_put_bits(&pb);
  3569. init_get_bits(&gb, temp, 8*SIZE);
  3570. for(i=0; i<COUNT; i++){
  3571. int j, s;
  3572. s= show_bits(&gb, 24);
  3573. START_TIMER
  3574. j= get_se_golomb(&gb);
  3575. if(j != i - COUNT/2){
  3576. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  3577. // return -1;
  3578. }
  3579. STOP_TIMER("get_se_golomb");
  3580. }
  3581. printf("Testing RBSP\n");
  3582. return 0;
  3583. }
  3584. #endif /* TEST */
  3585. av_cold void ff_h264_free_context(H264Context *h)
  3586. {
  3587. int i;
  3588. free_tables(h, 1); //FIXME cleanup init stuff perhaps
  3589. for(i = 0; i < MAX_SPS_COUNT; i++)
  3590. av_freep(h->sps_buffers + i);
  3591. for(i = 0; i < MAX_PPS_COUNT; i++)
  3592. av_freep(h->pps_buffers + i);
  3593. }
  3594. av_cold int ff_h264_decode_end(AVCodecContext *avctx)
  3595. {
  3596. H264Context *h = avctx->priv_data;
  3597. MpegEncContext *s = &h->s;
  3598. ff_h264_free_context(h);
  3599. MPV_common_end(s);
  3600. // memset(h, 0, sizeof(H264Context));
  3601. return 0;
  3602. }
  3603. static const AVProfile profiles[] = {
  3604. { FF_PROFILE_H264_BASELINE, "Baseline" },
  3605. { FF_PROFILE_H264_CONSTRAINED_BASELINE, "Constrained Baseline" },
  3606. { FF_PROFILE_H264_MAIN, "Main" },
  3607. { FF_PROFILE_H264_EXTENDED, "Extended" },
  3608. { FF_PROFILE_H264_HIGH, "High" },
  3609. { FF_PROFILE_H264_HIGH_10, "High 10" },
  3610. { FF_PROFILE_H264_HIGH_10_INTRA, "High 10 Intra" },
  3611. { FF_PROFILE_H264_HIGH_422, "High 4:2:2" },
  3612. { FF_PROFILE_H264_HIGH_422_INTRA, "High 4:2:2 Intra" },
  3613. { FF_PROFILE_H264_HIGH_444, "High 4:4:4" },
  3614. { FF_PROFILE_H264_HIGH_444_PREDICTIVE, "High 4:4:4 Predictive" },
  3615. { FF_PROFILE_H264_HIGH_444_INTRA, "High 4:4:4 Intra" },
  3616. { FF_PROFILE_H264_CAVLC_444, "CAVLC 4:4:4" },
  3617. { FF_PROFILE_UNKNOWN },
  3618. };
  3619. AVCodec ff_h264_decoder = {
  3620. .name = "h264",
  3621. .type = AVMEDIA_TYPE_VIDEO,
  3622. .id = CODEC_ID_H264,
  3623. .priv_data_size = sizeof(H264Context),
  3624. .init = ff_h264_decode_init,
  3625. .close = ff_h264_decode_end,
  3626. .decode = decode_frame,
  3627. .capabilities = /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY |
  3628. CODEC_CAP_SLICE_THREADS | CODEC_CAP_FRAME_THREADS,
  3629. .flush= flush_dpb,
  3630. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  3631. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  3632. .update_thread_context = ONLY_IF_THREADS_ENABLED(decode_update_thread_context),
  3633. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  3634. };
  3635. #if CONFIG_H264_VDPAU_DECODER
  3636. AVCodec ff_h264_vdpau_decoder = {
  3637. .name = "h264_vdpau",
  3638. .type = AVMEDIA_TYPE_VIDEO,
  3639. .id = CODEC_ID_H264,
  3640. .priv_data_size = sizeof(H264Context),
  3641. .init = ff_h264_decode_init,
  3642. .close = ff_h264_decode_end,
  3643. .decode = decode_frame,
  3644. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3645. .flush= flush_dpb,
  3646. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
  3647. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
  3648. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  3649. };
  3650. #endif