|
- /*
- * G.729, G729 Annex D postfilter
- * Copyright (c) 2008 Vladimir Voroshilov
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- #include <inttypes.h>
- #include <limits.h>
-
- #include "avcodec.h"
- #include "g729.h"
- #include "acelp_pitch_delay.h"
- #include "g729postfilter.h"
- #include "celp_math.h"
- #include "acelp_filters.h"
- #include "acelp_vectors.h"
- #include "celp_filters.h"
-
- #define FRAC_BITS 15
- #include "mathops.h"
-
- /**
- * short interpolation filter (of length 33, according to spec)
- * for computing signal with non-integer delay
- */
- static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = {
- 0, 31650, 28469, 23705, 18050, 12266, 7041, 2873,
- 0, -1597, -2147, -1992, -1492, -933, -484, -188,
- };
-
- /**
- * long interpolation filter (of length 129, according to spec)
- * for computing signal with non-integer delay
- */
- static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = {
- 0, 31915, 29436, 25569, 20676, 15206, 9639, 4439,
- 0, -3390, -5579, -6549, -6414, -5392, -3773, -1874,
- 0, 1595, 2727, 3303, 3319, 2850, 2030, 1023,
- 0, -887, -1527, -1860, -1876, -1614, -1150, -579,
- 0, 501, 859, 1041, 1044, 892, 631, 315,
- 0, -266, -453, -543, -538, -455, -317, -156,
- 0, 130, 218, 258, 253, 212, 147, 72,
- 0, -59, -101, -122, -123, -106, -77, -40,
- };
-
- /**
- * formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1)
- */
- static const int16_t formant_pp_factor_num_pow[10]= {
- /* (0.15) */
- 18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83
- };
-
- /**
- * formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1)
- */
- static const int16_t formant_pp_factor_den_pow[10] = {
- /* (0.15) */
- 22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925
- };
-
- /**
- * \brief Residual signal calculation (4.2.1 if G.729)
- * \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM)
- * \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients
- * \param in input speech data to process
- * \param subframe_size size of one subframe
- *
- * \note in buffer must contain 10 items of previous speech data before top of the buffer
- * \remark It is safe to pass the same buffer for input and output.
- */
- static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in,
- int subframe_size)
- {
- int i, n;
-
- for (n = subframe_size - 1; n >= 0; n--) {
- int sum = 0x800;
- for (i = 0; i < 10; i++)
- sum += filter_coeffs[i] * in[n - i - 1];
-
- out[n] = in[n] + (sum >> 12);
- }
- }
-
- /**
- * \brief long-term postfilter (4.2.1)
- * \param dsp initialized DSP context
- * \param pitch_delay_int integer part of the pitch delay in the first subframe
- * \param residual filtering input data
- * \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter
- * \param subframe_size size of subframe
- *
- * \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise
- */
- static int16_t long_term_filter(DSPContext *dsp, int pitch_delay_int,
- const int16_t* residual, int16_t *residual_filt,
- int subframe_size)
- {
- int i, k, tmp, tmp2;
- int sum;
- int L_temp0;
- int L_temp1;
- int64_t L64_temp0;
- int64_t L64_temp1;
- int16_t shift;
- int corr_int_num, corr_int_den;
-
- int ener;
- int16_t sh_ener;
-
- int16_t gain_num,gain_den; //selected signal's gain numerator and denominator
- int16_t sh_gain_num, sh_gain_den;
- int gain_num_square;
-
- int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator
- int16_t sh_gain_long_num, sh_gain_long_den;
-
- int16_t best_delay_int, best_delay_frac;
-
- int16_t delayed_signal_offset;
- int lt_filt_factor_a, lt_filt_factor_b;
-
- int16_t * selected_signal;
- const int16_t * selected_signal_const; //Necessary to avoid compiler warning
-
- int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE];
- int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1];
- int corr_den[ANALYZED_FRAC_DELAYS][2];
-
- tmp = 0;
- for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++)
- tmp |= FFABS(residual[i]);
-
- if(!tmp)
- shift = 3;
- else
- shift = av_log2(tmp) - 11;
-
- if (shift > 0)
- for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
- sig_scaled[i] = residual[i] >> shift;
- else
- for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++)
- sig_scaled[i] = residual[i] << -shift;
-
- /* Start of best delay searching code */
- gain_num = 0;
-
- ener = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
- sig_scaled + RES_PREV_DATA_SIZE,
- subframe_size, 0);
- if (ener) {
- sh_ener = FFMAX(av_log2(ener) - 14, 0);
- ener >>= sh_ener;
- /* Search for best pitch delay.
-
- sum{ r(n) * r(k,n) ] }^2
- R'(k)^2 := -------------------------
- sum{ r(k,n) * r(k,n) }
-
-
- R(T) := sum{ r(n) * r(n-T) ] }
-
-
- where
- r(n-T) is integer delayed signal with delay T
- r(k,n) is non-integer delayed signal with integer delay best_delay
- and fractional delay k */
-
- /* Find integer delay best_delay which maximizes correlation R(T).
-
- This is also equals to numerator of R'(0),
- since the fine search (second step) is done with 1/8
- precision around best_delay. */
- corr_int_num = 0;
- best_delay_int = pitch_delay_int - 1;
- for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) {
- sum = dsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE,
- sig_scaled + RES_PREV_DATA_SIZE - i,
- subframe_size, 0);
- if (sum > corr_int_num) {
- corr_int_num = sum;
- best_delay_int = i;
- }
- }
- if (corr_int_num) {
- /* Compute denominator of pseudo-normalized correlation R'(0). */
- corr_int_den = dsp->scalarproduct_int16(sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
- sig_scaled - best_delay_int + RES_PREV_DATA_SIZE,
- subframe_size, 0);
-
- /* Compute signals with non-integer delay k (with 1/8 precision),
- where k is in [0;6] range.
- Entire delay is qual to best_delay+(k+1)/8
- This is archieved by applying an interpolation filter of
- legth 33 to source signal. */
- for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
- ff_acelp_interpolate(&delayed_signal[k][0],
- &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int],
- ff_g729_interp_filt_short,
- ANALYZED_FRAC_DELAYS+1,
- 8 - k - 1,
- SHORT_INT_FILT_LEN,
- subframe_size + 1);
- }
-
- /* Compute denominator of pseudo-normalized correlation R'(k).
-
- corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0)
- corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1
-
- Also compute maximum value of above denominators over all k. */
- tmp = corr_int_den;
- for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
- sum = dsp->scalarproduct_int16(&delayed_signal[k][1],
- &delayed_signal[k][1],
- subframe_size - 1, 0);
- corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ];
- corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size];
-
- tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]);
- }
-
- sh_gain_den = av_log2(tmp) - 14;
- if (sh_gain_den >= 0) {
-
- sh_gain_num = FFMAX(sh_gain_den, sh_ener);
- /* Loop through all k and find delay that maximizes
- R'(k) correlation.
- Search is done in [int(T0)-1; intT(0)+1] range
- with 1/8 precision. */
- delayed_signal_offset = 1;
- best_delay_frac = 0;
- gain_den = corr_int_den >> sh_gain_den;
- gain_num = corr_int_num >> sh_gain_num;
- gain_num_square = gain_num * gain_num;
- for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) {
- for (i = 0; i < 2; i++) {
- int16_t gain_num_short, gain_den_short;
- int gain_num_short_square;
- /* Compute numerator of pseudo-normalized
- correlation R'(k). */
- sum = dsp->scalarproduct_int16(&delayed_signal[k][i],
- sig_scaled + RES_PREV_DATA_SIZE,
- subframe_size, 0);
- gain_num_short = FFMAX(sum >> sh_gain_num, 0);
-
- /*
- gain_num_short_square gain_num_square
- R'(T)^2 = -----------------------, max R'(T)^2= --------------
- den gain_den
- */
- gain_num_short_square = gain_num_short * gain_num_short;
- gain_den_short = corr_den[k][i] >> sh_gain_den;
-
- tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS);
- tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS);
-
- // R'(T)^2 > max R'(T)^2
- if (tmp > tmp2) {
- gain_num = gain_num_short;
- gain_den = gain_den_short;
- gain_num_square = gain_num_short_square;
- delayed_signal_offset = i;
- best_delay_frac = k + 1;
- }
- }
- }
-
- /*
- R'(T)^2
- 2 * --------- < 1
- R(0)
- */
- L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1);
- L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener);
- if (L64_temp0 < L64_temp1)
- gain_num = 0;
- } // if(sh_gain_den >= 0)
- } // if(corr_int_num)
- } // if(ener)
- /* End of best delay searching code */
-
- if (!gain_num) {
- memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t));
-
- /* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */
- return 0;
- }
- if (best_delay_frac) {
- /* Recompute delayed signal with an interpolation filter of length 129. */
- ff_acelp_interpolate(residual_filt,
- &sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset],
- ff_g729_interp_filt_long,
- ANALYZED_FRAC_DELAYS + 1,
- 8 - best_delay_frac,
- LONG_INT_FILT_LEN,
- subframe_size + 1);
- /* Compute R'(k) correlation's numerator. */
- sum = dsp->scalarproduct_int16(residual_filt,
- sig_scaled + RES_PREV_DATA_SIZE,
- subframe_size, 0);
-
- if (sum < 0) {
- gain_long_num = 0;
- sh_gain_long_num = 0;
- } else {
- tmp = FFMAX(av_log2(sum) - 14, 0);
- sum >>= tmp;
- gain_long_num = sum;
- sh_gain_long_num = tmp;
- }
-
- /* Compute R'(k) correlation's denominator. */
- sum = dsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size, 0);
-
- tmp = FFMAX(av_log2(sum) - 14, 0);
- sum >>= tmp;
- gain_long_den = sum;
- sh_gain_long_den = tmp;
-
- /* Select between original and delayed signal.
- Delayed signal will be selected if it increases R'(k)
- correlation. */
- L_temp0 = gain_num * gain_num;
- L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS);
-
- L_temp1 = gain_long_num * gain_long_num;
- L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS);
-
- tmp = ((sh_gain_long_num - sh_gain_num) << 1) - (sh_gain_long_den - sh_gain_den);
- if (tmp > 0)
- L_temp0 >>= tmp;
- else
- L_temp1 >>= -tmp;
-
- /* Check if longer filter increases the values of R'(k). */
- if (L_temp1 > L_temp0) {
- /* Select long filter. */
- selected_signal = residual_filt;
- gain_num = gain_long_num;
- gain_den = gain_long_den;
- sh_gain_num = sh_gain_long_num;
- sh_gain_den = sh_gain_long_den;
- } else
- /* Select short filter. */
- selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset];
-
- /* Rescale selected signal to original value. */
- if (shift > 0)
- for (i = 0; i < subframe_size; i++)
- selected_signal[i] <<= shift;
- else
- for (i = 0; i < subframe_size; i++)
- selected_signal[i] >>= -shift;
-
- /* necessary to avoid compiler warning */
- selected_signal_const = selected_signal;
- } // if(best_delay_frac)
- else
- selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset);
- #ifdef G729_BITEXACT
- tmp = sh_gain_num - sh_gain_den;
- if (tmp > 0)
- gain_den >>= tmp;
- else
- gain_num >>= -tmp;
-
- if (gain_num > gain_den)
- lt_filt_factor_a = MIN_LT_FILT_FACTOR_A;
- else {
- gain_num >>= 2;
- gain_den >>= 1;
- lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num);
- }
- #else
- L64_temp0 = ((int64_t)gain_num) << (sh_gain_num - 1);
- L64_temp1 = ((int64_t)gain_den) << sh_gain_den;
- lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A);
- #endif
-
- /* Filter through selected filter. */
- lt_filt_factor_b = 32767 - lt_filt_factor_a + 1;
-
- ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE,
- selected_signal_const,
- lt_filt_factor_a, lt_filt_factor_b,
- 1<<14, 15, subframe_size);
-
- // Long-term prediction gain is larger than 3dB.
- return 1;
- }
-
- /**
- * \brief Calculate reflection coefficient for tilt compensation filter (4.2.3).
- * \param dsp initialized DSP context
- * \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter
- * \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter
- * \param speech speech to update
- * \param subframe_size size of subframe
- *
- * \return (3.12) reflection coefficient
- *
- * \remark The routine also calculates the gain term for the short-term
- * filter (gf) and multiplies the speech data by 1/gf.
- *
- * \note All members of lp_gn, except 10-19 must be equal to zero.
- */
- static int16_t get_tilt_comp(DSPContext *dsp, int16_t *lp_gn,
- const int16_t *lp_gd, int16_t* speech,
- int subframe_size)
- {
- int rh1,rh0; // (3.12)
- int temp;
- int i;
- int gain_term;
-
- lp_gn[10] = 4096; //1.0 in (3.12)
-
- /* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */
- ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800);
- /* Now lp_gn (starting with 10) contains impulse response
- of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */
-
- rh0 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20, 0);
- rh1 = dsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20, 0);
-
- /* downscale to avoid overflow */
- temp = av_log2(rh0) - 14;
- if (temp > 0) {
- rh0 >>= temp;
- rh1 >>= temp;
- }
-
- if (FFABS(rh1) > rh0 || !rh0)
- return 0;
-
- gain_term = 0;
- for (i = 0; i < 20; i++)
- gain_term += FFABS(lp_gn[i + 10]);
- gain_term >>= 2; // (3.12) -> (5.10)
-
- if (gain_term > 0x400) { // 1.0 in (5.10)
- temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15)
- for (i = 0; i < subframe_size; i++)
- speech[i] = (speech[i] * temp + 0x4000) >> 15;
- }
-
- return -(rh1 << 15) / rh0;
- }
-
- /**
- * \brief Apply tilt compensation filter (4.2.3).
- * \param res_pst [in/out] residual signal (partially filtered)
- * \param k1 (3.12) reflection coefficient
- * \param subframe_size size of subframe
- * \param ht_prev_data previous data for 4.2.3, equation 86
- *
- * \return new value for ht_prev_data
- */
- static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff,
- int subframe_size, int16_t ht_prev_data)
- {
- int tmp, tmp2;
- int i;
- int gt, ga;
- int fact, sh_fact;
-
- if (refl_coeff > 0) {
- gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15;
- fact = 0x4000; // 0.5 in (0.15)
- sh_fact = 15;
- } else {
- gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15;
- fact = 0x800; // 0.5 in (3.12)
- sh_fact = 12;
- }
- ga = (fact << 15) / av_clip_int16(32768 - FFABS(gt));
- gt >>= 1;
-
- /* Apply tilt compensation filter to signal. */
- tmp = res_pst[subframe_size - 1];
-
- for (i = subframe_size - 1; i >= 1; i--) {
- tmp2 = (res_pst[i] << 15) + ((gt * res_pst[i-1]) << 1);
- tmp2 = (tmp2 + 0x4000) >> 15;
-
- tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
- out[i] = tmp2;
- }
- tmp2 = (res_pst[0] << 15) + ((gt * ht_prev_data) << 1);
- tmp2 = (tmp2 + 0x4000) >> 15;
- tmp2 = (tmp2 * ga * 2 + fact) >> sh_fact;
- out[0] = tmp2;
-
- return tmp;
- }
-
- void ff_g729_postfilter(DSPContext *dsp, int16_t* ht_prev_data, int* voicing,
- const int16_t *lp_filter_coeffs, int pitch_delay_int,
- int16_t* residual, int16_t* res_filter_data,
- int16_t* pos_filter_data, int16_t *speech, int subframe_size)
- {
- int16_t residual_filt_buf[SUBFRAME_SIZE+11];
- int16_t lp_gn[33]; // (3.12)
- int16_t lp_gd[11]; // (3.12)
- int tilt_comp_coeff;
- int i;
-
- /* Zero-filling is necessary for tilt-compensation filter. */
- memset(lp_gn, 0, 33 * sizeof(int16_t));
-
- /* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */
- for (i = 0; i < 10; i++)
- lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15;
-
- /* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */
- for (i = 0; i < 10; i++)
- lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15;
-
- /* residual signal calculation (one-half of short-term postfilter) */
- memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t));
- residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size);
- /* Save data to use it in the next subframe. */
- memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t));
-
- /* long-term filter. If long-term prediction gain is larger than 3dB (returned value is
- nonzero) then declare current subframe as periodic. */
- *voicing = FFMAX(*voicing, long_term_filter(dsp, pitch_delay_int,
- residual, residual_filt_buf + 10,
- subframe_size));
-
- /* shift residual for using in next subframe */
- memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t));
-
- /* short-term filter tilt compensation */
- tilt_comp_coeff = get_tilt_comp(dsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size);
-
- /* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */
- ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1,
- residual_filt_buf + 10,
- subframe_size, 10, 0, 0, 0x800);
- memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t));
-
- *ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff,
- subframe_size, *ht_prev_data);
- }
-
- /**
- * \brief Adaptive gain control (4.2.4)
- * \param gain_before gain of speech before applying postfilters
- * \param gain_after gain of speech after applying postfilters
- * \param speech [in/out] signal buffer
- * \param subframe_size length of subframe
- * \param gain_prev (3.12) previous value of gain coefficient
- *
- * \return (3.12) last value of gain coefficient
- */
- int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech,
- int subframe_size, int16_t gain_prev)
- {
- int gain; // (3.12)
- int n;
- int exp_before, exp_after;
-
- if(!gain_after && gain_before)
- return 0;
-
- if (gain_before) {
-
- exp_before = 14 - av_log2(gain_before);
- gain_before = bidir_sal(gain_before, exp_before);
-
- exp_after = 14 - av_log2(gain_after);
- gain_after = bidir_sal(gain_after, exp_after);
-
- if (gain_before < gain_after) {
- gain = (gain_before << 15) / gain_after;
- gain = bidir_sal(gain, exp_after - exp_before - 1);
- } else {
- gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000;
- gain = bidir_sal(gain, exp_after - exp_before);
- }
- gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875)
- } else
- gain = 0;
-
- for (n = 0; n < subframe_size; n++) {
- // gain_prev = gain + 0.9875 * gain_prev
- gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15;
- gain_prev = av_clip_int16(gain + gain_prev);
- speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14);
- }
- return gain_prev;
- }
|