You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1792 lines
57KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. #define MAX_CONTEXT_INPUTS 5
  38. extern const uint8_t ff_log2_run[41];
  39. static const int8_t quant5_10bit[256]={
  40. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  44. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  45. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  48. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  49. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  50. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  51. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  52. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  55. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  56. };
  57. static const int8_t quant5[256]={
  58. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  59. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  60. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  71. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  72. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  73. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  74. };
  75. static const int8_t quant9_10bit[256]={
  76. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  78. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  79. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  80. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  81. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  82. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  83. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  84. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  85. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  86. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  87. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  88. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  89. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  90. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  91. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  92. };
  93. static const int8_t quant11[256]={
  94. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  95. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  96. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  98. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  99. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  100. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  101. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  102. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  103. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  104. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  105. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  106. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  107. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  108. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  109. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  110. };
  111. static const uint8_t ver2_state[256]= {
  112. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  113. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  114. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  115. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  116. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  117. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  118. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  119. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  120. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  121. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  122. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  123. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  124. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  125. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  126. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  127. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  128. };
  129. typedef struct VlcState{
  130. int16_t drift;
  131. uint16_t error_sum;
  132. int8_t bias;
  133. uint8_t count;
  134. } VlcState;
  135. typedef struct PlaneContext{
  136. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  137. int quant_table_index;
  138. int context_count;
  139. uint8_t (*state)[CONTEXT_SIZE];
  140. VlcState *vlc_state;
  141. uint8_t interlace_bit_state[2];
  142. } PlaneContext;
  143. #define MAX_SLICES 256
  144. typedef struct FFV1Context{
  145. AVCodecContext *avctx;
  146. RangeCoder c;
  147. GetBitContext gb;
  148. PutBitContext pb;
  149. uint64_t rc_stat[256][2];
  150. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  151. int version;
  152. int width, height;
  153. int chroma_h_shift, chroma_v_shift;
  154. int flags;
  155. int picture_number;
  156. AVFrame picture;
  157. int plane_count;
  158. int ac; ///< 1=range coder <-> 0=golomb rice
  159. PlaneContext plane[MAX_PLANES];
  160. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  161. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  162. int context_count[MAX_QUANT_TABLES];
  163. uint8_t state_transition[256];
  164. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  165. int run_index;
  166. int colorspace;
  167. int16_t *sample_buffer;
  168. int gob_count;
  169. int packed_at_lsb;
  170. int quant_table_count;
  171. DSPContext dsp;
  172. struct FFV1Context *slice_context[MAX_SLICES];
  173. int slice_count;
  174. int num_v_slices;
  175. int num_h_slices;
  176. int slice_width;
  177. int slice_height;
  178. int slice_x;
  179. int slice_y;
  180. }FFV1Context;
  181. static av_always_inline int fold(int diff, int bits){
  182. if(bits==8)
  183. diff= (int8_t)diff;
  184. else{
  185. diff+= 1<<(bits-1);
  186. diff&=(1<<bits)-1;
  187. diff-= 1<<(bits-1);
  188. }
  189. return diff;
  190. }
  191. static inline int predict(int16_t *src, int16_t *last)
  192. {
  193. const int LT= last[-1];
  194. const int T= last[ 0];
  195. const int L = src[-1];
  196. return mid_pred(L, L + T - LT, T);
  197. }
  198. static inline int get_context(PlaneContext *p, int16_t *src,
  199. int16_t *last, int16_t *last2)
  200. {
  201. const int LT= last[-1];
  202. const int T= last[ 0];
  203. const int RT= last[ 1];
  204. const int L = src[-1];
  205. if(p->quant_table[3][127]){
  206. const int TT= last2[0];
  207. const int LL= src[-2];
  208. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  209. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  210. }else
  211. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  212. }
  213. static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
  214. int i,j,k,m;
  215. double l2tab[256];
  216. for(i=1; i<256; i++)
  217. l2tab[i]= log2(i/256.0);
  218. for(i=0; i<256; i++){
  219. double best_len[256];
  220. double p= i/256.0;
  221. for(j=0; j<256; j++)
  222. best_len[j]= 1<<30;
  223. for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
  224. double occ[256]={0};
  225. double len=0;
  226. occ[j]=1.0;
  227. for(k=0; k<256; k++){
  228. double newocc[256]={0};
  229. for(m=0; m<256; m++){
  230. if(occ[m]){
  231. len -=occ[m]*( p *l2tab[ m]
  232. + (1-p)*l2tab[256-m]);
  233. }
  234. }
  235. if(len < best_len[k]){
  236. best_len[k]= len;
  237. best_state[i][k]= j;
  238. }
  239. for(m=0; m<256; m++){
  240. if(occ[m]){
  241. newocc[ one_state[ m]] += occ[m]* p ;
  242. newocc[256-one_state[256-m]] += occ[m]*(1-p);
  243. }
  244. }
  245. memcpy(occ, newocc, sizeof(occ));
  246. }
  247. }
  248. }
  249. }
  250. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  251. int i;
  252. #define put_rac(C,S,B) \
  253. do{\
  254. if(rc_stat){\
  255. rc_stat[*(S)][B]++;\
  256. rc_stat2[(S)-state][B]++;\
  257. }\
  258. put_rac(C,S,B);\
  259. }while(0)
  260. if(v){
  261. const int a= FFABS(v);
  262. const int e= av_log2(a);
  263. put_rac(c, state+0, 0);
  264. if(e<=9){
  265. for(i=0; i<e; i++){
  266. put_rac(c, state+1+i, 1); //1..10
  267. }
  268. put_rac(c, state+1+i, 0);
  269. for(i=e-1; i>=0; i--){
  270. put_rac(c, state+22+i, (a>>i)&1); //22..31
  271. }
  272. if(is_signed)
  273. put_rac(c, state+11 + e, v < 0); //11..21
  274. }else{
  275. for(i=0; i<e; i++){
  276. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  277. }
  278. put_rac(c, state+1+9, 0);
  279. for(i=e-1; i>=0; i--){
  280. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  281. }
  282. if(is_signed)
  283. put_rac(c, state+11 + 10, v < 0); //11..21
  284. }
  285. }else{
  286. put_rac(c, state+0, 1);
  287. }
  288. #undef put_rac
  289. }
  290. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  291. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  292. }
  293. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  294. if(get_rac(c, state+0))
  295. return 0;
  296. else{
  297. int i, e, a;
  298. e= 0;
  299. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  300. e++;
  301. }
  302. a= 1;
  303. for(i=e-1; i>=0; i--){
  304. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  305. }
  306. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  307. return (a^e)-e;
  308. }
  309. }
  310. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  311. return get_symbol_inline(c, state, is_signed);
  312. }
  313. static inline void update_vlc_state(VlcState * const state, const int v){
  314. int drift= state->drift;
  315. int count= state->count;
  316. state->error_sum += FFABS(v);
  317. drift += v;
  318. if(count == 128){ //FIXME variable
  319. count >>= 1;
  320. drift >>= 1;
  321. state->error_sum >>= 1;
  322. }
  323. count++;
  324. if(drift <= -count){
  325. if(state->bias > -128) state->bias--;
  326. drift += count;
  327. if(drift <= -count)
  328. drift= -count + 1;
  329. }else if(drift > 0){
  330. if(state->bias < 127) state->bias++;
  331. drift -= count;
  332. if(drift > 0)
  333. drift= 0;
  334. }
  335. state->drift= drift;
  336. state->count= count;
  337. }
  338. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  339. int i, k, code;
  340. //printf("final: %d ", v);
  341. v = fold(v - state->bias, bits);
  342. i= state->count;
  343. k=0;
  344. while(i < state->error_sum){ //FIXME optimize
  345. k++;
  346. i += i;
  347. }
  348. assert(k<=8);
  349. #if 0 // JPEG LS
  350. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  351. else code= v;
  352. #else
  353. code= v ^ ((2*state->drift + state->count)>>31);
  354. #endif
  355. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  356. set_sr_golomb(pb, code, k, 12, bits);
  357. update_vlc_state(state, v);
  358. }
  359. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  360. int k, i, v, ret;
  361. i= state->count;
  362. k=0;
  363. while(i < state->error_sum){ //FIXME optimize
  364. k++;
  365. i += i;
  366. }
  367. assert(k<=8);
  368. v= get_sr_golomb(gb, k, 12, bits);
  369. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  370. #if 0 // JPEG LS
  371. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  372. #else
  373. v ^= ((2*state->drift + state->count)>>31);
  374. #endif
  375. ret= fold(v + state->bias, bits);
  376. update_vlc_state(state, v);
  377. //printf("final: %d\n", ret);
  378. return ret;
  379. }
  380. #if CONFIG_FFV1_ENCODER
  381. static av_always_inline int encode_line(FFV1Context *s, int w,
  382. int16_t *sample[2],
  383. int plane_index, int bits)
  384. {
  385. PlaneContext * const p= &s->plane[plane_index];
  386. RangeCoder * const c= &s->c;
  387. int x;
  388. int run_index= s->run_index;
  389. int run_count=0;
  390. int run_mode=0;
  391. if(s->ac){
  392. if(c->bytestream_end - c->bytestream < w*20){
  393. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  394. return -1;
  395. }
  396. }else{
  397. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  398. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  399. return -1;
  400. }
  401. }
  402. for(x=0; x<w; x++){
  403. int diff, context;
  404. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  405. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  406. if(context < 0){
  407. context = -context;
  408. diff= -diff;
  409. }
  410. diff= fold(diff, bits);
  411. if(s->ac){
  412. if(s->flags & CODEC_FLAG_PASS1){
  413. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  414. }else{
  415. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  416. }
  417. }else{
  418. if(context == 0) run_mode=1;
  419. if(run_mode){
  420. if(diff){
  421. while(run_count >= 1<<ff_log2_run[run_index]){
  422. run_count -= 1<<ff_log2_run[run_index];
  423. run_index++;
  424. put_bits(&s->pb, 1, 1);
  425. }
  426. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  427. if(run_index) run_index--;
  428. run_count=0;
  429. run_mode=0;
  430. if(diff>0) diff--;
  431. }else{
  432. run_count++;
  433. }
  434. }
  435. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  436. if(run_mode == 0)
  437. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  438. }
  439. }
  440. if(run_mode){
  441. while(run_count >= 1<<ff_log2_run[run_index]){
  442. run_count -= 1<<ff_log2_run[run_index];
  443. run_index++;
  444. put_bits(&s->pb, 1, 1);
  445. }
  446. if(run_count)
  447. put_bits(&s->pb, 1, 1);
  448. }
  449. s->run_index= run_index;
  450. return 0;
  451. }
  452. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  453. int x,y,i;
  454. const int ring_size= s->avctx->context_model ? 3 : 2;
  455. int16_t *sample[3];
  456. s->run_index=0;
  457. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  458. for(y=0; y<h; y++){
  459. for(i=0; i<ring_size; i++)
  460. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  461. sample[0][-1]= sample[1][0 ];
  462. sample[1][ w]= sample[1][w-1];
  463. //{START_TIMER
  464. if(s->avctx->bits_per_raw_sample<=8){
  465. for(x=0; x<w; x++){
  466. sample[0][x]= src[x + stride*y];
  467. }
  468. encode_line(s, w, sample, plane_index, 8);
  469. }else{
  470. if(s->packed_at_lsb){
  471. for(x=0; x<w; x++){
  472. sample[0][x]= ((uint16_t*)(src + stride*y))[x];
  473. }
  474. }else{
  475. for(x=0; x<w; x++){
  476. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
  477. }
  478. }
  479. encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  480. }
  481. //STOP_TIMER("encode line")}
  482. }
  483. }
  484. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  485. int x, y, p, i;
  486. const int ring_size= s->avctx->context_model ? 3 : 2;
  487. int16_t *sample[3][3];
  488. s->run_index=0;
  489. memset(s->sample_buffer, 0, ring_size*3*(w+6)*sizeof(*s->sample_buffer));
  490. for(y=0; y<h; y++){
  491. for(i=0; i<ring_size; i++)
  492. for(p=0; p<3; p++)
  493. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  494. for(x=0; x<w; x++){
  495. int v= src[x + stride*y];
  496. int b= v&0xFF;
  497. int g= (v>>8)&0xFF;
  498. int r= (v>>16)&0xFF;
  499. b -= g;
  500. r -= g;
  501. g += (b + r)>>2;
  502. b += 0x100;
  503. r += 0x100;
  504. // assert(g>=0 && b>=0 && r>=0);
  505. // assert(g<256 && b<512 && r<512);
  506. sample[0][0][x]= g;
  507. sample[1][0][x]= b;
  508. sample[2][0][x]= r;
  509. }
  510. for(p=0; p<3; p++){
  511. sample[p][0][-1]= sample[p][1][0 ];
  512. sample[p][1][ w]= sample[p][1][w-1];
  513. encode_line(s, w, sample[p], FFMIN(p, 1), 9);
  514. }
  515. }
  516. }
  517. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  518. int last=0;
  519. int i;
  520. uint8_t state[CONTEXT_SIZE];
  521. memset(state, 128, sizeof(state));
  522. for(i=1; i<128 ; i++){
  523. if(quant_table[i] != quant_table[i-1]){
  524. put_symbol(c, state, i-last-1, 0);
  525. last= i;
  526. }
  527. }
  528. put_symbol(c, state, i-last-1, 0);
  529. }
  530. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  531. int i;
  532. for(i=0; i<5; i++)
  533. write_quant_table(c, quant_table[i]);
  534. }
  535. static void write_header(FFV1Context *f){
  536. uint8_t state[CONTEXT_SIZE];
  537. int i, j;
  538. RangeCoder * const c= &f->slice_context[0]->c;
  539. memset(state, 128, sizeof(state));
  540. if(f->version < 2){
  541. put_symbol(c, state, f->version, 0);
  542. put_symbol(c, state, f->ac, 0);
  543. if(f->ac>1){
  544. for(i=1; i<256; i++){
  545. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  546. }
  547. }
  548. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  549. if(f->version>0)
  550. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  551. put_rac(c, state, 1); //chroma planes
  552. put_symbol(c, state, f->chroma_h_shift, 0);
  553. put_symbol(c, state, f->chroma_v_shift, 0);
  554. put_rac(c, state, 0); //no transparency plane
  555. write_quant_tables(c, f->quant_table);
  556. }else{
  557. put_symbol(c, state, f->slice_count, 0);
  558. for(i=0; i<f->slice_count; i++){
  559. FFV1Context *fs= f->slice_context[i];
  560. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  561. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  562. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  563. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  564. for(j=0; j<f->plane_count; j++){
  565. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  566. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  567. }
  568. }
  569. }
  570. }
  571. #endif /* CONFIG_FFV1_ENCODER */
  572. static av_cold int common_init(AVCodecContext *avctx){
  573. FFV1Context *s = avctx->priv_data;
  574. s->avctx= avctx;
  575. s->flags= avctx->flags;
  576. avcodec_get_frame_defaults(&s->picture);
  577. dsputil_init(&s->dsp, avctx);
  578. s->width = avctx->width;
  579. s->height= avctx->height;
  580. assert(s->width && s->height);
  581. //defaults
  582. s->num_h_slices=1;
  583. s->num_v_slices=1;
  584. return 0;
  585. }
  586. static int init_slice_state(FFV1Context *f){
  587. int i, j;
  588. for(i=0; i<f->slice_count; i++){
  589. FFV1Context *fs= f->slice_context[i];
  590. for(j=0; j<f->plane_count; j++){
  591. PlaneContext * const p= &fs->plane[j];
  592. if(fs->ac){
  593. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  594. if(!p-> state)
  595. return AVERROR(ENOMEM);
  596. }else{
  597. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  598. if(!p->vlc_state)
  599. return AVERROR(ENOMEM);
  600. }
  601. }
  602. if (fs->ac>1){
  603. //FIXME only redo if state_transition changed
  604. for(j=1; j<256; j++){
  605. fs->c.one_state [ j]= fs->state_transition[j];
  606. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  607. }
  608. }
  609. }
  610. return 0;
  611. }
  612. static av_cold int init_slice_contexts(FFV1Context *f){
  613. int i;
  614. f->slice_count= f->num_h_slices * f->num_v_slices;
  615. for(i=0; i<f->slice_count; i++){
  616. FFV1Context *fs= av_mallocz(sizeof(*fs));
  617. int sx= i % f->num_h_slices;
  618. int sy= i / f->num_h_slices;
  619. int sxs= f->avctx->width * sx / f->num_h_slices;
  620. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  621. int sys= f->avctx->height* sy / f->num_v_slices;
  622. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  623. f->slice_context[i]= fs;
  624. memcpy(fs, f, sizeof(*fs));
  625. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  626. fs->slice_width = sxe - sxs;
  627. fs->slice_height= sye - sys;
  628. fs->slice_x = sxs;
  629. fs->slice_y = sys;
  630. fs->sample_buffer = av_malloc(9 * (fs->width+6) * sizeof(*fs->sample_buffer));
  631. if (!fs->sample_buffer)
  632. return AVERROR(ENOMEM);
  633. }
  634. return 0;
  635. }
  636. static int allocate_initial_states(FFV1Context *f){
  637. int i;
  638. for(i=0; i<f->quant_table_count; i++){
  639. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  640. if(!f->initial_states[i])
  641. return AVERROR(ENOMEM);
  642. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  643. }
  644. return 0;
  645. }
  646. #if CONFIG_FFV1_ENCODER
  647. static int write_extra_header(FFV1Context *f){
  648. RangeCoder * const c= &f->c;
  649. uint8_t state[CONTEXT_SIZE];
  650. int i, j, k;
  651. uint8_t state2[32][CONTEXT_SIZE];
  652. memset(state2, 128, sizeof(state2));
  653. memset(state, 128, sizeof(state));
  654. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  655. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  656. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  657. put_symbol(c, state, f->version, 0);
  658. put_symbol(c, state, f->ac, 0);
  659. if(f->ac>1){
  660. for(i=1; i<256; i++){
  661. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  662. }
  663. }
  664. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  665. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  666. put_rac(c, state, 1); //chroma planes
  667. put_symbol(c, state, f->chroma_h_shift, 0);
  668. put_symbol(c, state, f->chroma_v_shift, 0);
  669. put_rac(c, state, 0); //no transparency plane
  670. put_symbol(c, state, f->num_h_slices-1, 0);
  671. put_symbol(c, state, f->num_v_slices-1, 0);
  672. put_symbol(c, state, f->quant_table_count, 0);
  673. for(i=0; i<f->quant_table_count; i++)
  674. write_quant_tables(c, f->quant_tables[i]);
  675. for(i=0; i<f->quant_table_count; i++){
  676. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  677. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  678. break;
  679. if(j<f->context_count[i]*CONTEXT_SIZE){
  680. put_rac(c, state, 1);
  681. for(j=0; j<f->context_count[i]; j++){
  682. for(k=0; k<CONTEXT_SIZE; k++){
  683. int pred= j ? f->initial_states[i][j-1][k] : 128;
  684. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  685. }
  686. }
  687. }else{
  688. put_rac(c, state, 0);
  689. }
  690. }
  691. f->avctx->extradata_size= ff_rac_terminate(c);
  692. return 0;
  693. }
  694. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  695. int i,i2,changed,print=0;
  696. do{
  697. changed=0;
  698. for(i=12; i<244; i++){
  699. for(i2=i+1; i2<245 && i2<i+4; i2++){
  700. #define COST(old, new) \
  701. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  702. +s->rc_stat[old][1]*-log2( (new) /256.0)
  703. #define COST2(old, new) \
  704. COST(old, new)\
  705. +COST(256-(old), 256-(new))
  706. double size0= COST2(i, i ) + COST2(i2, i2);
  707. double sizeX= COST2(i, i2) + COST2(i2, i );
  708. if(sizeX < size0 && i!=128 && i2!=128){
  709. int j;
  710. FFSWAP(int, stt[ i], stt[ i2]);
  711. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  712. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  713. if(i != 256-i2){
  714. FFSWAP(int, stt[256-i], stt[256-i2]);
  715. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  716. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  717. }
  718. for(j=1; j<256; j++){
  719. if (stt[j] == i ) stt[j] = i2;
  720. else if(stt[j] == i2) stt[j] = i ;
  721. if(i != 256-i2){
  722. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  723. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  724. }
  725. }
  726. print=changed=1;
  727. }
  728. }
  729. }
  730. }while(changed);
  731. return print;
  732. }
  733. static av_cold int encode_init(AVCodecContext *avctx)
  734. {
  735. FFV1Context *s = avctx->priv_data;
  736. int i, j, k, m;
  737. common_init(avctx);
  738. s->version=0;
  739. s->ac= avctx->coder_type ? 2:0;
  740. if(s->ac>1)
  741. for(i=1; i<256; i++)
  742. s->state_transition[i]=ver2_state[i];
  743. s->plane_count=2;
  744. for(i=0; i<256; i++){
  745. s->quant_table_count=2;
  746. if(avctx->bits_per_raw_sample <=8){
  747. s->quant_tables[0][0][i]= quant11[i];
  748. s->quant_tables[0][1][i]= 11*quant11[i];
  749. s->quant_tables[0][2][i]= 11*11*quant11[i];
  750. s->quant_tables[1][0][i]= quant11[i];
  751. s->quant_tables[1][1][i]= 11*quant11[i];
  752. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  753. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  754. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  755. }else{
  756. s->quant_tables[0][0][i]= quant9_10bit[i];
  757. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  758. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  759. s->quant_tables[1][0][i]= quant9_10bit[i];
  760. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  761. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  762. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  763. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  764. }
  765. }
  766. s->context_count[0]= (11*11*11+1)/2;
  767. s->context_count[1]= (11*11*5*5*5+1)/2;
  768. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  769. for(i=0; i<s->plane_count; i++){
  770. PlaneContext * const p= &s->plane[i];
  771. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  772. p->quant_table_index= avctx->context_model;
  773. p->context_count= s->context_count[p->quant_table_index];
  774. }
  775. if(allocate_initial_states(s) < 0)
  776. return AVERROR(ENOMEM);
  777. avctx->coded_frame= &s->picture;
  778. switch(avctx->pix_fmt){
  779. case PIX_FMT_YUV420P9:
  780. case PIX_FMT_YUV420P10:
  781. case PIX_FMT_YUV422P10:
  782. s->packed_at_lsb = 1;
  783. case PIX_FMT_YUV444P16:
  784. case PIX_FMT_YUV422P16:
  785. case PIX_FMT_YUV420P16:
  786. if(avctx->bits_per_raw_sample <=8){
  787. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  788. return -1;
  789. }
  790. if(!s->ac){
  791. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  792. return -1;
  793. }
  794. s->version= FFMAX(s->version, 1);
  795. case PIX_FMT_YUV444P:
  796. case PIX_FMT_YUV422P:
  797. case PIX_FMT_YUV420P:
  798. case PIX_FMT_YUV411P:
  799. case PIX_FMT_YUV410P:
  800. s->colorspace= 0;
  801. break;
  802. case PIX_FMT_RGB32:
  803. s->colorspace= 1;
  804. break;
  805. default:
  806. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  807. return -1;
  808. }
  809. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  810. s->picture_number=0;
  811. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  812. for(i=0; i<s->quant_table_count; i++){
  813. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  814. if(!s->rc_stat2[i])
  815. return AVERROR(ENOMEM);
  816. }
  817. }
  818. if(avctx->stats_in){
  819. char *p= avctx->stats_in;
  820. uint8_t best_state[256][256];
  821. int gob_count=0;
  822. char *next;
  823. av_assert0(s->version>=2);
  824. for(;;){
  825. for(j=0; j<256; j++){
  826. for(i=0; i<2; i++){
  827. s->rc_stat[j][i]= strtol(p, &next, 0);
  828. if(next==p){
  829. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  830. return -1;
  831. }
  832. p=next;
  833. }
  834. }
  835. for(i=0; i<s->quant_table_count; i++){
  836. for(j=0; j<s->context_count[i]; j++){
  837. for(k=0; k<32; k++){
  838. for(m=0; m<2; m++){
  839. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  840. if(next==p){
  841. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  842. return -1;
  843. }
  844. p=next;
  845. }
  846. }
  847. }
  848. }
  849. gob_count= strtol(p, &next, 0);
  850. if(next==p || gob_count <0){
  851. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  852. return -1;
  853. }
  854. p=next;
  855. while(*p=='\n' || *p==' ') p++;
  856. if(p[0]==0) break;
  857. }
  858. sort_stt(s, s->state_transition);
  859. find_best_state(best_state, s->state_transition);
  860. for(i=0; i<s->quant_table_count; i++){
  861. for(j=0; j<s->context_count[i]; j++){
  862. for(k=0; k<32; k++){
  863. double p= 128;
  864. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  865. p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  866. }
  867. s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
  868. }
  869. }
  870. }
  871. }
  872. if(s->version>1){
  873. s->num_h_slices=2;
  874. s->num_v_slices=2;
  875. write_extra_header(s);
  876. }
  877. if(init_slice_contexts(s) < 0)
  878. return -1;
  879. if(init_slice_state(s) < 0)
  880. return -1;
  881. #define STATS_OUT_SIZE 1024*1024*6
  882. if(avctx->flags & CODEC_FLAG_PASS1){
  883. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  884. for(i=0; i<s->quant_table_count; i++){
  885. for(j=0; j<s->slice_count; j++){
  886. FFV1Context *sf= s->slice_context[j];
  887. av_assert0(!sf->rc_stat2[i]);
  888. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  889. if(!sf->rc_stat2[i])
  890. return AVERROR(ENOMEM);
  891. }
  892. }
  893. }
  894. return 0;
  895. }
  896. #endif /* CONFIG_FFV1_ENCODER */
  897. static void clear_state(FFV1Context *f){
  898. int i, si, j;
  899. for(si=0; si<f->slice_count; si++){
  900. FFV1Context *fs= f->slice_context[si];
  901. for(i=0; i<f->plane_count; i++){
  902. PlaneContext *p= &fs->plane[i];
  903. p->interlace_bit_state[0]= 128;
  904. p->interlace_bit_state[1]= 128;
  905. if(fs->ac){
  906. if(f->initial_states[p->quant_table_index]){
  907. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  908. }else
  909. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  910. }else{
  911. for(j=0; j<p->context_count; j++){
  912. p->vlc_state[j].drift= 0;
  913. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  914. p->vlc_state[j].bias= 0;
  915. p->vlc_state[j].count= 1;
  916. }
  917. }
  918. }
  919. }
  920. }
  921. #if CONFIG_FFV1_ENCODER
  922. static int encode_slice(AVCodecContext *c, void *arg){
  923. FFV1Context *fs= *(void**)arg;
  924. FFV1Context *f= fs->avctx->priv_data;
  925. int width = fs->slice_width;
  926. int height= fs->slice_height;
  927. int x= fs->slice_x;
  928. int y= fs->slice_y;
  929. AVFrame * const p= &f->picture;
  930. const int ps= (c->bits_per_raw_sample>8)+1;
  931. if(f->colorspace==0){
  932. const int chroma_width = -((-width )>>f->chroma_h_shift);
  933. const int chroma_height= -((-height)>>f->chroma_v_shift);
  934. const int cx= x>>f->chroma_h_shift;
  935. const int cy= y>>f->chroma_v_shift;
  936. encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  937. encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  938. encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  939. }else{
  940. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  941. }
  942. emms_c();
  943. return 0;
  944. }
  945. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  946. FFV1Context *f = avctx->priv_data;
  947. RangeCoder * const c= &f->slice_context[0]->c;
  948. AVFrame *pict = data;
  949. AVFrame * const p= &f->picture;
  950. int used_count= 0;
  951. uint8_t keystate=128;
  952. uint8_t *buf_p;
  953. int i;
  954. ff_init_range_encoder(c, buf, buf_size);
  955. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  956. *p = *pict;
  957. p->pict_type= AV_PICTURE_TYPE_I;
  958. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  959. put_rac(c, &keystate, 1);
  960. p->key_frame= 1;
  961. f->gob_count++;
  962. write_header(f);
  963. clear_state(f);
  964. }else{
  965. put_rac(c, &keystate, 0);
  966. p->key_frame= 0;
  967. }
  968. if(!f->ac){
  969. used_count += ff_rac_terminate(c);
  970. //printf("pos=%d\n", used_count);
  971. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  972. }else if (f->ac>1){
  973. int i;
  974. for(i=1; i<256; i++){
  975. c->one_state[i]= f->state_transition[i];
  976. c->zero_state[256-i]= 256-c->one_state[i];
  977. }
  978. }
  979. for(i=1; i<f->slice_count; i++){
  980. FFV1Context *fs= f->slice_context[i];
  981. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  982. int len= buf_size/f->slice_count;
  983. if(fs->ac){
  984. ff_init_range_encoder(&fs->c, start, len);
  985. }else{
  986. init_put_bits(&fs->pb, start, len);
  987. }
  988. }
  989. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  990. buf_p=buf;
  991. for(i=0; i<f->slice_count; i++){
  992. FFV1Context *fs= f->slice_context[i];
  993. int bytes;
  994. if(fs->ac){
  995. uint8_t state=128;
  996. put_rac(&fs->c, &state, 0);
  997. bytes= ff_rac_terminate(&fs->c);
  998. }else{
  999. flush_put_bits(&fs->pb); //nicer padding FIXME
  1000. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  1001. used_count= 0;
  1002. }
  1003. if(i>0){
  1004. av_assert0(bytes < buf_size/f->slice_count);
  1005. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  1006. av_assert0(bytes < (1<<24));
  1007. AV_WB24(buf_p+bytes, bytes);
  1008. bytes+=3;
  1009. }
  1010. buf_p += bytes;
  1011. }
  1012. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1013. int j, k, m;
  1014. char *p= avctx->stats_out;
  1015. char *end= p + STATS_OUT_SIZE;
  1016. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1017. for(i=0; i<f->quant_table_count; i++)
  1018. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1019. for(j=0; j<f->slice_count; j++){
  1020. FFV1Context *fs= f->slice_context[j];
  1021. for(i=0; i<256; i++){
  1022. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1023. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1024. }
  1025. for(i=0; i<f->quant_table_count; i++){
  1026. for(k=0; k<f->context_count[i]; k++){
  1027. for(m=0; m<32; m++){
  1028. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1029. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1030. }
  1031. }
  1032. }
  1033. }
  1034. for(j=0; j<256; j++){
  1035. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1036. p+= strlen(p);
  1037. }
  1038. snprintf(p, end-p, "\n");
  1039. for(i=0; i<f->quant_table_count; i++){
  1040. for(j=0; j<f->context_count[i]; j++){
  1041. for(m=0; m<32; m++){
  1042. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1043. p+= strlen(p);
  1044. }
  1045. }
  1046. }
  1047. snprintf(p, end-p, "%d\n", f->gob_count);
  1048. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1049. avctx->stats_out[0] = '\0';
  1050. f->picture_number++;
  1051. return buf_p-buf;
  1052. }
  1053. #endif /* CONFIG_FFV1_ENCODER */
  1054. static av_cold int common_end(AVCodecContext *avctx){
  1055. FFV1Context *s = avctx->priv_data;
  1056. int i, j;
  1057. if (avctx->codec->decode && s->picture.data[0])
  1058. avctx->release_buffer(avctx, &s->picture);
  1059. for(j=0; j<s->slice_count; j++){
  1060. FFV1Context *fs= s->slice_context[j];
  1061. for(i=0; i<s->plane_count; i++){
  1062. PlaneContext *p= &fs->plane[i];
  1063. av_freep(&p->state);
  1064. av_freep(&p->vlc_state);
  1065. }
  1066. av_freep(&fs->sample_buffer);
  1067. }
  1068. av_freep(&avctx->stats_out);
  1069. for(j=0; j<s->quant_table_count; j++){
  1070. av_freep(&s->initial_states[j]);
  1071. for(i=0; i<s->slice_count; i++){
  1072. FFV1Context *sf= s->slice_context[i];
  1073. av_freep(&sf->rc_stat2[j]);
  1074. }
  1075. av_freep(&s->rc_stat2[j]);
  1076. }
  1077. for(i=0; i<s->slice_count; i++){
  1078. av_freep(&s->slice_context[i]);
  1079. }
  1080. return 0;
  1081. }
  1082. static av_always_inline void decode_line(FFV1Context *s, int w,
  1083. int16_t *sample[2],
  1084. int plane_index, int bits)
  1085. {
  1086. PlaneContext * const p= &s->plane[plane_index];
  1087. RangeCoder * const c= &s->c;
  1088. int x;
  1089. int run_count=0;
  1090. int run_mode=0;
  1091. int run_index= s->run_index;
  1092. for(x=0; x<w; x++){
  1093. int diff, context, sign;
  1094. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1095. if(context < 0){
  1096. context= -context;
  1097. sign=1;
  1098. }else
  1099. sign=0;
  1100. av_assert2(context < p->context_count);
  1101. if(s->ac){
  1102. diff= get_symbol_inline(c, p->state[context], 1);
  1103. }else{
  1104. if(context == 0 && run_mode==0) run_mode=1;
  1105. if(run_mode){
  1106. if(run_count==0 && run_mode==1){
  1107. if(get_bits1(&s->gb)){
  1108. run_count = 1<<ff_log2_run[run_index];
  1109. if(x + run_count <= w) run_index++;
  1110. }else{
  1111. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1112. else run_count=0;
  1113. if(run_index) run_index--;
  1114. run_mode=2;
  1115. }
  1116. }
  1117. run_count--;
  1118. if(run_count < 0){
  1119. run_mode=0;
  1120. run_count=0;
  1121. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1122. if(diff>=0) diff++;
  1123. }else
  1124. diff=0;
  1125. }else
  1126. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1127. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1128. }
  1129. if(sign) diff= -diff;
  1130. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1131. }
  1132. s->run_index= run_index;
  1133. }
  1134. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1135. int x, y;
  1136. int16_t *sample[2];
  1137. sample[0]=s->sample_buffer +3;
  1138. sample[1]=s->sample_buffer+w+6+3;
  1139. s->run_index=0;
  1140. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1141. for(y=0; y<h; y++){
  1142. int16_t *temp = sample[0]; //FIXME try a normal buffer
  1143. sample[0]= sample[1];
  1144. sample[1]= temp;
  1145. sample[1][-1]= sample[0][0 ];
  1146. sample[0][ w]= sample[0][w-1];
  1147. //{START_TIMER
  1148. if(s->avctx->bits_per_raw_sample <= 8){
  1149. decode_line(s, w, sample, plane_index, 8);
  1150. for(x=0; x<w; x++){
  1151. src[x + stride*y]= sample[1][x];
  1152. }
  1153. }else{
  1154. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1155. if(s->packed_at_lsb){
  1156. for(x=0; x<w; x++){
  1157. ((uint16_t*)(src + stride*y))[x]= sample[1][x];
  1158. }
  1159. }else{
  1160. for(x=0; x<w; x++){
  1161. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1162. }
  1163. }
  1164. }
  1165. //STOP_TIMER("decode-line")}
  1166. }
  1167. }
  1168. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1169. int x, y, p;
  1170. int16_t *sample[3][2];
  1171. for(x=0; x<3; x++){
  1172. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1173. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1174. }
  1175. s->run_index=0;
  1176. memset(s->sample_buffer, 0, 6*(w+6)*sizeof(*s->sample_buffer));
  1177. for(y=0; y<h; y++){
  1178. for(p=0; p<3; p++){
  1179. int16_t *temp = sample[p][0]; //FIXME try a normal buffer
  1180. sample[p][0]= sample[p][1];
  1181. sample[p][1]= temp;
  1182. sample[p][1][-1]= sample[p][0][0 ];
  1183. sample[p][0][ w]= sample[p][0][w-1];
  1184. decode_line(s, w, sample[p], FFMIN(p, 1), 9);
  1185. }
  1186. for(x=0; x<w; x++){
  1187. int g= sample[0][1][x];
  1188. int b= sample[1][1][x];
  1189. int r= sample[2][1][x];
  1190. // assert(g>=0 && b>=0 && r>=0);
  1191. // assert(g<256 && b<512 && r<512);
  1192. b -= 0x100;
  1193. r -= 0x100;
  1194. g -= (b + r)>>2;
  1195. b += g;
  1196. r += g;
  1197. src[x + stride*y]= b + (g<<8) + (r<<16) + (0xFF<<24);
  1198. }
  1199. }
  1200. }
  1201. static int decode_slice(AVCodecContext *c, void *arg){
  1202. FFV1Context *fs= *(void**)arg;
  1203. FFV1Context *f= fs->avctx->priv_data;
  1204. int width = fs->slice_width;
  1205. int height= fs->slice_height;
  1206. int x= fs->slice_x;
  1207. int y= fs->slice_y;
  1208. const int ps= (c->bits_per_raw_sample>8)+1;
  1209. AVFrame * const p= &f->picture;
  1210. av_assert1(width && height);
  1211. if(f->colorspace==0){
  1212. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1213. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1214. const int cx= x>>f->chroma_h_shift;
  1215. const int cy= y>>f->chroma_v_shift;
  1216. decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1217. decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1218. decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[2], 1);
  1219. }else{
  1220. decode_rgb_frame(fs, (uint32_t*)p->data[0] + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1221. }
  1222. emms_c();
  1223. return 0;
  1224. }
  1225. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1226. int v;
  1227. int i=0;
  1228. uint8_t state[CONTEXT_SIZE];
  1229. memset(state, 128, sizeof(state));
  1230. for(v=0; i<128 ; v++){
  1231. int len= get_symbol(c, state, 0) + 1;
  1232. if(len + i > 128) return -1;
  1233. while(len--){
  1234. quant_table[i] = scale*v;
  1235. i++;
  1236. //printf("%2d ",v);
  1237. //if(i%16==0) printf("\n");
  1238. }
  1239. }
  1240. for(i=1; i<128; i++){
  1241. quant_table[256-i]= -quant_table[i];
  1242. }
  1243. quant_table[128]= -quant_table[127];
  1244. return 2*v - 1;
  1245. }
  1246. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1247. int i;
  1248. int context_count=1;
  1249. for(i=0; i<5; i++){
  1250. context_count*= read_quant_table(c, quant_table[i], context_count);
  1251. if(context_count > 32768U){
  1252. return -1;
  1253. }
  1254. }
  1255. return (context_count+1)/2;
  1256. }
  1257. static int read_extra_header(FFV1Context *f){
  1258. RangeCoder * const c= &f->c;
  1259. uint8_t state[CONTEXT_SIZE];
  1260. int i, j, k;
  1261. uint8_t state2[32][CONTEXT_SIZE];
  1262. memset(state2, 128, sizeof(state2));
  1263. memset(state, 128, sizeof(state));
  1264. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1265. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1266. f->version= get_symbol(c, state, 0);
  1267. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1268. if(f->ac>1){
  1269. for(i=1; i<256; i++){
  1270. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1271. }
  1272. }
  1273. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1274. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1275. get_rac(c, state); //no chroma = false
  1276. f->chroma_h_shift= get_symbol(c, state, 0);
  1277. f->chroma_v_shift= get_symbol(c, state, 0);
  1278. get_rac(c, state); //transparency plane
  1279. f->plane_count= 2;
  1280. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1281. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1282. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1283. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1284. return -1;
  1285. }
  1286. f->quant_table_count= get_symbol(c, state, 0);
  1287. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1288. return -1;
  1289. for(i=0; i<f->quant_table_count; i++){
  1290. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1291. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1292. return -1;
  1293. }
  1294. }
  1295. if(allocate_initial_states(f) < 0)
  1296. return AVERROR(ENOMEM);
  1297. for(i=0; i<f->quant_table_count; i++){
  1298. if(get_rac(c, state)){
  1299. for(j=0; j<f->context_count[i]; j++){
  1300. for(k=0; k<CONTEXT_SIZE; k++){
  1301. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1302. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1303. }
  1304. }
  1305. }
  1306. }
  1307. return 0;
  1308. }
  1309. static int read_header(FFV1Context *f){
  1310. uint8_t state[CONTEXT_SIZE];
  1311. int i, j, context_count;
  1312. RangeCoder * const c= &f->slice_context[0]->c;
  1313. memset(state, 128, sizeof(state));
  1314. if(f->version < 2){
  1315. f->version= get_symbol(c, state, 0);
  1316. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1317. if(f->ac>1){
  1318. for(i=1; i<256; i++){
  1319. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1320. }
  1321. }
  1322. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1323. if(f->version>0)
  1324. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1325. get_rac(c, state); //no chroma = false
  1326. f->chroma_h_shift= get_symbol(c, state, 0);
  1327. f->chroma_v_shift= get_symbol(c, state, 0);
  1328. get_rac(c, state); //transparency plane
  1329. f->plane_count= 2;
  1330. }
  1331. if(f->colorspace==0){
  1332. if(f->avctx->bits_per_raw_sample<=8){
  1333. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1334. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1335. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1336. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1337. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1338. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1339. default:
  1340. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1341. return -1;
  1342. }
  1343. }else if(f->avctx->bits_per_raw_sample==9) {
  1344. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1345. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1346. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1347. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P9 ; f->packed_at_lsb=1; break;
  1348. default:
  1349. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1350. return -1;
  1351. }
  1352. }else if(f->avctx->bits_per_raw_sample==10) {
  1353. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1354. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1355. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P10; f->packed_at_lsb=1; break;
  1356. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P10; f->packed_at_lsb=1; break;
  1357. default:
  1358. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1359. return -1;
  1360. }
  1361. }else {
  1362. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1363. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1364. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1365. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1366. default:
  1367. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1368. return -1;
  1369. }
  1370. }
  1371. }else if(f->colorspace==1){
  1372. if(f->chroma_h_shift || f->chroma_v_shift){
  1373. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1374. return -1;
  1375. }
  1376. f->avctx->pix_fmt= PIX_FMT_RGB32;
  1377. }else{
  1378. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1379. return -1;
  1380. }
  1381. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1382. if(f->version < 2){
  1383. context_count= read_quant_tables(c, f->quant_table);
  1384. if(context_count < 0){
  1385. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1386. return -1;
  1387. }
  1388. }else{
  1389. f->slice_count= get_symbol(c, state, 0);
  1390. if(f->slice_count > (unsigned)MAX_SLICES)
  1391. return -1;
  1392. }
  1393. for(j=0; j<f->slice_count; j++){
  1394. FFV1Context *fs= f->slice_context[j];
  1395. fs->ac= f->ac;
  1396. fs->packed_at_lsb= f->packed_at_lsb;
  1397. if(f->version >= 2){
  1398. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1399. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1400. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1401. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1402. fs->slice_x /= f->num_h_slices;
  1403. fs->slice_y /= f->num_v_slices;
  1404. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1405. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1406. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1407. return -1;
  1408. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1409. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1410. return -1;
  1411. }
  1412. for(i=0; i<f->plane_count; i++){
  1413. PlaneContext * const p= &fs->plane[i];
  1414. if(f->version >= 2){
  1415. int idx=get_symbol(c, state, 0);
  1416. if(idx > (unsigned)f->quant_table_count){
  1417. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1418. return -1;
  1419. }
  1420. p->quant_table_index= idx;
  1421. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1422. context_count= f->context_count[idx];
  1423. }else{
  1424. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1425. }
  1426. if(p->context_count < context_count){
  1427. av_freep(&p->state);
  1428. av_freep(&p->vlc_state);
  1429. }
  1430. p->context_count= context_count;
  1431. }
  1432. }
  1433. return 0;
  1434. }
  1435. static av_cold int decode_init(AVCodecContext *avctx)
  1436. {
  1437. FFV1Context *f = avctx->priv_data;
  1438. common_init(avctx);
  1439. if(avctx->extradata && read_extra_header(f) < 0)
  1440. return -1;
  1441. if(init_slice_contexts(f) < 0)
  1442. return -1;
  1443. return 0;
  1444. }
  1445. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1446. const uint8_t *buf = avpkt->data;
  1447. int buf_size = avpkt->size;
  1448. FFV1Context *f = avctx->priv_data;
  1449. RangeCoder * const c= &f->slice_context[0]->c;
  1450. AVFrame * const p= &f->picture;
  1451. int bytes_read, i;
  1452. uint8_t keystate= 128;
  1453. const uint8_t *buf_p;
  1454. AVFrame *picture = data;
  1455. /* release previously stored data */
  1456. if (p->data[0])
  1457. avctx->release_buffer(avctx, p);
  1458. ff_init_range_decoder(c, buf, buf_size);
  1459. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1460. p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  1461. if(get_rac(c, &keystate)){
  1462. p->key_frame= 1;
  1463. if(read_header(f) < 0)
  1464. return -1;
  1465. if(init_slice_state(f) < 0)
  1466. return -1;
  1467. clear_state(f);
  1468. }else{
  1469. p->key_frame= 0;
  1470. }
  1471. if(f->ac>1){
  1472. int i;
  1473. for(i=1; i<256; i++){
  1474. c->one_state[i]= f->state_transition[i];
  1475. c->zero_state[256-i]= 256-c->one_state[i];
  1476. }
  1477. }
  1478. p->reference= 0;
  1479. if(avctx->get_buffer(avctx, p) < 0){
  1480. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1481. return -1;
  1482. }
  1483. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1484. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1485. if(!f->ac){
  1486. bytes_read = c->bytestream - c->bytestream_start - 1;
  1487. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1488. //printf("pos=%d\n", bytes_read);
  1489. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, (buf_size - bytes_read) * 8);
  1490. } else {
  1491. bytes_read = 0; /* avoid warning */
  1492. }
  1493. buf_p= buf + buf_size;
  1494. for(i=f->slice_count-1; i>0; i--){
  1495. FFV1Context *fs= f->slice_context[i];
  1496. int v= AV_RB24(buf_p-3)+3;
  1497. if(buf_p - buf <= v){
  1498. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1499. return -1;
  1500. }
  1501. buf_p -= v;
  1502. if(fs->ac){
  1503. ff_init_range_decoder(&fs->c, buf_p, v);
  1504. }else{
  1505. init_get_bits(&fs->gb, buf_p, v * 8);
  1506. }
  1507. }
  1508. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1509. f->picture_number++;
  1510. *picture= *p;
  1511. *data_size = sizeof(AVFrame);
  1512. return buf_size;
  1513. }
  1514. AVCodec ff_ffv1_decoder = {
  1515. .name = "ffv1",
  1516. .type = AVMEDIA_TYPE_VIDEO,
  1517. .id = CODEC_ID_FFV1,
  1518. .priv_data_size = sizeof(FFV1Context),
  1519. .init = decode_init,
  1520. .close = common_end,
  1521. .decode = decode_frame,
  1522. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ | CODEC_CAP_SLICE_THREADS,
  1523. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1524. };
  1525. #if CONFIG_FFV1_ENCODER
  1526. AVCodec ff_ffv1_encoder = {
  1527. .name = "ffv1",
  1528. .type = AVMEDIA_TYPE_VIDEO,
  1529. .id = CODEC_ID_FFV1,
  1530. .priv_data_size = sizeof(FFV1Context),
  1531. .init = encode_init,
  1532. .encode = encode_frame,
  1533. .close = common_end,
  1534. .capabilities = CODEC_CAP_SLICE_THREADS,
  1535. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV444P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_YUV420P9, PIX_FMT_YUV420P10, PIX_FMT_YUV422P10, PIX_FMT_NONE},
  1536. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1537. };
  1538. #endif