You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1006 lines
35KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. //#define DEBUG
  26. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "mpegvideo.h"
  31. #include "mpegvideo_common.h"
  32. #include "dnxhdenc.h"
  33. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  34. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  35. static const AVOption options[]={
  36. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), FF_OPT_TYPE_INT, {.dbl = 0}, 0, 1, VE},
  37. {NULL}
  38. };
  39. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  40. #define LAMBDA_FRAC_BITS 10
  41. static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  42. {
  43. int i;
  44. for (i = 0; i < 4; i++) {
  45. block[0] = pixels[0]; block[1] = pixels[1];
  46. block[2] = pixels[2]; block[3] = pixels[3];
  47. block[4] = pixels[4]; block[5] = pixels[5];
  48. block[6] = pixels[6]; block[7] = pixels[7];
  49. pixels += line_size;
  50. block += 8;
  51. }
  52. memcpy(block, block - 8, sizeof(*block) * 8);
  53. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  54. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  55. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  56. }
  57. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  58. {
  59. int i;
  60. block += 32;
  61. for (i = 0; i < 4; i++) {
  62. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  63. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  64. }
  65. }
  66. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
  67. int n, int qscale, int *overflow)
  68. {
  69. const uint8_t *scantable= ctx->intra_scantable.scantable;
  70. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  71. int last_non_zero = 0;
  72. int i;
  73. ctx->dsp.fdct(block);
  74. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  75. block[0] = (block[0] + 2) >> 2;
  76. for (i = 1; i < 64; ++i) {
  77. int j = scantable[i];
  78. int sign = block[j] >> 31;
  79. int level = (block[j] ^ sign) - sign;
  80. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  81. block[j] = (level ^ sign) - sign;
  82. if (level)
  83. last_non_zero = i;
  84. }
  85. return last_non_zero;
  86. }
  87. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  88. {
  89. int i, j, level, run;
  90. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  91. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  92. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  93. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  94. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  95. ctx->vlc_codes += max_level*2;
  96. ctx->vlc_bits += max_level*2;
  97. for (level = -max_level; level < max_level; level++) {
  98. for (run = 0; run < 2; run++) {
  99. int index = (level<<1)|run;
  100. int sign, offset = 0, alevel = level;
  101. MASK_ABS(sign, alevel);
  102. if (alevel > 64) {
  103. offset = (alevel-1)>>6;
  104. alevel -= offset<<6;
  105. }
  106. for (j = 0; j < 257; j++) {
  107. if (ctx->cid_table->ac_level[j] == alevel &&
  108. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  109. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  110. assert(!ctx->vlc_codes[index]);
  111. if (alevel) {
  112. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  113. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  114. } else {
  115. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  116. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  117. }
  118. break;
  119. }
  120. }
  121. assert(!alevel || j < 257);
  122. if (offset) {
  123. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  124. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  125. }
  126. }
  127. }
  128. for (i = 0; i < 62; i++) {
  129. int run = ctx->cid_table->run[i];
  130. assert(run < 63);
  131. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  132. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  133. }
  134. return 0;
  135. fail:
  136. return -1;
  137. }
  138. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  139. {
  140. // init first elem to 1 to avoid div by 0 in convert_matrix
  141. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  142. int qscale, i;
  143. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  144. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  145. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  146. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  147. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  148. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  149. if (ctx->cid_table->bit_depth == 8) {
  150. for (i = 1; i < 64; i++) {
  151. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  152. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  153. }
  154. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  155. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  156. for (i = 1; i < 64; i++) {
  157. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  158. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  159. }
  160. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  161. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  162. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  163. for (i = 0; i < 64; i++) {
  164. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  165. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  166. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  167. }
  168. }
  169. } else {
  170. // 10-bit
  171. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  172. for (i = 1; i < 64; i++) {
  173. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  174. // The quantization formula from the VC-3 standard is:
  175. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  176. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  177. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  178. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  179. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  180. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  181. // For 10-bit samples, p / s == 2
  182. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  183. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  184. }
  185. }
  186. }
  187. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  188. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  189. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  190. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  191. return 0;
  192. fail:
  193. return -1;
  194. }
  195. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  196. {
  197. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  198. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  199. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  200. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  201. ctx->qscale = 1;
  202. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  203. return 0;
  204. fail:
  205. return -1;
  206. }
  207. static int dnxhd_encode_init(AVCodecContext *avctx)
  208. {
  209. DNXHDEncContext *ctx = avctx->priv_data;
  210. int i, index, bit_depth;
  211. switch (avctx->pix_fmt) {
  212. case PIX_FMT_YUV422P:
  213. bit_depth = 8;
  214. break;
  215. case PIX_FMT_YUV422P10:
  216. bit_depth = 10;
  217. break;
  218. default:
  219. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  220. return -1;
  221. }
  222. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  223. if (!ctx->cid) {
  224. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  225. return -1;
  226. }
  227. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  228. index = ff_dnxhd_get_cid_table(ctx->cid);
  229. ctx->cid_table = &ff_dnxhd_cid_table[index];
  230. ctx->m.avctx = avctx;
  231. ctx->m.mb_intra = 1;
  232. ctx->m.h263_aic = 1;
  233. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  234. dsputil_init(&ctx->m.dsp, avctx);
  235. ff_dct_common_init(&ctx->m);
  236. if (!ctx->m.dct_quantize)
  237. ctx->m.dct_quantize = dct_quantize_c;
  238. if (ctx->cid_table->bit_depth == 10) {
  239. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  240. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  241. ctx->block_width_l2 = 4;
  242. } else {
  243. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  244. ctx->block_width_l2 = 3;
  245. }
  246. #if HAVE_MMX
  247. ff_dnxhd_init_mmx(ctx);
  248. #endif
  249. ctx->m.mb_height = (avctx->height + 15) / 16;
  250. ctx->m.mb_width = (avctx->width + 15) / 16;
  251. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  252. ctx->interlaced = 1;
  253. ctx->m.mb_height /= 2;
  254. }
  255. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  256. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  257. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  258. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  259. return -1;
  260. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  261. if (ctx->nitris_compat)
  262. ctx->min_padding = 1600;
  263. if (dnxhd_init_vlc(ctx) < 0)
  264. return -1;
  265. if (dnxhd_init_rc(ctx) < 0)
  266. return -1;
  267. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  268. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  269. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  270. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  271. ctx->frame.key_frame = 1;
  272. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  273. ctx->m.avctx->coded_frame = &ctx->frame;
  274. if (avctx->thread_count > MAX_THREADS) {
  275. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  276. return -1;
  277. }
  278. ctx->thread[0] = ctx;
  279. for (i = 1; i < avctx->thread_count; i++) {
  280. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  281. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  282. }
  283. return 0;
  284. fail: //for FF_ALLOCZ_OR_GOTO
  285. return -1;
  286. }
  287. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  288. {
  289. DNXHDEncContext *ctx = avctx->priv_data;
  290. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  291. memset(buf, 0, 640);
  292. memcpy(buf, header_prefix, 5);
  293. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  294. buf[6] = 0x80; // crc flag off
  295. buf[7] = 0xa0; // reserved
  296. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  297. AV_WB16(buf + 0x1a, avctx->width); // SPL
  298. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  299. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  300. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  301. AV_WB32(buf + 0x28, ctx->cid); // CID
  302. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  303. buf[0x5f] = 0x01; // UDL
  304. buf[0x167] = 0x02; // reserved
  305. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  306. buf[0x16d] = ctx->m.mb_height; // Ns
  307. buf[0x16f] = 0x10; // reserved
  308. ctx->msip = buf + 0x170;
  309. return 0;
  310. }
  311. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  312. {
  313. int nbits;
  314. if (diff < 0) {
  315. nbits = av_log2_16bit(-2*diff);
  316. diff--;
  317. } else {
  318. nbits = av_log2_16bit(2*diff);
  319. }
  320. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  321. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  322. }
  323. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  324. {
  325. int last_non_zero = 0;
  326. int slevel, i, j;
  327. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  328. ctx->m.last_dc[n] = block[0];
  329. for (i = 1; i <= last_index; i++) {
  330. j = ctx->m.intra_scantable.permutated[i];
  331. slevel = block[j];
  332. if (slevel) {
  333. int run_level = i - last_non_zero - 1;
  334. int rlevel = (slevel<<1)|!!run_level;
  335. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  336. if (run_level)
  337. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  338. last_non_zero = i;
  339. }
  340. }
  341. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  342. }
  343. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  344. {
  345. const uint8_t *weight_matrix;
  346. int level;
  347. int i;
  348. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  349. for (i = 1; i <= last_index; i++) {
  350. int j = ctx->m.intra_scantable.permutated[i];
  351. level = block[j];
  352. if (level) {
  353. if (level < 0) {
  354. level = (1-2*level) * qscale * weight_matrix[i];
  355. if (ctx->cid_table->bit_depth == 10) {
  356. if (weight_matrix[i] != 8)
  357. level += 8;
  358. level >>= 4;
  359. } else {
  360. if (weight_matrix[i] != 32)
  361. level += 32;
  362. level >>= 6;
  363. }
  364. level = -level;
  365. } else {
  366. level = (2*level+1) * qscale * weight_matrix[i];
  367. if (ctx->cid_table->bit_depth == 10) {
  368. if (weight_matrix[i] != 8)
  369. level += 8;
  370. level >>= 4;
  371. } else {
  372. if (weight_matrix[i] != 32)
  373. level += 32;
  374. level >>= 6;
  375. }
  376. }
  377. block[j] = level;
  378. }
  379. }
  380. }
  381. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  382. {
  383. int score = 0;
  384. int i;
  385. for (i = 0; i < 64; i++)
  386. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  387. return score;
  388. }
  389. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  390. {
  391. int last_non_zero = 0;
  392. int bits = 0;
  393. int i, j, level;
  394. for (i = 1; i <= last_index; i++) {
  395. j = ctx->m.intra_scantable.permutated[i];
  396. level = block[j];
  397. if (level) {
  398. int run_level = i - last_non_zero - 1;
  399. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  400. last_non_zero = i;
  401. }
  402. }
  403. return bits;
  404. }
  405. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  406. {
  407. const int bs = ctx->block_width_l2;
  408. const int bw = 1 << bs;
  409. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  410. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  411. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  412. DSPContext *dsp = &ctx->m.dsp;
  413. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  414. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  415. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  416. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  417. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  418. if (ctx->interlaced) {
  419. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  420. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  421. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  422. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  423. } else {
  424. dsp->clear_block(ctx->blocks[4]);
  425. dsp->clear_block(ctx->blocks[5]);
  426. dsp->clear_block(ctx->blocks[6]);
  427. dsp->clear_block(ctx->blocks[7]);
  428. }
  429. } else {
  430. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  431. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  432. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  433. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  434. }
  435. }
  436. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  437. {
  438. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  439. return component[i];
  440. }
  441. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  442. {
  443. DNXHDEncContext *ctx = avctx->priv_data;
  444. int mb_y = jobnr, mb_x;
  445. int qscale = ctx->qscale;
  446. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  447. ctx = ctx->thread[threadnr];
  448. ctx->m.last_dc[0] =
  449. ctx->m.last_dc[1] =
  450. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  451. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  452. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  453. int ssd = 0;
  454. int ac_bits = 0;
  455. int dc_bits = 0;
  456. int i;
  457. dnxhd_get_blocks(ctx, mb_x, mb_y);
  458. for (i = 0; i < 8; i++) {
  459. DCTELEM *src_block = ctx->blocks[i];
  460. int overflow, nbits, diff, last_index;
  461. int n = dnxhd_switch_matrix(ctx, i);
  462. memcpy(block, src_block, 64*sizeof(*block));
  463. last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  464. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  465. diff = block[0] - ctx->m.last_dc[n];
  466. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  467. else nbits = av_log2_16bit( 2*diff);
  468. assert(nbits < ctx->cid_table->bit_depth + 4);
  469. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  470. ctx->m.last_dc[n] = block[0];
  471. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  472. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  473. ctx->m.dsp.idct(block);
  474. ssd += dnxhd_ssd_block(block, src_block);
  475. }
  476. }
  477. ctx->mb_rc[qscale][mb].ssd = ssd;
  478. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  479. }
  480. return 0;
  481. }
  482. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  483. {
  484. DNXHDEncContext *ctx = avctx->priv_data;
  485. int mb_y = jobnr, mb_x;
  486. ctx = ctx->thread[threadnr];
  487. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  488. ctx->m.last_dc[0] =
  489. ctx->m.last_dc[1] =
  490. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  491. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  492. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  493. int qscale = ctx->mb_qscale[mb];
  494. int i;
  495. put_bits(&ctx->m.pb, 12, qscale<<1);
  496. dnxhd_get_blocks(ctx, mb_x, mb_y);
  497. for (i = 0; i < 8; i++) {
  498. DCTELEM *block = ctx->blocks[i];
  499. int last_index, overflow;
  500. int n = dnxhd_switch_matrix(ctx, i);
  501. last_index = ctx->m.dct_quantize(&ctx->m, block, 4&(2*i), qscale, &overflow);
  502. //START_TIMER;
  503. dnxhd_encode_block(ctx, block, last_index, n);
  504. //STOP_TIMER("encode_block");
  505. }
  506. }
  507. if (put_bits_count(&ctx->m.pb)&31)
  508. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  509. flush_put_bits(&ctx->m.pb);
  510. return 0;
  511. }
  512. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  513. {
  514. int mb_y, mb_x;
  515. int offset = 0;
  516. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  517. int thread_size;
  518. ctx->slice_offs[mb_y] = offset;
  519. ctx->slice_size[mb_y] = 0;
  520. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  521. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  522. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  523. }
  524. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  525. ctx->slice_size[mb_y] >>= 3;
  526. thread_size = ctx->slice_size[mb_y];
  527. offset += thread_size;
  528. }
  529. }
  530. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  531. {
  532. DNXHDEncContext *ctx = avctx->priv_data;
  533. int mb_y = jobnr, mb_x;
  534. ctx = ctx->thread[threadnr];
  535. if (ctx->cid_table->bit_depth == 8) {
  536. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  537. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  538. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  539. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  540. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
  541. ctx->mb_cmp[mb].value = varc;
  542. ctx->mb_cmp[mb].mb = mb;
  543. }
  544. } else { // 10-bit
  545. int const linesize = ctx->m.linesize >> 1;
  546. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  547. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  548. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  549. int sum = 0;
  550. int sqsum = 0;
  551. int mean, sqmean;
  552. int i, j;
  553. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  554. for (i = 0; i < 16; ++i) {
  555. for (j = 0; j < 16; ++j) {
  556. // Turn 16-bit pixels into 10-bit ones.
  557. int const sample = (unsigned)pix[j] >> 6;
  558. sum += sample;
  559. sqsum += sample * sample;
  560. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  561. }
  562. pix += linesize;
  563. }
  564. mean = sum >> 8; // 16*16 == 2^8
  565. sqmean = sqsum >> 8;
  566. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  567. ctx->mb_cmp[mb].mb = mb;
  568. }
  569. }
  570. return 0;
  571. }
  572. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  573. {
  574. int lambda, up_step, down_step;
  575. int last_lower = INT_MAX, last_higher = 0;
  576. int x, y, q;
  577. for (q = 1; q < avctx->qmax; q++) {
  578. ctx->qscale = q;
  579. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  580. }
  581. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  582. lambda = ctx->lambda;
  583. for (;;) {
  584. int bits = 0;
  585. int end = 0;
  586. if (lambda == last_higher) {
  587. lambda++;
  588. end = 1; // need to set final qscales/bits
  589. }
  590. for (y = 0; y < ctx->m.mb_height; y++) {
  591. for (x = 0; x < ctx->m.mb_width; x++) {
  592. unsigned min = UINT_MAX;
  593. int qscale = 1;
  594. int mb = y*ctx->m.mb_width+x;
  595. for (q = 1; q < avctx->qmax; q++) {
  596. unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  597. if (score < min) {
  598. min = score;
  599. qscale = q;
  600. }
  601. }
  602. bits += ctx->mb_rc[qscale][mb].bits;
  603. ctx->mb_qscale[mb] = qscale;
  604. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  605. }
  606. bits = (bits+31)&~31; // padding
  607. if (bits > ctx->frame_bits)
  608. break;
  609. }
  610. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  611. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  612. if (end) {
  613. if (bits > ctx->frame_bits)
  614. return -1;
  615. break;
  616. }
  617. if (bits < ctx->frame_bits) {
  618. last_lower = FFMIN(lambda, last_lower);
  619. if (last_higher != 0)
  620. lambda = (lambda+last_higher)>>1;
  621. else
  622. lambda -= down_step;
  623. down_step *= 5; // XXX tune ?
  624. up_step = 1<<LAMBDA_FRAC_BITS;
  625. lambda = FFMAX(1, lambda);
  626. if (lambda == last_lower)
  627. break;
  628. } else {
  629. last_higher = FFMAX(lambda, last_higher);
  630. if (last_lower != INT_MAX)
  631. lambda = (lambda+last_lower)>>1;
  632. else if ((int64_t)lambda + up_step > INT_MAX)
  633. return -1;
  634. else
  635. lambda += up_step;
  636. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  637. down_step = 1<<LAMBDA_FRAC_BITS;
  638. }
  639. }
  640. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  641. ctx->lambda = lambda;
  642. return 0;
  643. }
  644. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  645. {
  646. int bits = 0;
  647. int up_step = 1;
  648. int down_step = 1;
  649. int last_higher = 0;
  650. int last_lower = INT_MAX;
  651. int qscale;
  652. int x, y;
  653. qscale = ctx->qscale;
  654. for (;;) {
  655. bits = 0;
  656. ctx->qscale = qscale;
  657. // XXX avoid recalculating bits
  658. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  659. for (y = 0; y < ctx->m.mb_height; y++) {
  660. for (x = 0; x < ctx->m.mb_width; x++)
  661. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  662. bits = (bits+31)&~31; // padding
  663. if (bits > ctx->frame_bits)
  664. break;
  665. }
  666. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  667. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  668. if (bits < ctx->frame_bits) {
  669. if (qscale == 1)
  670. return 1;
  671. if (last_higher == qscale - 1) {
  672. qscale = last_higher;
  673. break;
  674. }
  675. last_lower = FFMIN(qscale, last_lower);
  676. if (last_higher != 0)
  677. qscale = (qscale+last_higher)>>1;
  678. else
  679. qscale -= down_step++;
  680. if (qscale < 1)
  681. qscale = 1;
  682. up_step = 1;
  683. } else {
  684. if (last_lower == qscale + 1)
  685. break;
  686. last_higher = FFMAX(qscale, last_higher);
  687. if (last_lower != INT_MAX)
  688. qscale = (qscale+last_lower)>>1;
  689. else
  690. qscale += up_step++;
  691. down_step = 1;
  692. if (qscale >= ctx->m.avctx->qmax)
  693. return -1;
  694. }
  695. }
  696. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  697. ctx->qscale = qscale;
  698. return 0;
  699. }
  700. #define BUCKET_BITS 8
  701. #define RADIX_PASSES 4
  702. #define NBUCKETS (1 << BUCKET_BITS)
  703. static inline int get_bucket(int value, int shift)
  704. {
  705. value >>= shift;
  706. value &= NBUCKETS - 1;
  707. return NBUCKETS - 1 - value;
  708. }
  709. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  710. {
  711. int i, j;
  712. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  713. for (i = 0; i < size; i++) {
  714. int v = data[i].value;
  715. for (j = 0; j < RADIX_PASSES; j++) {
  716. buckets[j][get_bucket(v, 0)]++;
  717. v >>= BUCKET_BITS;
  718. }
  719. assert(!v);
  720. }
  721. for (j = 0; j < RADIX_PASSES; j++) {
  722. int offset = size;
  723. for (i = NBUCKETS - 1; i >= 0; i--)
  724. buckets[j][i] = offset -= buckets[j][i];
  725. assert(!buckets[j][0]);
  726. }
  727. }
  728. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  729. {
  730. int shift = pass * BUCKET_BITS;
  731. int i;
  732. for (i = 0; i < size; i++) {
  733. int v = get_bucket(data[i].value, shift);
  734. int pos = buckets[v]++;
  735. dst[pos] = data[i];
  736. }
  737. }
  738. static void radix_sort(RCCMPEntry *data, int size)
  739. {
  740. int buckets[RADIX_PASSES][NBUCKETS];
  741. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  742. radix_count(data, size, buckets);
  743. radix_sort_pass(tmp, data, size, buckets[0], 0);
  744. radix_sort_pass(data, tmp, size, buckets[1], 1);
  745. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  746. radix_sort_pass(tmp, data, size, buckets[2], 2);
  747. radix_sort_pass(data, tmp, size, buckets[3], 3);
  748. }
  749. av_free(tmp);
  750. }
  751. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  752. {
  753. int max_bits = 0;
  754. int ret, x, y;
  755. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  756. return -1;
  757. for (y = 0; y < ctx->m.mb_height; y++) {
  758. for (x = 0; x < ctx->m.mb_width; x++) {
  759. int mb = y*ctx->m.mb_width+x;
  760. int delta_bits;
  761. ctx->mb_qscale[mb] = ctx->qscale;
  762. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  763. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  764. if (!RC_VARIANCE) {
  765. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  766. ctx->mb_cmp[mb].mb = mb;
  767. ctx->mb_cmp[mb].value = delta_bits ?
  768. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  769. : INT_MIN; //avoid increasing qscale
  770. }
  771. }
  772. max_bits += 31; //worst padding
  773. }
  774. if (!ret) {
  775. if (RC_VARIANCE)
  776. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  777. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  778. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  779. int mb = ctx->mb_cmp[x].mb;
  780. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  781. ctx->mb_qscale[mb] = ctx->qscale+1;
  782. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  783. }
  784. }
  785. return 0;
  786. }
  787. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  788. {
  789. int i;
  790. for (i = 0; i < 3; i++) {
  791. ctx->frame.data[i] = frame->data[i];
  792. ctx->frame.linesize[i] = frame->linesize[i];
  793. }
  794. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  795. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  796. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  797. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  798. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  799. }
  800. ctx->frame.interlaced_frame = frame->interlaced_frame;
  801. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  802. }
  803. static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
  804. {
  805. DNXHDEncContext *ctx = avctx->priv_data;
  806. int first_field = 1;
  807. int offset, i, ret;
  808. if (buf_size < ctx->cid_table->frame_size) {
  809. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  810. return -1;
  811. }
  812. dnxhd_load_picture(ctx, data);
  813. encode_coding_unit:
  814. for (i = 0; i < 3; i++) {
  815. ctx->src[i] = ctx->frame.data[i];
  816. if (ctx->interlaced && ctx->cur_field)
  817. ctx->src[i] += ctx->frame.linesize[i];
  818. }
  819. dnxhd_write_header(avctx, buf);
  820. if (avctx->mb_decision == FF_MB_DECISION_RD)
  821. ret = dnxhd_encode_rdo(avctx, ctx);
  822. else
  823. ret = dnxhd_encode_fast(avctx, ctx);
  824. if (ret < 0) {
  825. av_log(avctx, AV_LOG_ERROR,
  826. "picture could not fit ratecontrol constraints, increase qmax\n");
  827. return -1;
  828. }
  829. dnxhd_setup_threads_slices(ctx);
  830. offset = 0;
  831. for (i = 0; i < ctx->m.mb_height; i++) {
  832. AV_WB32(ctx->msip + i * 4, offset);
  833. offset += ctx->slice_size[i];
  834. assert(!(ctx->slice_size[i] & 3));
  835. }
  836. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  837. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  838. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  839. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  840. if (ctx->interlaced && first_field) {
  841. first_field = 0;
  842. ctx->cur_field ^= 1;
  843. buf += ctx->cid_table->coding_unit_size;
  844. buf_size -= ctx->cid_table->coding_unit_size;
  845. goto encode_coding_unit;
  846. }
  847. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  848. return ctx->cid_table->frame_size;
  849. }
  850. static int dnxhd_encode_end(AVCodecContext *avctx)
  851. {
  852. DNXHDEncContext *ctx = avctx->priv_data;
  853. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  854. int i;
  855. av_free(ctx->vlc_codes-max_level*2);
  856. av_free(ctx->vlc_bits -max_level*2);
  857. av_freep(&ctx->run_codes);
  858. av_freep(&ctx->run_bits);
  859. av_freep(&ctx->mb_bits);
  860. av_freep(&ctx->mb_qscale);
  861. av_freep(&ctx->mb_rc);
  862. av_freep(&ctx->mb_cmp);
  863. av_freep(&ctx->slice_size);
  864. av_freep(&ctx->slice_offs);
  865. av_freep(&ctx->qmatrix_c);
  866. av_freep(&ctx->qmatrix_l);
  867. av_freep(&ctx->qmatrix_c16);
  868. av_freep(&ctx->qmatrix_l16);
  869. for (i = 1; i < avctx->thread_count; i++)
  870. av_freep(&ctx->thread[i]);
  871. return 0;
  872. }
  873. AVCodec ff_dnxhd_encoder = {
  874. .name = "dnxhd",
  875. .type = AVMEDIA_TYPE_VIDEO,
  876. .id = CODEC_ID_DNXHD,
  877. .priv_data_size = sizeof(DNXHDEncContext),
  878. .init = dnxhd_encode_init,
  879. .encode = dnxhd_encode_picture,
  880. .close = dnxhd_encode_end,
  881. .capabilities = CODEC_CAP_SLICE_THREADS,
  882. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_YUV422P10, PIX_FMT_NONE},
  883. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  884. .priv_class = &class,
  885. };