You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

379 lines
12KB

  1. /*
  2. * Atrac 1 compatible decoder
  3. * Copyright (c) 2009 Maxim Poliakovski
  4. * Copyright (c) 2009 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Atrac 1 compatible decoder.
  25. * This decoder handles raw ATRAC1 data and probably SDDS data.
  26. */
  27. /* Many thanks to Tim Craig for all the help! */
  28. #include <math.h>
  29. #include <stddef.h>
  30. #include <stdio.h>
  31. #include "avcodec.h"
  32. #include "get_bits.h"
  33. #include "dsputil.h"
  34. #include "fft.h"
  35. #include "sinewin.h"
  36. #include "atrac.h"
  37. #include "atrac1data.h"
  38. #define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit
  39. #define AT1_SU_SIZE 212 ///< number of bytes in a sound unit
  40. #define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit
  41. #define AT1_FRAME_SIZE AT1_SU_SIZE * 2
  42. #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8
  43. #define AT1_MAX_CHANNELS 2
  44. #define AT1_QMF_BANDS 3
  45. #define IDX_LOW_BAND 0
  46. #define IDX_MID_BAND 1
  47. #define IDX_HIGH_BAND 2
  48. /**
  49. * Sound unit struct, one unit is used per channel
  50. */
  51. typedef struct {
  52. int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band
  53. int num_bfus; ///< number of Block Floating Units
  54. float* spectrum[2];
  55. DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES]; ///< mdct buffer
  56. DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES]; ///< mdct buffer
  57. DECLARE_ALIGNED(32, float, fst_qmf_delay)[46]; ///< delay line for the 1st stacked QMF filter
  58. DECLARE_ALIGNED(32, float, snd_qmf_delay)[46]; ///< delay line for the 2nd stacked QMF filter
  59. DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23]; ///< delay line for the last stacked QMF filter
  60. } AT1SUCtx;
  61. /**
  62. * The atrac1 context, holds all needed parameters for decoding
  63. */
  64. typedef struct {
  65. AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit
  66. DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES]; ///< the mdct spectrum buffer
  67. DECLARE_ALIGNED(32, float, low)[256];
  68. DECLARE_ALIGNED(32, float, mid)[256];
  69. DECLARE_ALIGNED(32, float, high)[512];
  70. float* bands[3];
  71. DECLARE_ALIGNED(32, float, out_samples)[AT1_MAX_CHANNELS][AT1_SU_SAMPLES];
  72. FFTContext mdct_ctx[3];
  73. int channels;
  74. DSPContext dsp;
  75. } AT1Ctx;
  76. /** size of the transform in samples in the long mode for each QMF band */
  77. static const uint16_t samples_per_band[3] = {128, 128, 256};
  78. static const uint8_t mdct_long_nbits[3] = {7, 7, 8};
  79. static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
  80. int rev_spec)
  81. {
  82. FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
  83. int transf_size = 1 << nbits;
  84. if (rev_spec) {
  85. int i;
  86. for (i = 0; i < transf_size / 2; i++)
  87. FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
  88. }
  89. mdct_context->imdct_half(mdct_context, out, spec);
  90. }
  91. static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
  92. {
  93. int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
  94. unsigned int start_pos, ref_pos = 0, pos = 0;
  95. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  96. float *prev_buf;
  97. int j;
  98. band_samples = samples_per_band[band_num];
  99. log2_block_count = su->log2_block_count[band_num];
  100. /* number of mdct blocks in the current QMF band: 1 - for long mode */
  101. /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
  102. num_blocks = 1 << log2_block_count;
  103. if (num_blocks == 1) {
  104. /* mdct block size in samples: 128 (long mode, low & mid bands), */
  105. /* 256 (long mode, high band) and 32 (short mode, all bands) */
  106. block_size = band_samples >> log2_block_count;
  107. /* calc transform size in bits according to the block_size_mode */
  108. nbits = mdct_long_nbits[band_num] - log2_block_count;
  109. if (nbits != 5 && nbits != 7 && nbits != 8)
  110. return -1;
  111. } else {
  112. block_size = 32;
  113. nbits = 5;
  114. }
  115. start_pos = 0;
  116. prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
  117. for (j=0; j < num_blocks; j++) {
  118. at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
  119. /* overlap and window */
  120. q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
  121. &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
  122. prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
  123. start_pos += block_size;
  124. pos += block_size;
  125. }
  126. if (num_blocks == 1)
  127. memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
  128. ref_pos += band_samples;
  129. }
  130. /* Swap buffers so the mdct overlap works */
  131. FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
  132. return 0;
  133. }
  134. /**
  135. * Parse the block size mode byte
  136. */
  137. static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
  138. {
  139. int log2_block_count_tmp, i;
  140. for (i = 0; i < 2; i++) {
  141. /* low and mid band */
  142. log2_block_count_tmp = get_bits(gb, 2);
  143. if (log2_block_count_tmp & 1)
  144. return -1;
  145. log2_block_cnt[i] = 2 - log2_block_count_tmp;
  146. }
  147. /* high band */
  148. log2_block_count_tmp = get_bits(gb, 2);
  149. if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
  150. return -1;
  151. log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
  152. skip_bits(gb, 2);
  153. return 0;
  154. }
  155. static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
  156. float spec[AT1_SU_SAMPLES])
  157. {
  158. int bits_used, band_num, bfu_num, i;
  159. uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU
  160. uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU
  161. /* parse the info byte (2nd byte) telling how much BFUs were coded */
  162. su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
  163. /* calc number of consumed bits:
  164. num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
  165. + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
  166. bits_used = su->num_bfus * 10 + 32 +
  167. bfu_amount_tab2[get_bits(gb, 2)] +
  168. (bfu_amount_tab3[get_bits(gb, 3)] << 1);
  169. /* get word length index (idwl) for each BFU */
  170. for (i = 0; i < su->num_bfus; i++)
  171. idwls[i] = get_bits(gb, 4);
  172. /* get scalefactor index (idsf) for each BFU */
  173. for (i = 0; i < su->num_bfus; i++)
  174. idsfs[i] = get_bits(gb, 6);
  175. /* zero idwl/idsf for empty BFUs */
  176. for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
  177. idwls[i] = idsfs[i] = 0;
  178. /* read in the spectral data and reconstruct MDCT spectrum of this channel */
  179. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  180. for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
  181. int pos;
  182. int num_specs = specs_per_bfu[bfu_num];
  183. int word_len = !!idwls[bfu_num] + idwls[bfu_num];
  184. float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
  185. bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
  186. /* check for bitstream overflow */
  187. if (bits_used > AT1_SU_MAX_BITS)
  188. return -1;
  189. /* get the position of the 1st spec according to the block size mode */
  190. pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
  191. if (word_len) {
  192. float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
  193. for (i = 0; i < num_specs; i++) {
  194. /* read in a quantized spec and convert it to
  195. * signed int and then inverse quantization
  196. */
  197. spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
  198. }
  199. } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
  200. memset(&spec[pos], 0, num_specs * sizeof(float));
  201. }
  202. }
  203. }
  204. return 0;
  205. }
  206. static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
  207. {
  208. float temp[256];
  209. float iqmf_temp[512 + 46];
  210. /* combine low and middle bands */
  211. atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
  212. /* delay the signal of the high band by 23 samples */
  213. memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23);
  214. memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256);
  215. /* combine (low + middle) and high bands */
  216. atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
  217. }
  218. static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
  219. int *data_size, AVPacket *avpkt)
  220. {
  221. const uint8_t *buf = avpkt->data;
  222. int buf_size = avpkt->size;
  223. AT1Ctx *q = avctx->priv_data;
  224. int ch, ret, i;
  225. GetBitContext gb;
  226. float* samples = data;
  227. if (buf_size < 212 * q->channels) {
  228. av_log(avctx, AV_LOG_ERROR,"Not enought data to decode!\n");
  229. return -1;
  230. }
  231. for (ch = 0; ch < q->channels; ch++) {
  232. AT1SUCtx* su = &q->SUs[ch];
  233. init_get_bits(&gb, &buf[212 * ch], 212 * 8);
  234. /* parse block_size_mode, 1st byte */
  235. ret = at1_parse_bsm(&gb, su->log2_block_count);
  236. if (ret < 0)
  237. return ret;
  238. ret = at1_unpack_dequant(&gb, su, q->spec);
  239. if (ret < 0)
  240. return ret;
  241. ret = at1_imdct_block(su, q);
  242. if (ret < 0)
  243. return ret;
  244. at1_subband_synthesis(q, su, q->out_samples[ch]);
  245. }
  246. /* interleave; FIXME, should create/use a DSP function */
  247. if (q->channels == 1) {
  248. /* mono */
  249. memcpy(samples, q->out_samples[0], AT1_SU_SAMPLES * 4);
  250. } else {
  251. /* stereo */
  252. for (i = 0; i < AT1_SU_SAMPLES; i++) {
  253. samples[i * 2] = q->out_samples[0][i];
  254. samples[i * 2 + 1] = q->out_samples[1][i];
  255. }
  256. }
  257. *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
  258. return avctx->block_align;
  259. }
  260. static av_cold int atrac1_decode_init(AVCodecContext *avctx)
  261. {
  262. AT1Ctx *q = avctx->priv_data;
  263. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  264. q->channels = avctx->channels;
  265. /* Init the mdct transforms */
  266. ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
  267. ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
  268. ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));
  269. ff_init_ff_sine_windows(5);
  270. atrac_generate_tables();
  271. dsputil_init(&q->dsp, avctx);
  272. q->bands[0] = q->low;
  273. q->bands[1] = q->mid;
  274. q->bands[2] = q->high;
  275. /* Prepare the mdct overlap buffers */
  276. q->SUs[0].spectrum[0] = q->SUs[0].spec1;
  277. q->SUs[0].spectrum[1] = q->SUs[0].spec2;
  278. q->SUs[1].spectrum[0] = q->SUs[1].spec1;
  279. q->SUs[1].spectrum[1] = q->SUs[1].spec2;
  280. return 0;
  281. }
  282. static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
  283. AT1Ctx *q = avctx->priv_data;
  284. ff_mdct_end(&q->mdct_ctx[0]);
  285. ff_mdct_end(&q->mdct_ctx[1]);
  286. ff_mdct_end(&q->mdct_ctx[2]);
  287. return 0;
  288. }
  289. AVCodec ff_atrac1_decoder = {
  290. .name = "atrac1",
  291. .type = AVMEDIA_TYPE_AUDIO,
  292. .id = CODEC_ID_ATRAC1,
  293. .priv_data_size = sizeof(AT1Ctx),
  294. .init = atrac1_decode_init,
  295. .close = atrac1_decode_end,
  296. .decode = atrac1_decode_frame,
  297. .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
  298. };