You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1238 lines
45KB

  1. /*
  2. * AMR wideband decoder
  3. * Copyright (c) 2010 Marcelo Galvao Povoa
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A particular PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AMR wideband decoder
  24. */
  25. #include "libavutil/lfg.h"
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "lsp.h"
  29. #include "celp_math.h"
  30. #include "celp_filters.h"
  31. #include "acelp_filters.h"
  32. #include "acelp_vectors.h"
  33. #include "acelp_pitch_delay.h"
  34. #define AMR_USE_16BIT_TABLES
  35. #include "amr.h"
  36. #include "amrwbdata.h"
  37. typedef struct {
  38. AMRWBFrame frame; ///< AMRWB parameters decoded from bitstream
  39. enum Mode fr_cur_mode; ///< mode index of current frame
  40. uint8_t fr_quality; ///< frame quality index (FQI)
  41. float isf_cur[LP_ORDER]; ///< working ISF vector from current frame
  42. float isf_q_past[LP_ORDER]; ///< quantized ISF vector of the previous frame
  43. float isf_past_final[LP_ORDER]; ///< final processed ISF vector of the previous frame
  44. double isp[4][LP_ORDER]; ///< ISP vectors from current frame
  45. double isp_sub4_past[LP_ORDER]; ///< ISP vector for the 4th subframe of the previous frame
  46. float lp_coef[4][LP_ORDER]; ///< Linear Prediction Coefficients from ISP vector
  47. uint8_t base_pitch_lag; ///< integer part of pitch lag for the next relative subframe
  48. uint8_t pitch_lag_int; ///< integer part of pitch lag of the previous subframe
  49. float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE]; ///< current excitation and all necessary excitation history
  50. float *excitation; ///< points to current excitation in excitation_buf[]
  51. float pitch_vector[AMRWB_SFR_SIZE]; ///< adaptive codebook (pitch) vector for current subframe
  52. float fixed_vector[AMRWB_SFR_SIZE]; ///< algebraic codebook (fixed) vector for current subframe
  53. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  54. float pitch_gain[6]; ///< quantified pitch gains for the current and previous five subframes
  55. float fixed_gain[2]; ///< quantified fixed gains for the current and previous subframes
  56. float tilt_coef; ///< {beta_1} related to the voicing of the previous subframe
  57. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness to determine "onset"
  58. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  59. float prev_tr_gain; ///< previous initial gain used by noise enhancer for threshold
  60. float samples_az[LP_ORDER + AMRWB_SFR_SIZE]; ///< low-band samples and memory from synthesis at 12.8kHz
  61. float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE]; ///< low-band samples and memory processed for upsampling
  62. float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k]; ///< high-band samples and memory from synthesis at 16kHz
  63. float hpf_31_mem[2], hpf_400_mem[2]; ///< previous values in the high pass filters
  64. float demph_mem[1]; ///< previous value in the de-emphasis filter
  65. float bpf_6_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band band pass filter
  66. float lpf_7_mem[HB_FIR_SIZE]; ///< previous values in the high-band low pass filter
  67. AVLFG prng; ///< random number generator for white noise excitation
  68. uint8_t first_frame; ///< flag active during decoding of the first frame
  69. } AMRWBContext;
  70. static av_cold int amrwb_decode_init(AVCodecContext *avctx)
  71. {
  72. AMRWBContext *ctx = avctx->priv_data;
  73. int i;
  74. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  75. av_lfg_init(&ctx->prng, 1);
  76. ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
  77. ctx->first_frame = 1;
  78. for (i = 0; i < LP_ORDER; i++)
  79. ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
  80. for (i = 0; i < 4; i++)
  81. ctx->prediction_error[i] = MIN_ENERGY;
  82. return 0;
  83. }
  84. /**
  85. * Decode the frame header in the "MIME/storage" format. This format
  86. * is simpler and does not carry the auxiliary information of the frame
  87. *
  88. * @param[in] ctx The Context
  89. * @param[in] buf Pointer to the input buffer
  90. *
  91. * @return The decoded header length in bytes
  92. */
  93. static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
  94. {
  95. GetBitContext gb;
  96. init_get_bits(&gb, buf, 8);
  97. /* Decode frame header (1st octet) */
  98. skip_bits(&gb, 1); // padding bit
  99. ctx->fr_cur_mode = get_bits(&gb, 4);
  100. ctx->fr_quality = get_bits1(&gb);
  101. skip_bits(&gb, 2); // padding bits
  102. return 1;
  103. }
  104. /**
  105. * Decodes quantized ISF vectors using 36-bit indexes (6K60 mode only)
  106. *
  107. * @param[in] ind Array of 5 indexes
  108. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  109. *
  110. */
  111. static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
  112. {
  113. int i;
  114. for (i = 0; i < 9; i++)
  115. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  116. for (i = 0; i < 7; i++)
  117. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  118. for (i = 0; i < 5; i++)
  119. isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
  120. for (i = 0; i < 4; i++)
  121. isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
  122. for (i = 0; i < 7; i++)
  123. isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
  124. }
  125. /**
  126. * Decodes quantized ISF vectors using 46-bit indexes (except 6K60 mode)
  127. *
  128. * @param[in] ind Array of 7 indexes
  129. * @param[out] isf_q Buffer for isf_q[LP_ORDER]
  130. *
  131. */
  132. static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
  133. {
  134. int i;
  135. for (i = 0; i < 9; i++)
  136. isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
  137. for (i = 0; i < 7; i++)
  138. isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
  139. for (i = 0; i < 3; i++)
  140. isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
  141. for (i = 0; i < 3; i++)
  142. isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
  143. for (i = 0; i < 3; i++)
  144. isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
  145. for (i = 0; i < 3; i++)
  146. isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
  147. for (i = 0; i < 4; i++)
  148. isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
  149. }
  150. /**
  151. * Apply mean and past ISF values using the prediction factor
  152. * Updates past ISF vector
  153. *
  154. * @param[in,out] isf_q Current quantized ISF
  155. * @param[in,out] isf_past Past quantized ISF
  156. *
  157. */
  158. static void isf_add_mean_and_past(float *isf_q, float *isf_past)
  159. {
  160. int i;
  161. float tmp;
  162. for (i = 0; i < LP_ORDER; i++) {
  163. tmp = isf_q[i];
  164. isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
  165. isf_q[i] += PRED_FACTOR * isf_past[i];
  166. isf_past[i] = tmp;
  167. }
  168. }
  169. /**
  170. * Interpolate the fourth ISP vector from current and past frames
  171. * to obtain a ISP vector for each subframe
  172. *
  173. * @param[in,out] isp_q ISPs for each subframe
  174. * @param[in] isp4_past Past ISP for subframe 4
  175. */
  176. static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
  177. {
  178. int i, k;
  179. for (k = 0; k < 3; k++) {
  180. float c = isfp_inter[k];
  181. for (i = 0; i < LP_ORDER; i++)
  182. isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
  183. }
  184. }
  185. /**
  186. * Decode an adaptive codebook index into pitch lag (except 6k60, 8k85 modes)
  187. * Calculate integer lag and fractional lag always using 1/4 resolution
  188. * In 1st and 3rd subframes the index is relative to last subframe integer lag
  189. *
  190. * @param[out] lag_int Decoded integer pitch lag
  191. * @param[out] lag_frac Decoded fractional pitch lag
  192. * @param[in] pitch_index Adaptive codebook pitch index
  193. * @param[in,out] base_lag_int Base integer lag used in relative subframes
  194. * @param[in] subframe Current subframe index (0 to 3)
  195. */
  196. static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
  197. uint8_t *base_lag_int, int subframe)
  198. {
  199. if (subframe == 0 || subframe == 2) {
  200. if (pitch_index < 376) {
  201. *lag_int = (pitch_index + 137) >> 2;
  202. *lag_frac = pitch_index - (*lag_int << 2) + 136;
  203. } else if (pitch_index < 440) {
  204. *lag_int = (pitch_index + 257 - 376) >> 1;
  205. *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
  206. /* the actual resolution is 1/2 but expressed as 1/4 */
  207. } else {
  208. *lag_int = pitch_index - 280;
  209. *lag_frac = 0;
  210. }
  211. /* minimum lag for next subframe */
  212. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  213. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  214. // XXX: the spec states clearly that *base_lag_int should be
  215. // the nearest integer to *lag_int (minus 8), but the ref code
  216. // actually always uses its floor, I'm following the latter
  217. } else {
  218. *lag_int = (pitch_index + 1) >> 2;
  219. *lag_frac = pitch_index - (*lag_int << 2);
  220. *lag_int += *base_lag_int;
  221. }
  222. }
  223. /**
  224. * Decode a adaptive codebook index into pitch lag for 8k85 and 6k60 modes
  225. * Description is analogous to decode_pitch_lag_high, but in 6k60 relative
  226. * index is used for all subframes except the first
  227. */
  228. static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
  229. uint8_t *base_lag_int, int subframe, enum Mode mode)
  230. {
  231. if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
  232. if (pitch_index < 116) {
  233. *lag_int = (pitch_index + 69) >> 1;
  234. *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
  235. } else {
  236. *lag_int = pitch_index - 24;
  237. *lag_frac = 0;
  238. }
  239. // XXX: same problem as before
  240. *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
  241. AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
  242. } else {
  243. *lag_int = (pitch_index + 1) >> 1;
  244. *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
  245. *lag_int += *base_lag_int;
  246. }
  247. }
  248. /**
  249. * Find the pitch vector by interpolating the past excitation at the
  250. * pitch delay, which is obtained in this function
  251. *
  252. * @param[in,out] ctx The context
  253. * @param[in] amr_subframe Current subframe data
  254. * @param[in] subframe Current subframe index (0 to 3)
  255. */
  256. static void decode_pitch_vector(AMRWBContext *ctx,
  257. const AMRWBSubFrame *amr_subframe,
  258. const int subframe)
  259. {
  260. int pitch_lag_int, pitch_lag_frac;
  261. int i;
  262. float *exc = ctx->excitation;
  263. enum Mode mode = ctx->fr_cur_mode;
  264. if (mode <= MODE_8k85) {
  265. decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  266. &ctx->base_pitch_lag, subframe, mode);
  267. } else
  268. decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
  269. &ctx->base_pitch_lag, subframe);
  270. ctx->pitch_lag_int = pitch_lag_int;
  271. pitch_lag_int += pitch_lag_frac > 0;
  272. /* Calculate the pitch vector by interpolating the past excitation at the
  273. pitch lag using a hamming windowed sinc function */
  274. ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
  275. ac_inter, 4,
  276. pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
  277. LP_ORDER, AMRWB_SFR_SIZE + 1);
  278. /* Check which pitch signal path should be used
  279. * 6k60 and 8k85 modes have the ltp flag set to 0 */
  280. if (amr_subframe->ltp) {
  281. memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
  282. } else {
  283. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  284. ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
  285. 0.18 * exc[i + 1];
  286. memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
  287. }
  288. }
  289. /** Get x bits in the index interval [lsb,lsb+len-1] inclusive */
  290. #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
  291. /** Get the bit at specified position */
  292. #define BIT_POS(x, p) (((x) >> (p)) & 1)
  293. /**
  294. * The next six functions decode_[i]p_track decode exactly i pulses
  295. * positions and amplitudes (-1 or 1) in a subframe track using
  296. * an encoded pulse indexing (TS 26.190 section 5.8.2)
  297. *
  298. * The results are given in out[], in which a negative number means
  299. * amplitude -1 and vice versa (i.e., ampl(x) = x / abs(x) )
  300. *
  301. * @param[out] out Output buffer (writes i elements)
  302. * @param[in] code Pulse index (no. of bits varies, see below)
  303. * @param[in] m (log2) Number of potential positions
  304. * @param[in] off Offset for decoded positions
  305. */
  306. static inline void decode_1p_track(int *out, int code, int m, int off)
  307. {
  308. int pos = BIT_STR(code, 0, m) + off; ///code: m+1 bits
  309. out[0] = BIT_POS(code, m) ? -pos : pos;
  310. }
  311. static inline void decode_2p_track(int *out, int code, int m, int off) ///code: 2m+1 bits
  312. {
  313. int pos0 = BIT_STR(code, m, m) + off;
  314. int pos1 = BIT_STR(code, 0, m) + off;
  315. out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
  316. out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
  317. out[1] = pos0 > pos1 ? -out[1] : out[1];
  318. }
  319. static void decode_3p_track(int *out, int code, int m, int off) ///code: 3m+1 bits
  320. {
  321. int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
  322. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  323. m - 1, off + half_2p);
  324. decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
  325. }
  326. static void decode_4p_track(int *out, int code, int m, int off) ///code: 4m bits
  327. {
  328. int half_4p, subhalf_2p;
  329. int b_offset = 1 << (m - 1);
  330. switch (BIT_STR(code, 4*m - 2, 2)) { /* case ID (2 bits) */
  331. case 0: /* 0 pulses in A, 4 pulses in B or vice versa */
  332. half_4p = BIT_POS(code, 4*m - 3) << (m - 1); // which has 4 pulses
  333. subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
  334. decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
  335. m - 2, off + half_4p + subhalf_2p);
  336. decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
  337. m - 1, off + half_4p);
  338. break;
  339. case 1: /* 1 pulse in A, 3 pulses in B */
  340. decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
  341. m - 1, off);
  342. decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
  343. m - 1, off + b_offset);
  344. break;
  345. case 2: /* 2 pulses in each half */
  346. decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
  347. m - 1, off);
  348. decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
  349. m - 1, off + b_offset);
  350. break;
  351. case 3: /* 3 pulses in A, 1 pulse in B */
  352. decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
  353. m - 1, off);
  354. decode_1p_track(out + 3, BIT_STR(code, 0, m),
  355. m - 1, off + b_offset);
  356. break;
  357. }
  358. }
  359. static void decode_5p_track(int *out, int code, int m, int off) ///code: 5m bits
  360. {
  361. int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
  362. decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
  363. m - 1, off + half_3p);
  364. decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
  365. }
  366. static void decode_6p_track(int *out, int code, int m, int off) ///code: 6m-2 bits
  367. {
  368. int b_offset = 1 << (m - 1);
  369. /* which half has more pulses in cases 0 to 2 */
  370. int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
  371. int half_other = b_offset - half_more;
  372. switch (BIT_STR(code, 6*m - 4, 2)) { /* case ID (2 bits) */
  373. case 0: /* 0 pulses in A, 6 pulses in B or vice versa */
  374. decode_1p_track(out, BIT_STR(code, 0, m),
  375. m - 1, off + half_more);
  376. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  377. m - 1, off + half_more);
  378. break;
  379. case 1: /* 1 pulse in A, 5 pulses in B or vice versa */
  380. decode_1p_track(out, BIT_STR(code, 0, m),
  381. m - 1, off + half_other);
  382. decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
  383. m - 1, off + half_more);
  384. break;
  385. case 2: /* 2 pulses in A, 4 pulses in B or vice versa */
  386. decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
  387. m - 1, off + half_other);
  388. decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
  389. m - 1, off + half_more);
  390. break;
  391. case 3: /* 3 pulses in A, 3 pulses in B */
  392. decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
  393. m - 1, off);
  394. decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
  395. m - 1, off + b_offset);
  396. break;
  397. }
  398. }
  399. /**
  400. * Decode the algebraic codebook index to pulse positions and signs,
  401. * then construct the algebraic codebook vector
  402. *
  403. * @param[out] fixed_vector Buffer for the fixed codebook excitation
  404. * @param[in] pulse_hi MSBs part of the pulse index array (higher modes only)
  405. * @param[in] pulse_lo LSBs part of the pulse index array
  406. * @param[in] mode Mode of the current frame
  407. */
  408. static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
  409. const uint16_t *pulse_lo, const enum Mode mode)
  410. {
  411. /* sig_pos stores for each track the decoded pulse position indexes
  412. * (1-based) multiplied by its corresponding amplitude (+1 or -1) */
  413. int sig_pos[4][6];
  414. int spacing = (mode == MODE_6k60) ? 2 : 4;
  415. int i, j;
  416. switch (mode) {
  417. case MODE_6k60:
  418. for (i = 0; i < 2; i++)
  419. decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
  420. break;
  421. case MODE_8k85:
  422. for (i = 0; i < 4; i++)
  423. decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
  424. break;
  425. case MODE_12k65:
  426. for (i = 0; i < 4; i++)
  427. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  428. break;
  429. case MODE_14k25:
  430. for (i = 0; i < 2; i++)
  431. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  432. for (i = 2; i < 4; i++)
  433. decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
  434. break;
  435. case MODE_15k85:
  436. for (i = 0; i < 4; i++)
  437. decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
  438. break;
  439. case MODE_18k25:
  440. for (i = 0; i < 4; i++)
  441. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  442. ((int) pulse_hi[i] << 14), 4, 1);
  443. break;
  444. case MODE_19k85:
  445. for (i = 0; i < 2; i++)
  446. decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
  447. ((int) pulse_hi[i] << 10), 4, 1);
  448. for (i = 2; i < 4; i++)
  449. decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
  450. ((int) pulse_hi[i] << 14), 4, 1);
  451. break;
  452. case MODE_23k05:
  453. case MODE_23k85:
  454. for (i = 0; i < 4; i++)
  455. decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
  456. ((int) pulse_hi[i] << 11), 4, 1);
  457. break;
  458. }
  459. memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
  460. for (i = 0; i < 4; i++)
  461. for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
  462. int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
  463. fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
  464. }
  465. }
  466. /**
  467. * Decode pitch gain and fixed gain correction factor
  468. *
  469. * @param[in] vq_gain Vector-quantized index for gains
  470. * @param[in] mode Mode of the current frame
  471. * @param[out] fixed_gain_factor Decoded fixed gain correction factor
  472. * @param[out] pitch_gain Decoded pitch gain
  473. */
  474. static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
  475. float *fixed_gain_factor, float *pitch_gain)
  476. {
  477. const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
  478. qua_gain_7b[vq_gain]);
  479. *pitch_gain = gains[0] * (1.0f / (1 << 14));
  480. *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
  481. }
  482. /**
  483. * Apply pitch sharpening filters to the fixed codebook vector
  484. *
  485. * @param[in] ctx The context
  486. * @param[in,out] fixed_vector Fixed codebook excitation
  487. */
  488. // XXX: Spec states this procedure should be applied when the pitch
  489. // lag is less than 64, but this checking seems absent in reference and AMR-NB
  490. static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
  491. {
  492. int i;
  493. /* Tilt part */
  494. for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
  495. fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
  496. /* Periodicity enhancement part */
  497. for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
  498. fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
  499. }
  500. /**
  501. * Calculate the voicing factor (-1.0 = unvoiced to 1.0 = voiced)
  502. *
  503. * @param[in] p_vector, f_vector Pitch and fixed excitation vectors
  504. * @param[in] p_gain, f_gain Pitch and fixed gains
  505. */
  506. // XXX: There is something wrong with the precision here! The magnitudes
  507. // of the energies are not correct. Please check the reference code carefully
  508. static float voice_factor(float *p_vector, float p_gain,
  509. float *f_vector, float f_gain)
  510. {
  511. double p_ener = (double) ff_dot_productf(p_vector, p_vector,
  512. AMRWB_SFR_SIZE) * p_gain * p_gain;
  513. double f_ener = (double) ff_dot_productf(f_vector, f_vector,
  514. AMRWB_SFR_SIZE) * f_gain * f_gain;
  515. return (p_ener - f_ener) / (p_ener + f_ener);
  516. }
  517. /**
  518. * Reduce fixed vector sparseness by smoothing with one of three IR filters
  519. * Also known as "adaptive phase dispersion"
  520. *
  521. * @param[in] ctx The context
  522. * @param[in,out] fixed_vector Unfiltered fixed vector
  523. * @param[out] buf Space for modified vector if necessary
  524. *
  525. * @return The potentially overwritten filtered fixed vector address
  526. */
  527. static float *anti_sparseness(AMRWBContext *ctx,
  528. float *fixed_vector, float *buf)
  529. {
  530. int ir_filter_nr;
  531. if (ctx->fr_cur_mode > MODE_8k85) // no filtering in higher modes
  532. return fixed_vector;
  533. if (ctx->pitch_gain[0] < 0.6) {
  534. ir_filter_nr = 0; // strong filtering
  535. } else if (ctx->pitch_gain[0] < 0.9) {
  536. ir_filter_nr = 1; // medium filtering
  537. } else
  538. ir_filter_nr = 2; // no filtering
  539. /* detect 'onset' */
  540. if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
  541. if (ir_filter_nr < 2)
  542. ir_filter_nr++;
  543. } else {
  544. int i, count = 0;
  545. for (i = 0; i < 6; i++)
  546. if (ctx->pitch_gain[i] < 0.6)
  547. count++;
  548. if (count > 2)
  549. ir_filter_nr = 0;
  550. if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
  551. ir_filter_nr--;
  552. }
  553. /* update ir filter strength history */
  554. ctx->prev_ir_filter_nr = ir_filter_nr;
  555. ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
  556. if (ir_filter_nr < 2) {
  557. int i;
  558. const float *coef = ir_filters_lookup[ir_filter_nr];
  559. /* Circular convolution code in the reference
  560. * decoder was modified to avoid using one
  561. * extra array. The filtered vector is given by:
  562. *
  563. * c2(n) = sum(i,0,len-1){ c(i) * coef( (n - i + len) % len ) }
  564. */
  565. memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
  566. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  567. if (fixed_vector[i])
  568. ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
  569. AMRWB_SFR_SIZE);
  570. fixed_vector = buf;
  571. }
  572. return fixed_vector;
  573. }
  574. /**
  575. * Calculate a stability factor {teta} based on distance between
  576. * current and past isf. A value of 1 shows maximum signal stability
  577. */
  578. static float stability_factor(const float *isf, const float *isf_past)
  579. {
  580. int i;
  581. float acc = 0.0;
  582. for (i = 0; i < LP_ORDER - 1; i++)
  583. acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
  584. // XXX: This part is not so clear from the reference code
  585. // the result is more accurate changing the "/ 256" to "* 512"
  586. return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
  587. }
  588. /**
  589. * Apply a non-linear fixed gain smoothing in order to reduce
  590. * fluctuation in the energy of excitation
  591. *
  592. * @param[in] fixed_gain Unsmoothed fixed gain
  593. * @param[in,out] prev_tr_gain Previous threshold gain (updated)
  594. * @param[in] voice_fac Frame voicing factor
  595. * @param[in] stab_fac Frame stability factor
  596. *
  597. * @return The smoothed gain
  598. */
  599. static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
  600. float voice_fac, float stab_fac)
  601. {
  602. float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
  603. float g0;
  604. // XXX: the following fixed-point constants used to in(de)crement
  605. // gain by 1.5dB were taken from the reference code, maybe it could
  606. // be simpler
  607. if (fixed_gain < *prev_tr_gain) {
  608. g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
  609. (6226 * (1.0f / (1 << 15)))); // +1.5 dB
  610. } else
  611. g0 = FFMAX(*prev_tr_gain, fixed_gain *
  612. (27536 * (1.0f / (1 << 15)))); // -1.5 dB
  613. *prev_tr_gain = g0; // update next frame threshold
  614. return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
  615. }
  616. /**
  617. * Filter the fixed_vector to emphasize the higher frequencies
  618. *
  619. * @param[in,out] fixed_vector Fixed codebook vector
  620. * @param[in] voice_fac Frame voicing factor
  621. */
  622. static void pitch_enhancer(float *fixed_vector, float voice_fac)
  623. {
  624. int i;
  625. float cpe = 0.125 * (1 + voice_fac);
  626. float last = fixed_vector[0]; // holds c(i - 1)
  627. fixed_vector[0] -= cpe * fixed_vector[1];
  628. for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
  629. float cur = fixed_vector[i];
  630. fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
  631. last = cur;
  632. }
  633. fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
  634. }
  635. /**
  636. * Conduct 16th order linear predictive coding synthesis from excitation
  637. *
  638. * @param[in] ctx Pointer to the AMRWBContext
  639. * @param[in] lpc Pointer to the LPC coefficients
  640. * @param[out] excitation Buffer for synthesis final excitation
  641. * @param[in] fixed_gain Fixed codebook gain for synthesis
  642. * @param[in] fixed_vector Algebraic codebook vector
  643. * @param[in,out] samples Pointer to the output samples and memory
  644. */
  645. static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
  646. float fixed_gain, const float *fixed_vector,
  647. float *samples)
  648. {
  649. ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
  650. ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
  651. /* emphasize pitch vector contribution in low bitrate modes */
  652. if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
  653. int i;
  654. float energy = ff_dot_productf(excitation, excitation,
  655. AMRWB_SFR_SIZE);
  656. // XXX: Weird part in both ref code and spec. A unknown parameter
  657. // {beta} seems to be identical to the current pitch gain
  658. float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
  659. for (i = 0; i < AMRWB_SFR_SIZE; i++)
  660. excitation[i] += pitch_factor * ctx->pitch_vector[i];
  661. ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
  662. energy, AMRWB_SFR_SIZE);
  663. }
  664. ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
  665. AMRWB_SFR_SIZE, LP_ORDER);
  666. }
  667. /**
  668. * Apply to synthesis a de-emphasis filter of the form:
  669. * H(z) = 1 / (1 - m * z^-1)
  670. *
  671. * @param[out] out Output buffer
  672. * @param[in] in Input samples array with in[-1]
  673. * @param[in] m Filter coefficient
  674. * @param[in,out] mem State from last filtering
  675. */
  676. static void de_emphasis(float *out, float *in, float m, float mem[1])
  677. {
  678. int i;
  679. out[0] = in[0] + m * mem[0];
  680. for (i = 1; i < AMRWB_SFR_SIZE; i++)
  681. out[i] = in[i] + out[i - 1] * m;
  682. mem[0] = out[AMRWB_SFR_SIZE - 1];
  683. }
  684. /**
  685. * Upsample a signal by 5/4 ratio (from 12.8kHz to 16kHz) using
  686. * a FIR interpolation filter. Uses past data from before *in address
  687. *
  688. * @param[out] out Buffer for interpolated signal
  689. * @param[in] in Current signal data (length 0.8*o_size)
  690. * @param[in] o_size Output signal length
  691. */
  692. static void upsample_5_4(float *out, const float *in, int o_size)
  693. {
  694. const float *in0 = in - UPS_FIR_SIZE + 1;
  695. int i, j, k;
  696. int int_part = 0, frac_part;
  697. i = 0;
  698. for (j = 0; j < o_size / 5; j++) {
  699. out[i] = in[int_part];
  700. frac_part = 4;
  701. i++;
  702. for (k = 1; k < 5; k++) {
  703. out[i] = ff_dot_productf(in0 + int_part, upsample_fir[4 - frac_part],
  704. UPS_MEM_SIZE);
  705. int_part++;
  706. frac_part--;
  707. i++;
  708. }
  709. }
  710. }
  711. /**
  712. * Calculate the high-band gain based on encoded index (23k85 mode) or
  713. * on the low-band speech signal and the Voice Activity Detection flag
  714. *
  715. * @param[in] ctx The context
  716. * @param[in] synth LB speech synthesis at 12.8k
  717. * @param[in] hb_idx Gain index for mode 23k85 only
  718. * @param[in] vad VAD flag for the frame
  719. */
  720. static float find_hb_gain(AMRWBContext *ctx, const float *synth,
  721. uint16_t hb_idx, uint8_t vad)
  722. {
  723. int wsp = (vad > 0);
  724. float tilt;
  725. if (ctx->fr_cur_mode == MODE_23k85)
  726. return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
  727. tilt = ff_dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
  728. ff_dot_productf(synth, synth, AMRWB_SFR_SIZE);
  729. /* return gain bounded by [0.1, 1.0] */
  730. return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
  731. }
  732. /**
  733. * Generate the high-band excitation with the same energy from the lower
  734. * one and scaled by the given gain
  735. *
  736. * @param[in] ctx The context
  737. * @param[out] hb_exc Buffer for the excitation
  738. * @param[in] synth_exc Low-band excitation used for synthesis
  739. * @param[in] hb_gain Wanted excitation gain
  740. */
  741. static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
  742. const float *synth_exc, float hb_gain)
  743. {
  744. int i;
  745. float energy = ff_dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
  746. /* Generate a white-noise excitation */
  747. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  748. hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
  749. ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
  750. energy * hb_gain * hb_gain,
  751. AMRWB_SFR_SIZE_16k);
  752. }
  753. /**
  754. * Calculate the auto-correlation for the ISF difference vector
  755. */
  756. static float auto_correlation(float *diff_isf, float mean, int lag)
  757. {
  758. int i;
  759. float sum = 0.0;
  760. for (i = 7; i < LP_ORDER - 2; i++) {
  761. float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
  762. sum += prod * prod;
  763. }
  764. return sum;
  765. }
  766. /**
  767. * Extrapolate a ISF vector to the 16kHz range (20th order LP)
  768. * used at mode 6k60 LP filter for the high frequency band
  769. *
  770. * @param[out] out Buffer for extrapolated isf
  771. * @param[in] isf Input isf vector
  772. */
  773. static void extrapolate_isf(float out[LP_ORDER_16k], float isf[LP_ORDER])
  774. {
  775. float diff_isf[LP_ORDER - 2], diff_mean;
  776. float *diff_hi = diff_isf - LP_ORDER + 1; // diff array for extrapolated indexes
  777. float corr_lag[3];
  778. float est, scale;
  779. int i, i_max_corr;
  780. memcpy(out, isf, (LP_ORDER - 1) * sizeof(float));
  781. out[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
  782. /* Calculate the difference vector */
  783. for (i = 0; i < LP_ORDER - 2; i++)
  784. diff_isf[i] = isf[i + 1] - isf[i];
  785. diff_mean = 0.0;
  786. for (i = 2; i < LP_ORDER - 2; i++)
  787. diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
  788. /* Find which is the maximum autocorrelation */
  789. i_max_corr = 0;
  790. for (i = 0; i < 3; i++) {
  791. corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
  792. if (corr_lag[i] > corr_lag[i_max_corr])
  793. i_max_corr = i;
  794. }
  795. i_max_corr++;
  796. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  797. out[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
  798. - isf[i - 2 - i_max_corr];
  799. /* Calculate an estimate for ISF(18) and scale ISF based on the error */
  800. est = 7965 + (out[2] - out[3] - out[4]) / 6.0;
  801. scale = 0.5 * (FFMIN(est, 7600) - out[LP_ORDER - 2]) /
  802. (out[LP_ORDER_16k - 2] - out[LP_ORDER - 2]);
  803. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  804. diff_hi[i] = scale * (out[i] - out[i - 1]);
  805. /* Stability insurance */
  806. for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
  807. if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
  808. if (diff_hi[i] > diff_hi[i - 1]) {
  809. diff_hi[i - 1] = 5.0 - diff_hi[i];
  810. } else
  811. diff_hi[i] = 5.0 - diff_hi[i - 1];
  812. }
  813. for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
  814. out[i] = out[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
  815. /* Scale the ISF vector for 16000 Hz */
  816. for (i = 0; i < LP_ORDER_16k - 1; i++)
  817. out[i] *= 0.8;
  818. }
  819. /**
  820. * Spectral expand the LP coefficients using the equation:
  821. * y[i] = x[i] * (gamma ** i)
  822. *
  823. * @param[out] out Output buffer (may use input array)
  824. * @param[in] lpc LP coefficients array
  825. * @param[in] gamma Weighting factor
  826. * @param[in] size LP array size
  827. */
  828. static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
  829. {
  830. int i;
  831. float fac = gamma;
  832. for (i = 0; i < size; i++) {
  833. out[i] = lpc[i] * fac;
  834. fac *= gamma;
  835. }
  836. }
  837. /**
  838. * Conduct 20th order linear predictive coding synthesis for the high
  839. * frequency band excitation at 16kHz
  840. *
  841. * @param[in] ctx The context
  842. * @param[in] subframe Current subframe index (0 to 3)
  843. * @param[in,out] samples Pointer to the output speech samples
  844. * @param[in] exc Generated white-noise scaled excitation
  845. * @param[in] isf Current frame isf vector
  846. * @param[in] isf_past Past frame final isf vector
  847. */
  848. static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
  849. const float *exc, const float *isf, const float *isf_past)
  850. {
  851. float hb_lpc[LP_ORDER_16k];
  852. enum Mode mode = ctx->fr_cur_mode;
  853. if (mode == MODE_6k60) {
  854. float e_isf[LP_ORDER_16k]; // ISF vector for extrapolation
  855. double e_isp[LP_ORDER_16k];
  856. ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
  857. 1.0 - isfp_inter[subframe], LP_ORDER);
  858. extrapolate_isf(e_isf, e_isf);
  859. e_isf[LP_ORDER_16k - 1] *= 2.0;
  860. ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
  861. ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
  862. lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
  863. } else {
  864. lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
  865. }
  866. ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
  867. (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
  868. }
  869. /**
  870. * Apply to high-band samples a 15th order filter
  871. * The filter characteristic depends on the given coefficients
  872. *
  873. * @param[out] out Buffer for filtered output
  874. * @param[in] fir_coef Filter coefficients
  875. * @param[in,out] mem State from last filtering (updated)
  876. * @param[in] in Input speech data (high-band)
  877. *
  878. * @remark It is safe to pass the same array in in and out parameters
  879. */
  880. static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
  881. float mem[HB_FIR_SIZE], const float *in)
  882. {
  883. int i, j;
  884. float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE]; // past and current samples
  885. memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
  886. memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
  887. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
  888. out[i] = 0.0;
  889. for (j = 0; j <= HB_FIR_SIZE; j++)
  890. out[i] += data[i + j] * fir_coef[j];
  891. }
  892. memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
  893. }
  894. /**
  895. * Update context state before the next subframe
  896. */
  897. static void update_sub_state(AMRWBContext *ctx)
  898. {
  899. memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
  900. (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
  901. memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
  902. memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
  903. memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
  904. LP_ORDER * sizeof(float));
  905. memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
  906. UPS_MEM_SIZE * sizeof(float));
  907. memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
  908. LP_ORDER_16k * sizeof(float));
  909. }
  910. static int amrwb_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  911. AVPacket *avpkt)
  912. {
  913. AMRWBContext *ctx = avctx->priv_data;
  914. AMRWBFrame *cf = &ctx->frame;
  915. const uint8_t *buf = avpkt->data;
  916. int buf_size = avpkt->size;
  917. int expected_fr_size, header_size;
  918. float *buf_out = data;
  919. float spare_vector[AMRWB_SFR_SIZE]; // extra stack space to hold result from anti-sparseness processing
  920. float fixed_gain_factor; // fixed gain correction factor (gamma)
  921. float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  922. float synth_fixed_gain; // the fixed gain that synthesis should use
  923. float voice_fac, stab_fac; // parameters used for gain smoothing
  924. float synth_exc[AMRWB_SFR_SIZE]; // post-processed excitation for synthesis
  925. float hb_exc[AMRWB_SFR_SIZE_16k]; // excitation for the high frequency band
  926. float hb_samples[AMRWB_SFR_SIZE_16k]; // filtered high-band samples from synthesis
  927. float hb_gain;
  928. int sub, i;
  929. header_size = decode_mime_header(ctx, buf);
  930. expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
  931. if (buf_size < expected_fr_size) {
  932. av_log(avctx, AV_LOG_ERROR,
  933. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  934. *data_size = 0;
  935. return buf_size;
  936. }
  937. if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
  938. av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
  939. if (ctx->fr_cur_mode == MODE_SID) /* Comfort noise frame */
  940. av_log_missing_feature(avctx, "SID mode", 1);
  941. if (ctx->fr_cur_mode >= MODE_SID)
  942. return -1;
  943. ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
  944. buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
  945. /* Decode the quantized ISF vector */
  946. if (ctx->fr_cur_mode == MODE_6k60) {
  947. decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
  948. } else {
  949. decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
  950. }
  951. isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
  952. ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
  953. stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
  954. ctx->isf_cur[LP_ORDER - 1] *= 2.0;
  955. ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
  956. /* Generate a ISP vector for each subframe */
  957. if (ctx->first_frame) {
  958. ctx->first_frame = 0;
  959. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
  960. }
  961. interpolate_isp(ctx->isp, ctx->isp_sub4_past);
  962. for (sub = 0; sub < 4; sub++)
  963. ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
  964. for (sub = 0; sub < 4; sub++) {
  965. const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
  966. float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
  967. /* Decode adaptive codebook (pitch vector) */
  968. decode_pitch_vector(ctx, cur_subframe, sub);
  969. /* Decode innovative codebook (fixed vector) */
  970. decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
  971. cur_subframe->pul_il, ctx->fr_cur_mode);
  972. pitch_sharpening(ctx, ctx->fixed_vector);
  973. decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
  974. &fixed_gain_factor, &ctx->pitch_gain[0]);
  975. ctx->fixed_gain[0] =
  976. ff_amr_set_fixed_gain(fixed_gain_factor,
  977. ff_dot_productf(ctx->fixed_vector, ctx->fixed_vector,
  978. AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
  979. ctx->prediction_error,
  980. ENERGY_MEAN, energy_pred_fac);
  981. /* Calculate voice factor and store tilt for next subframe */
  982. voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
  983. ctx->fixed_vector, ctx->fixed_gain[0]);
  984. ctx->tilt_coef = voice_fac * 0.25 + 0.25;
  985. /* Construct current excitation */
  986. for (i = 0; i < AMRWB_SFR_SIZE; i++) {
  987. ctx->excitation[i] *= ctx->pitch_gain[0];
  988. ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
  989. ctx->excitation[i] = truncf(ctx->excitation[i]);
  990. }
  991. /* Post-processing of excitation elements */
  992. synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
  993. voice_fac, stab_fac);
  994. synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
  995. spare_vector);
  996. pitch_enhancer(synth_fixed_vector, voice_fac);
  997. synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
  998. synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
  999. /* Synthesis speech post-processing */
  1000. de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
  1001. &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
  1002. ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
  1003. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
  1004. hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
  1005. upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
  1006. AMRWB_SFR_SIZE_16k);
  1007. /* High frequency band (6.4 - 7.0 kHz) generation part */
  1008. ff_acelp_apply_order_2_transfer_function(hb_samples,
  1009. &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
  1010. hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
  1011. hb_gain = find_hb_gain(ctx, hb_samples,
  1012. cur_subframe->hb_gain, cf->vad);
  1013. scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
  1014. hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
  1015. hb_exc, ctx->isf_cur, ctx->isf_past_final);
  1016. /* High-band post-processing filters */
  1017. hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
  1018. &ctx->samples_hb[LP_ORDER_16k]);
  1019. if (ctx->fr_cur_mode == MODE_23k85)
  1020. hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
  1021. hb_samples);
  1022. /* Add the low and high frequency bands */
  1023. for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
  1024. sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
  1025. /* Update buffers and history */
  1026. update_sub_state(ctx);
  1027. }
  1028. /* update state for next frame */
  1029. memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
  1030. memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
  1031. /* report how many samples we got */
  1032. *data_size = 4 * AMRWB_SFR_SIZE_16k * sizeof(float);
  1033. return expected_fr_size;
  1034. }
  1035. AVCodec ff_amrwb_decoder = {
  1036. .name = "amrwb",
  1037. .type = AVMEDIA_TYPE_AUDIO,
  1038. .id = CODEC_ID_AMR_WB,
  1039. .priv_data_size = sizeof(AMRWBContext),
  1040. .init = amrwb_decode_init,
  1041. .decode = amrwb_decode_frame,
  1042. .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
  1043. .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
  1044. };