You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1772 lines
66KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "libavutil/libm.h"
  34. #include "libavutil/avassert.h"
  35. #include <stdint.h>
  36. #include <float.h>
  37. #include <math.h>
  38. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  39. #define NOISE_FLOOR_OFFSET 6.0f
  40. /**
  41. * SBR VLC tables
  42. */
  43. enum {
  44. T_HUFFMAN_ENV_1_5DB,
  45. F_HUFFMAN_ENV_1_5DB,
  46. T_HUFFMAN_ENV_BAL_1_5DB,
  47. F_HUFFMAN_ENV_BAL_1_5DB,
  48. T_HUFFMAN_ENV_3_0DB,
  49. F_HUFFMAN_ENV_3_0DB,
  50. T_HUFFMAN_ENV_BAL_3_0DB,
  51. F_HUFFMAN_ENV_BAL_3_0DB,
  52. T_HUFFMAN_NOISE_3_0DB,
  53. T_HUFFMAN_NOISE_BAL_3_0DB,
  54. };
  55. /**
  56. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  57. */
  58. enum {
  59. FIXFIX,
  60. FIXVAR,
  61. VARFIX,
  62. VARVAR,
  63. };
  64. enum {
  65. EXTENSION_ID_PS = 2,
  66. };
  67. static VLC vlc_sbr[10];
  68. static const int8_t vlc_sbr_lav[10] =
  69. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  70. static const DECLARE_ALIGNED(16, float, zero64)[64];
  71. #define SBR_INIT_VLC_STATIC(num, size) \
  72. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  73. sbr_tmp[num].sbr_bits , 1, 1, \
  74. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  75. size)
  76. #define SBR_VLC_ROW(name) \
  77. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  78. av_cold void ff_aac_sbr_init(void)
  79. {
  80. int n;
  81. static const struct {
  82. const void *sbr_codes, *sbr_bits;
  83. const unsigned int table_size, elem_size;
  84. } sbr_tmp[] = {
  85. SBR_VLC_ROW(t_huffman_env_1_5dB),
  86. SBR_VLC_ROW(f_huffman_env_1_5dB),
  87. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  89. SBR_VLC_ROW(t_huffman_env_3_0dB),
  90. SBR_VLC_ROW(f_huffman_env_3_0dB),
  91. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  94. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  95. };
  96. // SBR VLC table initialization
  97. SBR_INIT_VLC_STATIC(0, 1098);
  98. SBR_INIT_VLC_STATIC(1, 1092);
  99. SBR_INIT_VLC_STATIC(2, 768);
  100. SBR_INIT_VLC_STATIC(3, 1026);
  101. SBR_INIT_VLC_STATIC(4, 1058);
  102. SBR_INIT_VLC_STATIC(5, 1052);
  103. SBR_INIT_VLC_STATIC(6, 544);
  104. SBR_INIT_VLC_STATIC(7, 544);
  105. SBR_INIT_VLC_STATIC(8, 592);
  106. SBR_INIT_VLC_STATIC(9, 512);
  107. for (n = 1; n < 320; n++)
  108. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  109. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  110. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  111. for (n = 0; n < 320; n++)
  112. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  113. ff_ps_init();
  114. }
  115. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  116. {
  117. float mdct_scale;
  118. if(sbr->mdct.mdct_bits)
  119. return;
  120. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  121. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  122. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  123. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  124. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  125. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  126. * and scale back down at synthesis. */
  127. mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
  128. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
  129. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
  130. ff_ps_ctx_init(&sbr->ps);
  131. }
  132. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  133. {
  134. ff_mdct_end(&sbr->mdct);
  135. ff_mdct_end(&sbr->mdct_ana);
  136. }
  137. static int qsort_comparison_function_int16(const void *a, const void *b)
  138. {
  139. return *(const int16_t *)a - *(const int16_t *)b;
  140. }
  141. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  142. {
  143. int i;
  144. for (i = 0; i <= last_el; i++)
  145. if (table[i] == needle)
  146. return 1;
  147. return 0;
  148. }
  149. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  150. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  151. {
  152. int k;
  153. if (sbr->bs_limiter_bands > 0) {
  154. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  155. 1.18509277094158210129f, //2^(0.49/2)
  156. 1.11987160404675912501f }; //2^(0.49/3)
  157. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  158. int16_t patch_borders[7];
  159. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  160. patch_borders[0] = sbr->kx[1];
  161. for (k = 1; k <= sbr->num_patches; k++)
  162. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  163. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  164. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  165. if (sbr->num_patches > 1)
  166. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  167. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  168. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  169. sizeof(sbr->f_tablelim[0]),
  170. qsort_comparison_function_int16);
  171. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  172. while (out < sbr->f_tablelim + sbr->n_lim) {
  173. if (*in >= *out * lim_bands_per_octave_warped) {
  174. *++out = *in++;
  175. } else if (*in == *out ||
  176. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  177. in++;
  178. sbr->n_lim--;
  179. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  180. *out = *in++;
  181. sbr->n_lim--;
  182. } else {
  183. *++out = *in++;
  184. }
  185. }
  186. } else {
  187. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  188. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  189. sbr->n_lim = 1;
  190. }
  191. }
  192. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  193. {
  194. unsigned int cnt = get_bits_count(gb);
  195. uint8_t bs_header_extra_1;
  196. uint8_t bs_header_extra_2;
  197. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  198. SpectrumParameters old_spectrum_params;
  199. sbr->start = 1;
  200. // Save last spectrum parameters variables to compare to new ones
  201. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  202. sbr->bs_amp_res_header = get_bits1(gb);
  203. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  204. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  205. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  206. skip_bits(gb, 2); // bs_reserved
  207. bs_header_extra_1 = get_bits1(gb);
  208. bs_header_extra_2 = get_bits1(gb);
  209. if (bs_header_extra_1) {
  210. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  211. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  212. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  213. } else {
  214. sbr->spectrum_params.bs_freq_scale = 2;
  215. sbr->spectrum_params.bs_alter_scale = 1;
  216. sbr->spectrum_params.bs_noise_bands = 2;
  217. }
  218. // Check if spectrum parameters changed
  219. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  220. sbr->reset = 1;
  221. if (bs_header_extra_2) {
  222. sbr->bs_limiter_bands = get_bits(gb, 2);
  223. sbr->bs_limiter_gains = get_bits(gb, 2);
  224. sbr->bs_interpol_freq = get_bits1(gb);
  225. sbr->bs_smoothing_mode = get_bits1(gb);
  226. } else {
  227. sbr->bs_limiter_bands = 2;
  228. sbr->bs_limiter_gains = 2;
  229. sbr->bs_interpol_freq = 1;
  230. sbr->bs_smoothing_mode = 1;
  231. }
  232. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  233. sbr_make_f_tablelim(sbr);
  234. return get_bits_count(gb) - cnt;
  235. }
  236. static int array_min_int16(const int16_t *array, int nel)
  237. {
  238. int i, min = array[0];
  239. for (i = 1; i < nel; i++)
  240. min = FFMIN(array[i], min);
  241. return min;
  242. }
  243. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  244. {
  245. int k, previous, present;
  246. float base, prod;
  247. base = powf((float)stop / start, 1.0f / num_bands);
  248. prod = start;
  249. previous = start;
  250. for (k = 0; k < num_bands-1; k++) {
  251. prod *= base;
  252. present = lrintf(prod);
  253. bands[k] = present - previous;
  254. previous = present;
  255. }
  256. bands[num_bands-1] = stop - previous;
  257. }
  258. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  259. {
  260. // Requirements (14496-3 sp04 p205)
  261. if (n_master <= 0) {
  262. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  263. return -1;
  264. }
  265. if (bs_xover_band >= n_master) {
  266. av_log(avctx, AV_LOG_ERROR,
  267. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  268. bs_xover_band);
  269. return -1;
  270. }
  271. return 0;
  272. }
  273. /// Master Frequency Band Table (14496-3 sp04 p194)
  274. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  275. SpectrumParameters *spectrum)
  276. {
  277. unsigned int temp, max_qmf_subbands;
  278. unsigned int start_min, stop_min;
  279. int k;
  280. const int8_t *sbr_offset_ptr;
  281. int16_t stop_dk[13];
  282. if (sbr->sample_rate < 32000) {
  283. temp = 3000;
  284. } else if (sbr->sample_rate < 64000) {
  285. temp = 4000;
  286. } else
  287. temp = 5000;
  288. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  289. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  290. switch (sbr->sample_rate) {
  291. case 16000:
  292. sbr_offset_ptr = sbr_offset[0];
  293. break;
  294. case 22050:
  295. sbr_offset_ptr = sbr_offset[1];
  296. break;
  297. case 24000:
  298. sbr_offset_ptr = sbr_offset[2];
  299. break;
  300. case 32000:
  301. sbr_offset_ptr = sbr_offset[3];
  302. break;
  303. case 44100: case 48000: case 64000:
  304. sbr_offset_ptr = sbr_offset[4];
  305. break;
  306. case 88200: case 96000: case 128000: case 176400: case 192000:
  307. sbr_offset_ptr = sbr_offset[5];
  308. break;
  309. default:
  310. av_log(ac->avctx, AV_LOG_ERROR,
  311. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  312. return -1;
  313. }
  314. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  315. if (spectrum->bs_stop_freq < 14) {
  316. sbr->k[2] = stop_min;
  317. make_bands(stop_dk, stop_min, 64, 13);
  318. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  319. for (k = 0; k < spectrum->bs_stop_freq; k++)
  320. sbr->k[2] += stop_dk[k];
  321. } else if (spectrum->bs_stop_freq == 14) {
  322. sbr->k[2] = 2*sbr->k[0];
  323. } else if (spectrum->bs_stop_freq == 15) {
  324. sbr->k[2] = 3*sbr->k[0];
  325. } else {
  326. av_log(ac->avctx, AV_LOG_ERROR,
  327. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  328. return -1;
  329. }
  330. sbr->k[2] = FFMIN(64, sbr->k[2]);
  331. // Requirements (14496-3 sp04 p205)
  332. if (sbr->sample_rate <= 32000) {
  333. max_qmf_subbands = 48;
  334. } else if (sbr->sample_rate == 44100) {
  335. max_qmf_subbands = 35;
  336. } else if (sbr->sample_rate >= 48000)
  337. max_qmf_subbands = 32;
  338. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  339. av_log(ac->avctx, AV_LOG_ERROR,
  340. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  341. return -1;
  342. }
  343. if (!spectrum->bs_freq_scale) {
  344. int dk, k2diff;
  345. dk = spectrum->bs_alter_scale + 1;
  346. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  347. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  348. return -1;
  349. for (k = 1; k <= sbr->n_master; k++)
  350. sbr->f_master[k] = dk;
  351. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  352. if (k2diff < 0) {
  353. sbr->f_master[1]--;
  354. sbr->f_master[2]-= (k2diff < -1);
  355. } else if (k2diff) {
  356. sbr->f_master[sbr->n_master]++;
  357. }
  358. sbr->f_master[0] = sbr->k[0];
  359. for (k = 1; k <= sbr->n_master; k++)
  360. sbr->f_master[k] += sbr->f_master[k - 1];
  361. } else {
  362. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  363. int two_regions, num_bands_0;
  364. int vdk0_max, vdk1_min;
  365. int16_t vk0[49];
  366. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  367. two_regions = 1;
  368. sbr->k[1] = 2 * sbr->k[0];
  369. } else {
  370. two_regions = 0;
  371. sbr->k[1] = sbr->k[2];
  372. }
  373. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  374. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  375. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  376. return -1;
  377. }
  378. vk0[0] = 0;
  379. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  380. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  381. vdk0_max = vk0[num_bands_0];
  382. vk0[0] = sbr->k[0];
  383. for (k = 1; k <= num_bands_0; k++) {
  384. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  385. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  386. return -1;
  387. }
  388. vk0[k] += vk0[k-1];
  389. }
  390. if (two_regions) {
  391. int16_t vk1[49];
  392. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  393. : 1.0f; // bs_alter_scale = {0,1}
  394. int num_bands_1 = lrintf(half_bands * invwarp *
  395. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  396. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  397. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  398. if (vdk1_min < vdk0_max) {
  399. int change;
  400. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  401. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  402. vk1[1] += change;
  403. vk1[num_bands_1] -= change;
  404. }
  405. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  406. vk1[0] = sbr->k[1];
  407. for (k = 1; k <= num_bands_1; k++) {
  408. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  409. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  410. return -1;
  411. }
  412. vk1[k] += vk1[k-1];
  413. }
  414. sbr->n_master = num_bands_0 + num_bands_1;
  415. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  416. return -1;
  417. memcpy(&sbr->f_master[0], vk0,
  418. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  419. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  420. num_bands_1 * sizeof(sbr->f_master[0]));
  421. } else {
  422. sbr->n_master = num_bands_0;
  423. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  424. return -1;
  425. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  426. }
  427. }
  428. return 0;
  429. }
  430. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  431. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  432. {
  433. int i, k, sb = 0;
  434. int msb = sbr->k[0];
  435. int usb = sbr->kx[1];
  436. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  437. sbr->num_patches = 0;
  438. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  439. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  440. } else
  441. k = sbr->n_master;
  442. do {
  443. int odd = 0;
  444. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  445. sb = sbr->f_master[i];
  446. odd = (sb + sbr->k[0]) & 1;
  447. }
  448. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  449. // After this check the final number of patches can still be six which is
  450. // illegal however the Coding Technologies decoder check stream has a final
  451. // count of 6 patches
  452. if (sbr->num_patches > 5) {
  453. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  454. return -1;
  455. }
  456. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  457. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  458. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  459. usb = sb;
  460. msb = sb;
  461. sbr->num_patches++;
  462. } else
  463. msb = sbr->kx[1];
  464. if (sbr->f_master[k] - sb < 3)
  465. k = sbr->n_master;
  466. } while (sb != sbr->kx[1] + sbr->m[1]);
  467. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  468. sbr->num_patches--;
  469. return 0;
  470. }
  471. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  472. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  473. {
  474. int k, temp;
  475. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  476. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  477. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  478. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  479. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  480. sbr->kx[1] = sbr->f_tablehigh[0];
  481. // Requirements (14496-3 sp04 p205)
  482. if (sbr->kx[1] + sbr->m[1] > 64) {
  483. av_log(ac->avctx, AV_LOG_ERROR,
  484. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  485. return -1;
  486. }
  487. if (sbr->kx[1] > 32) {
  488. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  489. return -1;
  490. }
  491. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  492. temp = sbr->n[1] & 1;
  493. for (k = 1; k <= sbr->n[0]; k++)
  494. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  495. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  496. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  497. if (sbr->n_q > 5) {
  498. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  499. return -1;
  500. }
  501. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  502. temp = 0;
  503. for (k = 1; k <= sbr->n_q; k++) {
  504. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  505. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  506. }
  507. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  508. return -1;
  509. sbr_make_f_tablelim(sbr);
  510. sbr->data[0].f_indexnoise = 0;
  511. sbr->data[1].f_indexnoise = 0;
  512. return 0;
  513. }
  514. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  515. int elements)
  516. {
  517. int i;
  518. for (i = 0; i < elements; i++) {
  519. vec[i] = get_bits1(gb);
  520. }
  521. }
  522. /** ceil(log2(index+1)) */
  523. static const int8_t ceil_log2[] = {
  524. 0, 1, 2, 2, 3, 3,
  525. };
  526. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  527. GetBitContext *gb, SBRData *ch_data)
  528. {
  529. int i;
  530. unsigned bs_pointer = 0;
  531. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  532. int abs_bord_trail = 16;
  533. int num_rel_lead, num_rel_trail;
  534. unsigned bs_num_env_old = ch_data->bs_num_env;
  535. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  536. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  537. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  538. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  539. case FIXFIX:
  540. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  541. num_rel_lead = ch_data->bs_num_env - 1;
  542. if (ch_data->bs_num_env == 1)
  543. ch_data->bs_amp_res = 0;
  544. if (ch_data->bs_num_env > 4) {
  545. av_log(ac->avctx, AV_LOG_ERROR,
  546. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  547. ch_data->bs_num_env);
  548. return -1;
  549. }
  550. ch_data->t_env[0] = 0;
  551. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  552. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  553. ch_data->bs_num_env;
  554. for (i = 0; i < num_rel_lead; i++)
  555. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  556. ch_data->bs_freq_res[1] = get_bits1(gb);
  557. for (i = 1; i < ch_data->bs_num_env; i++)
  558. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  559. break;
  560. case FIXVAR:
  561. abs_bord_trail += get_bits(gb, 2);
  562. num_rel_trail = get_bits(gb, 2);
  563. ch_data->bs_num_env = num_rel_trail + 1;
  564. ch_data->t_env[0] = 0;
  565. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  566. for (i = 0; i < num_rel_trail; i++)
  567. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  568. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  569. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  570. for (i = 0; i < ch_data->bs_num_env; i++)
  571. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  572. break;
  573. case VARFIX:
  574. ch_data->t_env[0] = get_bits(gb, 2);
  575. num_rel_lead = get_bits(gb, 2);
  576. ch_data->bs_num_env = num_rel_lead + 1;
  577. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  578. for (i = 0; i < num_rel_lead; i++)
  579. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  580. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  581. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  582. break;
  583. case VARVAR:
  584. ch_data->t_env[0] = get_bits(gb, 2);
  585. abs_bord_trail += get_bits(gb, 2);
  586. num_rel_lead = get_bits(gb, 2);
  587. num_rel_trail = get_bits(gb, 2);
  588. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  589. if (ch_data->bs_num_env > 5) {
  590. av_log(ac->avctx, AV_LOG_ERROR,
  591. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  592. ch_data->bs_num_env);
  593. return -1;
  594. }
  595. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  596. for (i = 0; i < num_rel_lead; i++)
  597. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  598. for (i = 0; i < num_rel_trail; i++)
  599. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  600. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  601. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  602. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  603. break;
  604. }
  605. if (bs_pointer > ch_data->bs_num_env + 1) {
  606. av_log(ac->avctx, AV_LOG_ERROR,
  607. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  608. bs_pointer);
  609. return -1;
  610. }
  611. for (i = 1; i <= ch_data->bs_num_env; i++) {
  612. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  613. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  614. return -1;
  615. }
  616. }
  617. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  618. ch_data->t_q[0] = ch_data->t_env[0];
  619. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  620. if (ch_data->bs_num_noise > 1) {
  621. unsigned int idx;
  622. if (ch_data->bs_frame_class == FIXFIX) {
  623. idx = ch_data->bs_num_env >> 1;
  624. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  625. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  626. } else { // VARFIX
  627. if (!bs_pointer)
  628. idx = 1;
  629. else if (bs_pointer == 1)
  630. idx = ch_data->bs_num_env - 1;
  631. else // bs_pointer > 1
  632. idx = bs_pointer - 1;
  633. }
  634. ch_data->t_q[1] = ch_data->t_env[idx];
  635. }
  636. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  637. ch_data->e_a[1] = -1;
  638. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  639. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  640. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  641. ch_data->e_a[1] = bs_pointer - 1;
  642. return 0;
  643. }
  644. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  645. //These variables are saved from the previous frame rather than copied
  646. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  647. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  648. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  649. //These variables are read from the bitstream and therefore copied
  650. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  651. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  652. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  653. dst->bs_num_env = src->bs_num_env;
  654. dst->bs_amp_res = src->bs_amp_res;
  655. dst->bs_num_noise = src->bs_num_noise;
  656. dst->bs_frame_class = src->bs_frame_class;
  657. dst->e_a[1] = src->e_a[1];
  658. }
  659. /// Read how the envelope and noise floor data is delta coded
  660. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  661. SBRData *ch_data)
  662. {
  663. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  664. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  665. }
  666. /// Read inverse filtering data
  667. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  668. SBRData *ch_data)
  669. {
  670. int i;
  671. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  672. for (i = 0; i < sbr->n_q; i++)
  673. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  674. }
  675. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  676. SBRData *ch_data, int ch)
  677. {
  678. int bits;
  679. int i, j, k;
  680. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  681. int t_lav, f_lav;
  682. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  683. const int odd = sbr->n[1] & 1;
  684. if (sbr->bs_coupling && ch) {
  685. if (ch_data->bs_amp_res) {
  686. bits = 5;
  687. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  688. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  689. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  690. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  691. } else {
  692. bits = 6;
  693. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  694. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  695. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  696. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  697. }
  698. } else {
  699. if (ch_data->bs_amp_res) {
  700. bits = 6;
  701. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  702. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  703. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  704. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  705. } else {
  706. bits = 7;
  707. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  708. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  709. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  710. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  711. }
  712. }
  713. for (i = 0; i < ch_data->bs_num_env; i++) {
  714. if (ch_data->bs_df_env[i]) {
  715. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  716. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  717. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  718. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  719. } else if (ch_data->bs_freq_res[i + 1]) {
  720. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  721. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  722. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  723. }
  724. } else {
  725. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  726. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  727. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  728. }
  729. }
  730. } else {
  731. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  732. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  733. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  734. }
  735. }
  736. //assign 0th elements of env_facs from last elements
  737. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  738. sizeof(ch_data->env_facs[0]));
  739. }
  740. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  741. SBRData *ch_data, int ch)
  742. {
  743. int i, j;
  744. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  745. int t_lav, f_lav;
  746. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  747. if (sbr->bs_coupling && ch) {
  748. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  749. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  750. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  751. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  752. } else {
  753. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  754. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  755. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  756. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  757. }
  758. for (i = 0; i < ch_data->bs_num_noise; i++) {
  759. if (ch_data->bs_df_noise[i]) {
  760. for (j = 0; j < sbr->n_q; j++)
  761. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  762. } else {
  763. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  764. for (j = 1; j < sbr->n_q; j++)
  765. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  766. }
  767. }
  768. //assign 0th elements of noise_facs from last elements
  769. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  770. sizeof(ch_data->noise_facs[0]));
  771. }
  772. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  773. GetBitContext *gb,
  774. int bs_extension_id, int *num_bits_left)
  775. {
  776. switch (bs_extension_id) {
  777. case EXTENSION_ID_PS:
  778. if (!ac->m4ac.ps) {
  779. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  780. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  781. *num_bits_left = 0;
  782. } else {
  783. #if 1
  784. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  785. #else
  786. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  787. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  788. *num_bits_left = 0;
  789. #endif
  790. }
  791. break;
  792. default:
  793. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  794. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  795. *num_bits_left = 0;
  796. break;
  797. }
  798. }
  799. static int read_sbr_single_channel_element(AACContext *ac,
  800. SpectralBandReplication *sbr,
  801. GetBitContext *gb)
  802. {
  803. if (get_bits1(gb)) // bs_data_extra
  804. skip_bits(gb, 4); // bs_reserved
  805. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  806. return -1;
  807. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  808. read_sbr_invf(sbr, gb, &sbr->data[0]);
  809. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  810. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  811. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  812. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  813. return 0;
  814. }
  815. static int read_sbr_channel_pair_element(AACContext *ac,
  816. SpectralBandReplication *sbr,
  817. GetBitContext *gb)
  818. {
  819. if (get_bits1(gb)) // bs_data_extra
  820. skip_bits(gb, 8); // bs_reserved
  821. if ((sbr->bs_coupling = get_bits1(gb))) {
  822. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  823. return -1;
  824. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  825. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  826. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  827. read_sbr_invf(sbr, gb, &sbr->data[0]);
  828. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  829. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  830. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  831. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  832. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  833. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  834. } else {
  835. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  836. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  837. return -1;
  838. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  839. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  840. read_sbr_invf(sbr, gb, &sbr->data[0]);
  841. read_sbr_invf(sbr, gb, &sbr->data[1]);
  842. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  843. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  844. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  845. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  846. }
  847. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  848. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  849. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  850. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  851. return 0;
  852. }
  853. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  854. GetBitContext *gb, int id_aac)
  855. {
  856. unsigned int cnt = get_bits_count(gb);
  857. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  858. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  859. sbr->start = 0;
  860. return get_bits_count(gb) - cnt;
  861. }
  862. } else if (id_aac == TYPE_CPE) {
  863. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  864. sbr->start = 0;
  865. return get_bits_count(gb) - cnt;
  866. }
  867. } else {
  868. av_log(ac->avctx, AV_LOG_ERROR,
  869. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  870. sbr->start = 0;
  871. return get_bits_count(gb) - cnt;
  872. }
  873. if (get_bits1(gb)) { // bs_extended_data
  874. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  875. if (num_bits_left == 15)
  876. num_bits_left += get_bits(gb, 8); // bs_esc_count
  877. num_bits_left <<= 3;
  878. while (num_bits_left > 7) {
  879. num_bits_left -= 2;
  880. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  881. }
  882. if (num_bits_left < 0) {
  883. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  884. }
  885. if (num_bits_left > 0)
  886. skip_bits(gb, num_bits_left);
  887. }
  888. return get_bits_count(gb) - cnt;
  889. }
  890. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  891. {
  892. int err;
  893. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  894. if (err >= 0)
  895. err = sbr_make_f_derived(ac, sbr);
  896. if (err < 0) {
  897. av_log(ac->avctx, AV_LOG_ERROR,
  898. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  899. sbr->start = 0;
  900. }
  901. }
  902. /**
  903. * Decode Spectral Band Replication extension data; reference: table 4.55.
  904. *
  905. * @param crc flag indicating the presence of CRC checksum
  906. * @param cnt length of TYPE_FIL syntactic element in bytes
  907. *
  908. * @return Returns number of bytes consumed from the TYPE_FIL element.
  909. */
  910. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  911. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  912. {
  913. unsigned int num_sbr_bits = 0, num_align_bits;
  914. unsigned bytes_read;
  915. GetBitContext gbc = *gb_host, *gb = &gbc;
  916. skip_bits_long(gb_host, cnt*8 - 4);
  917. sbr->reset = 0;
  918. if (!sbr->sample_rate)
  919. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  920. if (!ac->m4ac.ext_sample_rate)
  921. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  922. if (crc) {
  923. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  924. num_sbr_bits += 10;
  925. }
  926. //Save some state from the previous frame.
  927. sbr->kx[0] = sbr->kx[1];
  928. sbr->m[0] = sbr->m[1];
  929. num_sbr_bits++;
  930. if (get_bits1(gb)) // bs_header_flag
  931. num_sbr_bits += read_sbr_header(sbr, gb);
  932. if (sbr->reset)
  933. sbr_reset(ac, sbr);
  934. if (sbr->start)
  935. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  936. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  937. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  938. if (bytes_read > cnt) {
  939. av_log(ac->avctx, AV_LOG_ERROR,
  940. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  941. }
  942. return cnt;
  943. }
  944. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  945. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  946. {
  947. int k, e;
  948. int ch;
  949. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  950. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  951. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  952. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  953. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  954. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  955. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  956. float fac = temp1 / (1.0f + temp2);
  957. sbr->data[0].env_facs[e][k] = fac;
  958. sbr->data[1].env_facs[e][k] = fac * temp2;
  959. }
  960. }
  961. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  962. for (k = 0; k < sbr->n_q; k++) {
  963. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  964. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  965. float fac = temp1 / (1.0f + temp2);
  966. sbr->data[0].noise_facs[e][k] = fac;
  967. sbr->data[1].noise_facs[e][k] = fac * temp2;
  968. }
  969. }
  970. } else { // SCE or one non-coupled CPE
  971. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  972. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  973. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  974. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  975. sbr->data[ch].env_facs[e][k] =
  976. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  977. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  978. for (k = 0; k < sbr->n_q; k++)
  979. sbr->data[ch].noise_facs[e][k] =
  980. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  981. }
  982. }
  983. }
  984. /**
  985. * Analysis QMF Bank (14496-3 sp04 p206)
  986. *
  987. * @param x pointer to the beginning of the first sample window
  988. * @param W array of complex-valued samples split into subbands
  989. */
  990. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
  991. float z[320], float W[2][32][32][2])
  992. {
  993. int i, k;
  994. memcpy(W[0], W[1], sizeof(W[0]));
  995. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  996. memcpy(x+288, in, 1024*sizeof(x[0]));
  997. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  998. // are not supported
  999. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1000. for (k = 0; k < 64; k++) {
  1001. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  1002. z[k] = f;
  1003. }
  1004. //Shuffle to IMDCT
  1005. z[64] = z[0];
  1006. for (k = 1; k < 32; k++) {
  1007. z[64+2*k-1] = z[ k];
  1008. z[64+2*k ] = -z[64-k];
  1009. }
  1010. z[64+63] = z[32];
  1011. mdct->imdct_half(mdct, z, z+64);
  1012. for (k = 0; k < 32; k++) {
  1013. W[1][i][k][0] = -z[63-k];
  1014. W[1][i][k][1] = z[k];
  1015. }
  1016. x += 32;
  1017. }
  1018. }
  1019. /**
  1020. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1021. * (14496-3 sp04 p206)
  1022. */
  1023. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1024. float *out, float X[2][38][64],
  1025. float mdct_buf[2][64],
  1026. float *v0, int *v_off, const unsigned int div)
  1027. {
  1028. int i, n;
  1029. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1030. float *v;
  1031. for (i = 0; i < 32; i++) {
  1032. if (*v_off == 0) {
  1033. int saved_samples = (1280 - 128) >> div;
  1034. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1035. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1036. } else {
  1037. *v_off -= 128 >> div;
  1038. }
  1039. v = v0 + *v_off;
  1040. if (div) {
  1041. for (n = 0; n < 32; n++) {
  1042. X[0][i][ n] = -X[0][i][n];
  1043. X[0][i][32+n] = X[1][i][31-n];
  1044. }
  1045. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1046. for (n = 0; n < 32; n++) {
  1047. v[ n] = mdct_buf[0][63 - 2*n];
  1048. v[63 - n] = -mdct_buf[0][62 - 2*n];
  1049. }
  1050. } else {
  1051. for (n = 1; n < 64; n+=2) {
  1052. X[1][i][n] = -X[1][i][n];
  1053. }
  1054. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1055. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1056. for (n = 0; n < 64; n++) {
  1057. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1058. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1059. }
  1060. }
  1061. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1062. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1063. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1064. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1065. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1066. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1067. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1068. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1069. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1070. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1071. out += 64 >> div;
  1072. }
  1073. }
  1074. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1075. {
  1076. int i;
  1077. float real_sum = 0.0f;
  1078. float imag_sum = 0.0f;
  1079. if (lag) {
  1080. for (i = 1; i < 38; i++) {
  1081. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1082. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1083. }
  1084. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1085. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1086. if (lag == 1) {
  1087. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1088. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1089. }
  1090. } else {
  1091. for (i = 1; i < 38; i++) {
  1092. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1093. }
  1094. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1095. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1096. }
  1097. }
  1098. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1099. * (14496-3 sp04 p214)
  1100. * Warning: This routine does not seem numerically stable.
  1101. */
  1102. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1103. const float X_low[32][40][2], int k0)
  1104. {
  1105. int k;
  1106. for (k = 0; k < k0; k++) {
  1107. float phi[3][2][2], dk;
  1108. autocorrelate(X_low[k], phi, 0);
  1109. autocorrelate(X_low[k], phi, 1);
  1110. autocorrelate(X_low[k], phi, 2);
  1111. dk = phi[2][1][0] * phi[1][0][0] -
  1112. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1113. if (!dk) {
  1114. alpha1[k][0] = 0;
  1115. alpha1[k][1] = 0;
  1116. } else {
  1117. float temp_real, temp_im;
  1118. temp_real = phi[0][0][0] * phi[1][1][0] -
  1119. phi[0][0][1] * phi[1][1][1] -
  1120. phi[0][1][0] * phi[1][0][0];
  1121. temp_im = phi[0][0][0] * phi[1][1][1] +
  1122. phi[0][0][1] * phi[1][1][0] -
  1123. phi[0][1][1] * phi[1][0][0];
  1124. alpha1[k][0] = temp_real / dk;
  1125. alpha1[k][1] = temp_im / dk;
  1126. }
  1127. if (!phi[1][0][0]) {
  1128. alpha0[k][0] = 0;
  1129. alpha0[k][1] = 0;
  1130. } else {
  1131. float temp_real, temp_im;
  1132. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1133. alpha1[k][1] * phi[1][1][1];
  1134. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1135. alpha1[k][0] * phi[1][1][1];
  1136. alpha0[k][0] = -temp_real / phi[1][0][0];
  1137. alpha0[k][1] = -temp_im / phi[1][0][0];
  1138. }
  1139. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1140. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1141. alpha1[k][0] = 0;
  1142. alpha1[k][1] = 0;
  1143. alpha0[k][0] = 0;
  1144. alpha0[k][1] = 0;
  1145. }
  1146. }
  1147. }
  1148. /// Chirp Factors (14496-3 sp04 p214)
  1149. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1150. {
  1151. int i;
  1152. float new_bw;
  1153. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1154. for (i = 0; i < sbr->n_q; i++) {
  1155. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1156. new_bw = 0.6f;
  1157. } else
  1158. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1159. if (new_bw < ch_data->bw_array[i]) {
  1160. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1161. } else
  1162. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1163. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1164. }
  1165. }
  1166. /// Generate the subband filtered lowband
  1167. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1168. float X_low[32][40][2], const float W[2][32][32][2])
  1169. {
  1170. int i, k;
  1171. const int t_HFGen = 8;
  1172. const int i_f = 32;
  1173. memset(X_low, 0, 32*sizeof(*X_low));
  1174. for (k = 0; k < sbr->kx[1]; k++) {
  1175. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1176. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1177. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1178. }
  1179. }
  1180. for (k = 0; k < sbr->kx[0]; k++) {
  1181. for (i = 0; i < t_HFGen; i++) {
  1182. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1183. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1184. }
  1185. }
  1186. return 0;
  1187. }
  1188. /// High Frequency Generator (14496-3 sp04 p215)
  1189. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1190. float X_high[64][40][2], const float X_low[32][40][2],
  1191. const float (*alpha0)[2], const float (*alpha1)[2],
  1192. const float bw_array[5], const uint8_t *t_env,
  1193. int bs_num_env)
  1194. {
  1195. int i, j, x;
  1196. int g = 0;
  1197. int k = sbr->kx[1];
  1198. for (j = 0; j < sbr->num_patches; j++) {
  1199. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1200. float alpha[4];
  1201. const int p = sbr->patch_start_subband[j] + x;
  1202. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1203. g++;
  1204. g--;
  1205. if (g < 0) {
  1206. av_log(ac->avctx, AV_LOG_ERROR,
  1207. "ERROR : no subband found for frequency %d\n", k);
  1208. return -1;
  1209. }
  1210. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1211. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1212. alpha[2] = alpha0[p][0] * bw_array[g];
  1213. alpha[3] = alpha0[p][1] * bw_array[g];
  1214. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1215. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1216. X_high[k][idx][0] =
  1217. X_low[p][idx - 2][0] * alpha[0] -
  1218. X_low[p][idx - 2][1] * alpha[1] +
  1219. X_low[p][idx - 1][0] * alpha[2] -
  1220. X_low[p][idx - 1][1] * alpha[3] +
  1221. X_low[p][idx][0];
  1222. X_high[k][idx][1] =
  1223. X_low[p][idx - 2][1] * alpha[0] +
  1224. X_low[p][idx - 2][0] * alpha[1] +
  1225. X_low[p][idx - 1][1] * alpha[2] +
  1226. X_low[p][idx - 1][0] * alpha[3] +
  1227. X_low[p][idx][1];
  1228. }
  1229. }
  1230. }
  1231. if (k < sbr->m[1] + sbr->kx[1])
  1232. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1233. return 0;
  1234. }
  1235. /// Generate the subband filtered lowband
  1236. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1237. const float X_low[32][40][2], const float Y[2][38][64][2],
  1238. int ch)
  1239. {
  1240. int k, i;
  1241. const int i_f = 32;
  1242. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1243. memset(X, 0, 2*sizeof(*X));
  1244. for (k = 0; k < sbr->kx[0]; k++) {
  1245. for (i = 0; i < i_Temp; i++) {
  1246. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1247. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1248. }
  1249. }
  1250. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1251. for (i = 0; i < i_Temp; i++) {
  1252. X[0][i][k] = Y[0][i + i_f][k][0];
  1253. X[1][i][k] = Y[0][i + i_f][k][1];
  1254. }
  1255. }
  1256. for (k = 0; k < sbr->kx[1]; k++) {
  1257. for (i = i_Temp; i < 38; i++) {
  1258. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1259. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1260. }
  1261. }
  1262. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1263. for (i = i_Temp; i < i_f; i++) {
  1264. X[0][i][k] = Y[1][i][k][0];
  1265. X[1][i][k] = Y[1][i][k][1];
  1266. }
  1267. }
  1268. return 0;
  1269. }
  1270. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1271. * (14496-3 sp04 p217)
  1272. */
  1273. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1274. SBRData *ch_data, int e_a[2])
  1275. {
  1276. int e, i, m;
  1277. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1278. for (e = 0; e < ch_data->bs_num_env; e++) {
  1279. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1280. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1281. int k;
  1282. av_assert0(sbr->kx[1] <= table[0]);
  1283. for (i = 0; i < ilim; i++)
  1284. for (m = table[i]; m < table[i + 1]; m++)
  1285. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1286. // ch_data->bs_num_noise > 1 => 2 noise floors
  1287. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1288. for (i = 0; i < sbr->n_q; i++)
  1289. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1290. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1291. for (i = 0; i < sbr->n[1]; i++) {
  1292. if (ch_data->bs_add_harmonic_flag) {
  1293. const unsigned int m_midpoint =
  1294. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1295. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1296. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1297. }
  1298. }
  1299. for (i = 0; i < ilim; i++) {
  1300. int additional_sinusoid_present = 0;
  1301. for (m = table[i]; m < table[i + 1]; m++) {
  1302. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1303. additional_sinusoid_present = 1;
  1304. break;
  1305. }
  1306. }
  1307. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1308. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1309. }
  1310. }
  1311. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1312. }
  1313. /// Estimation of current envelope (14496-3 sp04 p218)
  1314. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1315. SpectralBandReplication *sbr, SBRData *ch_data)
  1316. {
  1317. int e, i, m;
  1318. if (sbr->bs_interpol_freq) {
  1319. for (e = 0; e < ch_data->bs_num_env; e++) {
  1320. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1321. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1322. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1323. for (m = 0; m < sbr->m[1]; m++) {
  1324. float sum = 0.0f;
  1325. for (i = ilb; i < iub; i++) {
  1326. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1327. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1328. }
  1329. e_curr[e][m] = sum * recip_env_size;
  1330. }
  1331. }
  1332. } else {
  1333. int k, p;
  1334. for (e = 0; e < ch_data->bs_num_env; e++) {
  1335. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1336. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1337. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1338. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1339. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1340. float sum = 0.0f;
  1341. const int den = env_size * (table[p + 1] - table[p]);
  1342. for (k = table[p]; k < table[p + 1]; k++) {
  1343. for (i = ilb; i < iub; i++) {
  1344. sum += X_high[k][i][0] * X_high[k][i][0] +
  1345. X_high[k][i][1] * X_high[k][i][1];
  1346. }
  1347. }
  1348. sum /= den;
  1349. for (k = table[p]; k < table[p + 1]; k++) {
  1350. e_curr[e][k - sbr->kx[1]] = sum;
  1351. }
  1352. }
  1353. }
  1354. }
  1355. }
  1356. /**
  1357. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1358. * and Calculation of gain (14496-3 sp04 p219)
  1359. */
  1360. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1361. SBRData *ch_data, const int e_a[2])
  1362. {
  1363. int e, k, m;
  1364. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1365. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1366. for (e = 0; e < ch_data->bs_num_env; e++) {
  1367. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1368. for (k = 0; k < sbr->n_lim; k++) {
  1369. float gain_boost, gain_max;
  1370. float sum[2] = { 0.0f, 0.0f };
  1371. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1372. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1373. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1374. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1375. if (!sbr->s_mapped[e][m]) {
  1376. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1377. ((1.0f + sbr->e_curr[e][m]) *
  1378. (1.0f + sbr->q_mapped[e][m] * delta)));
  1379. } else {
  1380. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1381. ((1.0f + sbr->e_curr[e][m]) *
  1382. (1.0f + sbr->q_mapped[e][m])));
  1383. }
  1384. }
  1385. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1386. sum[0] += sbr->e_origmapped[e][m];
  1387. sum[1] += sbr->e_curr[e][m];
  1388. }
  1389. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1390. gain_max = FFMIN(100000.f, gain_max);
  1391. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1392. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1393. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1394. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1395. }
  1396. sum[0] = sum[1] = 0.0f;
  1397. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1398. sum[0] += sbr->e_origmapped[e][m];
  1399. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1400. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1401. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1402. }
  1403. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1404. gain_boost = FFMIN(1.584893192f, gain_boost);
  1405. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1406. sbr->gain[e][m] *= gain_boost;
  1407. sbr->q_m[e][m] *= gain_boost;
  1408. sbr->s_m[e][m] *= gain_boost;
  1409. }
  1410. }
  1411. }
  1412. }
  1413. /// Assembling HF Signals (14496-3 sp04 p220)
  1414. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1415. SpectralBandReplication *sbr, SBRData *ch_data,
  1416. const int e_a[2])
  1417. {
  1418. int e, i, j, m;
  1419. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1420. const int kx = sbr->kx[1];
  1421. const int m_max = sbr->m[1];
  1422. static const float h_smooth[5] = {
  1423. 0.33333333333333,
  1424. 0.30150283239582,
  1425. 0.21816949906249,
  1426. 0.11516383427084,
  1427. 0.03183050093751,
  1428. };
  1429. static const int8_t phi[2][4] = {
  1430. { 1, 0, -1, 0}, // real
  1431. { 0, 1, 0, -1}, // imaginary
  1432. };
  1433. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1434. int indexnoise = ch_data->f_indexnoise;
  1435. int indexsine = ch_data->f_indexsine;
  1436. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1437. if (sbr->reset) {
  1438. for (i = 0; i < h_SL; i++) {
  1439. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1440. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1441. }
  1442. } else if (h_SL) {
  1443. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1444. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1445. }
  1446. for (e = 0; e < ch_data->bs_num_env; e++) {
  1447. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1448. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1449. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1450. }
  1451. }
  1452. for (e = 0; e < ch_data->bs_num_env; e++) {
  1453. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1454. int phi_sign = (1 - 2*(kx & 1));
  1455. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1456. for (m = 0; m < m_max; m++) {
  1457. const int idx1 = i + h_SL;
  1458. float g_filt = 0.0f;
  1459. for (j = 0; j <= h_SL; j++)
  1460. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1461. Y[1][i][m + kx][0] =
  1462. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1463. Y[1][i][m + kx][1] =
  1464. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1465. }
  1466. } else {
  1467. for (m = 0; m < m_max; m++) {
  1468. const float g_filt = g_temp[i + h_SL][m];
  1469. Y[1][i][m + kx][0] =
  1470. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1471. Y[1][i][m + kx][1] =
  1472. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1473. }
  1474. }
  1475. if (e != e_a[0] && e != e_a[1]) {
  1476. for (m = 0; m < m_max; m++) {
  1477. indexnoise = (indexnoise + 1) & 0x1ff;
  1478. if (sbr->s_m[e][m]) {
  1479. Y[1][i][m + kx][0] +=
  1480. sbr->s_m[e][m] * phi[0][indexsine];
  1481. Y[1][i][m + kx][1] +=
  1482. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1483. } else {
  1484. float q_filt;
  1485. if (h_SL) {
  1486. const int idx1 = i + h_SL;
  1487. q_filt = 0.0f;
  1488. for (j = 0; j <= h_SL; j++)
  1489. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1490. } else {
  1491. q_filt = q_temp[i][m];
  1492. }
  1493. Y[1][i][m + kx][0] +=
  1494. q_filt * sbr_noise_table[indexnoise][0];
  1495. Y[1][i][m + kx][1] +=
  1496. q_filt * sbr_noise_table[indexnoise][1];
  1497. }
  1498. phi_sign = -phi_sign;
  1499. }
  1500. } else {
  1501. indexnoise = (indexnoise + m_max) & 0x1ff;
  1502. for (m = 0; m < m_max; m++) {
  1503. Y[1][i][m + kx][0] +=
  1504. sbr->s_m[e][m] * phi[0][indexsine];
  1505. Y[1][i][m + kx][1] +=
  1506. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1507. phi_sign = -phi_sign;
  1508. }
  1509. }
  1510. indexsine = (indexsine + 1) & 3;
  1511. }
  1512. }
  1513. ch_data->f_indexnoise = indexnoise;
  1514. ch_data->f_indexsine = indexsine;
  1515. }
  1516. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1517. float* L, float* R)
  1518. {
  1519. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1520. int ch;
  1521. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1522. if (sbr->start) {
  1523. sbr_dequant(sbr, id_aac);
  1524. }
  1525. for (ch = 0; ch < nch; ch++) {
  1526. /* decode channel */
  1527. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1528. (float*)sbr->qmf_filter_scratch,
  1529. sbr->data[ch].W);
  1530. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1531. if (sbr->start) {
  1532. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1533. sbr_chirp(sbr, &sbr->data[ch]);
  1534. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1535. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1536. sbr->data[ch].bs_num_env);
  1537. // hf_adj
  1538. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1539. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1540. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1541. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1542. sbr->data[ch].e_a);
  1543. }
  1544. /* synthesis */
  1545. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1546. }
  1547. if (ac->m4ac.ps == 1) {
  1548. if (sbr->ps.start) {
  1549. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1550. } else {
  1551. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1552. }
  1553. nch = 2;
  1554. }
  1555. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1556. sbr->data[0].synthesis_filterbank_samples,
  1557. &sbr->data[0].synthesis_filterbank_samples_offset,
  1558. downsampled);
  1559. if (nch == 2)
  1560. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1561. sbr->data[1].synthesis_filterbank_samples,
  1562. &sbr->data[1].synthesis_filterbank_samples_offset,
  1563. downsampled);
  1564. }