You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2706 lines
74KB

  1. @chapter Filtergraph description
  2. @c man begin FILTERGRAPH DESCRIPTION
  3. A filtergraph is a directed graph of connected filters. It can contain
  4. cycles, and there can be multiple links between a pair of
  5. filters. Each link has one input pad on one side connecting it to one
  6. filter from which it takes its input, and one output pad on the other
  7. side connecting it to the one filter accepting its output.
  8. Each filter in a filtergraph is an instance of a filter class
  9. registered in the application, which defines the features and the
  10. number of input and output pads of the filter.
  11. A filter with no input pads is called a "source", a filter with no
  12. output pads is called a "sink".
  13. @section Filtergraph syntax
  14. A filtergraph can be represented using a textual representation, which
  15. is recognized by the @code{-vf} and @code{-af} options of the ff*
  16. tools, and by the @code{avfilter_graph_parse()} function defined in
  17. @file{libavfilter/avfiltergraph.h}.
  18. A filterchain consists of a sequence of connected filters, each one
  19. connected to the previous one in the sequence. A filterchain is
  20. represented by a list of ","-separated filter descriptions.
  21. A filtergraph consists of a sequence of filterchains. A sequence of
  22. filterchains is represented by a list of ";"-separated filterchain
  23. descriptions.
  24. A filter is represented by a string of the form:
  25. [@var{in_link_1}]...[@var{in_link_N}]@var{filter_name}=@var{arguments}[@var{out_link_1}]...[@var{out_link_M}]
  26. @var{filter_name} is the name of the filter class of which the
  27. described filter is an instance of, and has to be the name of one of
  28. the filter classes registered in the program.
  29. The name of the filter class is optionally followed by a string
  30. "=@var{arguments}".
  31. @var{arguments} is a string which contains the parameters used to
  32. initialize the filter instance, and are described in the filter
  33. descriptions below.
  34. The list of arguments can be quoted using the character "'" as initial
  35. and ending mark, and the character '\' for escaping the characters
  36. within the quoted text; otherwise the argument string is considered
  37. terminated when the next special character (belonging to the set
  38. "[]=;,") is encountered.
  39. The name and arguments of the filter are optionally preceded and
  40. followed by a list of link labels.
  41. A link label allows to name a link and associate it to a filter output
  42. or input pad. The preceding labels @var{in_link_1}
  43. ... @var{in_link_N}, are associated to the filter input pads,
  44. the following labels @var{out_link_1} ... @var{out_link_M}, are
  45. associated to the output pads.
  46. When two link labels with the same name are found in the
  47. filtergraph, a link between the corresponding input and output pad is
  48. created.
  49. If an output pad is not labelled, it is linked by default to the first
  50. unlabelled input pad of the next filter in the filterchain.
  51. For example in the filterchain:
  52. @example
  53. nullsrc, split[L1], [L2]overlay, nullsink
  54. @end example
  55. the split filter instance has two output pads, and the overlay filter
  56. instance two input pads. The first output pad of split is labelled
  57. "L1", the first input pad of overlay is labelled "L2", and the second
  58. output pad of split is linked to the second input pad of overlay,
  59. which are both unlabelled.
  60. In a complete filterchain all the unlabelled filter input and output
  61. pads must be connected. A filtergraph is considered valid if all the
  62. filter input and output pads of all the filterchains are connected.
  63. Follows a BNF description for the filtergraph syntax:
  64. @example
  65. @var{NAME} ::= sequence of alphanumeric characters and '_'
  66. @var{LINKLABEL} ::= "[" @var{NAME} "]"
  67. @var{LINKLABELS} ::= @var{LINKLABEL} [@var{LINKLABELS}]
  68. @var{FILTER_ARGUMENTS} ::= sequence of chars (eventually quoted)
  69. @var{FILTER} ::= [@var{LINKNAMES}] @var{NAME} ["=" @var{ARGUMENTS}] [@var{LINKNAMES}]
  70. @var{FILTERCHAIN} ::= @var{FILTER} [,@var{FILTERCHAIN}]
  71. @var{FILTERGRAPH} ::= @var{FILTERCHAIN} [;@var{FILTERGRAPH}]
  72. @end example
  73. @c man end FILTERGRAPH DESCRIPTION
  74. @chapter Audio Filters
  75. @c man begin AUDIO FILTERS
  76. When you configure your FFmpeg build, you can disable any of the
  77. existing filters using --disable-filters.
  78. The configure output will show the audio filters included in your
  79. build.
  80. Below is a description of the currently available audio filters.
  81. @section aconvert
  82. Convert the input audio format to the specified formats.
  83. The filter accepts a string of the form:
  84. "@var{sample_format}:@var{channel_layout}:@var{packing_format}".
  85. @var{sample_format} specifies the sample format, and can be a string or
  86. the corresponding numeric value defined in @file{libavutil/samplefmt.h}.
  87. @var{channel_layout} specifies the channel layout, and can be a string
  88. or the corresponding number value defined in @file{libavutil/chlayout.h}.
  89. @var{packing_format} specifies the type of packing in output, can be one
  90. of "planar" or "packed", or the corresponding numeric values "0" or "1".
  91. The special parameter "auto", signifies that the filter will
  92. automatically select the output format depending on the output filter.
  93. Some examples follow.
  94. @itemize
  95. @item
  96. Convert input to unsigned 8-bit, stereo, packed:
  97. @example
  98. aconvert=u8:stereo:packed
  99. @end example
  100. @item
  101. Convert input to unsigned 8-bit, automatically select out channel layout
  102. and packing format:
  103. @example
  104. aconvert=u8:auto:auto
  105. @end example
  106. @end itemize
  107. @section aformat
  108. Convert the input audio to one of the specified formats. The framework will
  109. negotiate the most appropriate format to minimize conversions.
  110. The filter accepts three lists of formats, separated by ":", in the form:
  111. "@var{sample_formats}:@var{channel_layouts}:@var{packing_formats}".
  112. Elements in each list are separated by "," which has to be escaped in the
  113. filtergraph specification.
  114. The special parameter "all", in place of a list of elements, signifies all
  115. supported formats.
  116. Some examples follow:
  117. @example
  118. aformat=u8\\,s16:mono:packed
  119. aformat=s16:mono\\,stereo:all
  120. @end example
  121. @section anull
  122. Pass the audio source unchanged to the output.
  123. @section aresample
  124. Resample the input audio to the specified sample rate.
  125. The filter accepts exactly one parameter, the output sample rate. If not
  126. specified then the filter will automatically convert between its input
  127. and output sample rates.
  128. For example, to resample the input audio to 44100Hz:
  129. @example
  130. aresample=44100
  131. @end example
  132. @section ashowinfo
  133. Show a line containing various information for each input audio frame.
  134. The input audio is not modified.
  135. The shown line contains a sequence of key/value pairs of the form
  136. @var{key}:@var{value}.
  137. A description of each shown parameter follows:
  138. @table @option
  139. @item n
  140. sequential number of the input frame, starting from 0
  141. @item pts
  142. presentation TimeStamp of the input frame, expressed as a number of
  143. time base units. The time base unit depends on the filter input pad, and
  144. is usually 1/@var{sample_rate}.
  145. @item pts_time
  146. presentation TimeStamp of the input frame, expressed as a number of
  147. seconds
  148. @item pos
  149. position of the frame in the input stream, -1 if this information in
  150. unavailable and/or meanigless (for example in case of synthetic audio)
  151. @item fmt
  152. sample format name
  153. @item chlayout
  154. channel layout description
  155. @item nb_samples
  156. number of samples (per each channel) contained in the filtered frame
  157. @item rate
  158. sample rate for the audio frame
  159. @item planar
  160. if the packing format is planar, 0 if packed
  161. @item checksum
  162. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  163. @item plane_checksum
  164. Adler-32 checksum (printed in hexadecimal) for each input frame plane,
  165. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3} @var{c4} @var{c5}
  166. @var{c6} @var{c7}]"
  167. @end table
  168. @c man end AUDIO FILTERS
  169. @chapter Audio Sources
  170. @c man begin AUDIO SOURCES
  171. Below is a description of the currently available audio sources.
  172. @section abuffer
  173. Buffer audio frames, and make them available to the filter chain.
  174. This source is mainly intended for a programmatic use, in particular
  175. through the interface defined in @file{libavfilter/asrc_abuffer.h}.
  176. It accepts the following mandatory parameters:
  177. @var{sample_rate}:@var{sample_fmt}:@var{channel_layout}:@var{packing}
  178. @table @option
  179. @item sample_rate
  180. The sample rate of the incoming audio buffers.
  181. @item sample_fmt
  182. The sample format of the incoming audio buffers.
  183. Either a sample format name or its corresponging integer representation from
  184. the enum AVSampleFormat in @file{libavutil/samplefmt.h}
  185. @item channel_layout
  186. The channel layout of the incoming audio buffers.
  187. Either a channel layout name from channel_layout_map in
  188. @file{libavutil/audioconvert.c} or its corresponding integer representation
  189. from the AV_CH_LAYOUT_* macros in @file{libavutil/audioconvert.h}
  190. @item packing
  191. Either "packed" or "planar", or their integer representation: 0 or 1
  192. respectively.
  193. @end table
  194. For example:
  195. @example
  196. abuffer=44100:s16:stereo:planar
  197. @end example
  198. will instruct the source to accept planar 16bit signed stereo at 44100Hz.
  199. Since the sample format with name "s16" corresponds to the number
  200. 1 and the "stereo" channel layout corresponds to the value 3, this is
  201. equivalent to:
  202. @example
  203. abuffer=44100:1:3:1
  204. @end example
  205. @section aevalsrc
  206. Generate an audio signal specified by an expression.
  207. This source accepts in input one or more expressions (one for each
  208. channel), which are evaluated and used to generate a corresponding
  209. audio signal.
  210. It accepts the syntax: @var{exprs}[::@var{options}].
  211. @var{exprs} is a list of expressions separated by ":", one for each
  212. separate channel. The output channel layout depends on the number of
  213. provided expressions, up to 8 channels are supported.
  214. @var{options} is an optional sequence of @var{key}=@var{value} pairs,
  215. separated by ":".
  216. The description of the accepted options follows.
  217. @table @option
  218. @item nb_samples, n
  219. Set the number of samples per channel per each output frame,
  220. default to 1024.
  221. @item sample_rate, s
  222. Specify the sample rate, default to 44100.
  223. @end table
  224. Each expression in @var{exprs} can contain the following constants:
  225. @table @option
  226. @item n
  227. number of the evaluated sample, starting from 0
  228. @item t
  229. time of the evaluated sample expressed in seconds, starting from 0
  230. @item s
  231. sample rate
  232. @end table
  233. @subsection Examples
  234. @itemize
  235. @item
  236. Generate silence:
  237. @example
  238. aevalsrc=0
  239. @end example
  240. @item
  241. Generate a sin signal with frequence of 440 Hz, set sample rate to
  242. 8000 Hz:
  243. @example
  244. aevalsrc="sin(440*2*PI*t)::s=8000"
  245. @end example
  246. @item
  247. Generate white noise:
  248. @example
  249. aevalsrc="-2+random(0)"
  250. @end example
  251. @item
  252. Generate an amplitude modulated signal:
  253. @example
  254. aevalsrc="sin(10*2*PI*t)*sin(880*2*PI*t)"
  255. @end example
  256. @item
  257. Generate 2.5 Hz binaural beats on a 360 Hz carrier:
  258. @example
  259. aevalsrc="0.1*sin(2*PI*(360-2.5/2)*t) : 0.1*sin(2*PI*(360+2.5/2)*t)"
  260. @end example
  261. @end itemize
  262. @section amovie
  263. Read an audio stream from a movie container.
  264. It accepts the syntax: @var{movie_name}[:@var{options}] where
  265. @var{movie_name} is the name of the resource to read (not necessarily
  266. a file but also a device or a stream accessed through some protocol),
  267. and @var{options} is an optional sequence of @var{key}=@var{value}
  268. pairs, separated by ":".
  269. The description of the accepted options follows.
  270. @table @option
  271. @item format_name, f
  272. Specify the format assumed for the movie to read, and can be either
  273. the name of a container or an input device. If not specified the
  274. format is guessed from @var{movie_name} or by probing.
  275. @item seek_point, sp
  276. Specify the seek point in seconds, the frames will be output
  277. starting from this seek point, the parameter is evaluated with
  278. @code{av_strtod} so the numerical value may be suffixed by an IS
  279. postfix. Default value is "0".
  280. @item stream_index, si
  281. Specify the index of the audio stream to read. If the value is -1,
  282. the best suited audio stream will be automatically selected. Default
  283. value is "-1".
  284. @end table
  285. @section anullsrc
  286. Null audio source, return unprocessed audio frames. It is mainly useful
  287. as a template and to be employed in analysis / debugging tools, or as
  288. the source for filters which ignore the input data (for example the sox
  289. synth filter).
  290. It accepts an optional sequence of @var{key}=@var{value} pairs,
  291. separated by ":".
  292. The description of the accepted options follows.
  293. @table @option
  294. @item sample_rate, s
  295. Specify the sample rate, and defaults to 44100.
  296. @item channel_layout, cl
  297. Specify the channel layout, and can be either an integer or a string
  298. representing a channel layout. The default value of @var{channel_layout}
  299. is "stereo".
  300. Check the channel_layout_map definition in
  301. @file{libavcodec/audioconvert.c} for the mapping between strings and
  302. channel layout values.
  303. @item nb_samples, n
  304. Set the number of samples per requested frames.
  305. @end table
  306. Follow some examples:
  307. @example
  308. # set the sample rate to 48000 Hz and the channel layout to AV_CH_LAYOUT_MONO.
  309. anullsrc=r=48000:cl=4
  310. # same as
  311. anullsrc=r=48000:cl=mono
  312. @end example
  313. @c man end AUDIO SOURCES
  314. @chapter Audio Sinks
  315. @c man begin AUDIO SINKS
  316. Below is a description of the currently available audio sinks.
  317. @section abuffersink
  318. Buffer audio frames, and make them available to the end of filter chain.
  319. This sink is mainly intended for programmatic use, in particular
  320. through the interface defined in @file{libavfilter/buffersink.h}.
  321. It requires a pointer to an AVABufferSinkContext structure, which
  322. defines the incoming buffers' formats, to be passed as the opaque
  323. parameter to @code{avfilter_init_filter} for initialization.
  324. @section anullsink
  325. Null audio sink, do absolutely nothing with the input audio. It is
  326. mainly useful as a template and to be employed in analysis / debugging
  327. tools.
  328. @c man end AUDIO SINKS
  329. @chapter Video Filters
  330. @c man begin VIDEO FILTERS
  331. When you configure your FFmpeg build, you can disable any of the
  332. existing filters using --disable-filters.
  333. The configure output will show the video filters included in your
  334. build.
  335. Below is a description of the currently available video filters.
  336. @section blackframe
  337. Detect frames that are (almost) completely black. Can be useful to
  338. detect chapter transitions or commercials. Output lines consist of
  339. the frame number of the detected frame, the percentage of blackness,
  340. the position in the file if known or -1 and the timestamp in seconds.
  341. In order to display the output lines, you need to set the loglevel at
  342. least to the AV_LOG_INFO value.
  343. The filter accepts the syntax:
  344. @example
  345. blackframe[=@var{amount}:[@var{threshold}]]
  346. @end example
  347. @var{amount} is the percentage of the pixels that have to be below the
  348. threshold, and defaults to 98.
  349. @var{threshold} is the threshold below which a pixel value is
  350. considered black, and defaults to 32.
  351. @section boxblur
  352. Apply boxblur algorithm to the input video.
  353. This filter accepts the parameters:
  354. @var{luma_radius}:@var{luma_power}:@var{chroma_radius}:@var{chroma_power}:@var{alpha_radius}:@var{alpha_power}
  355. Chroma and alpha parameters are optional, if not specified they default
  356. to the corresponding values set for @var{luma_radius} and
  357. @var{luma_power}.
  358. @var{luma_radius}, @var{chroma_radius}, and @var{alpha_radius} represent
  359. the radius in pixels of the box used for blurring the corresponding
  360. input plane. They are expressions, and can contain the following
  361. constants:
  362. @table @option
  363. @item w, h
  364. the input width and heigth in pixels
  365. @item cw, ch
  366. the input chroma image width and height in pixels
  367. @item hsub, vsub
  368. horizontal and vertical chroma subsample values. For example for the
  369. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  370. @end table
  371. The radius must be a non-negative number, and must not be greater than
  372. the value of the expression @code{min(w,h)/2} for the luma and alpha planes,
  373. and of @code{min(cw,ch)/2} for the chroma planes.
  374. @var{luma_power}, @var{chroma_power}, and @var{alpha_power} represent
  375. how many times the boxblur filter is applied to the corresponding
  376. plane.
  377. Some examples follow:
  378. @itemize
  379. @item
  380. Apply a boxblur filter with luma, chroma, and alpha radius
  381. set to 2:
  382. @example
  383. boxblur=2:1
  384. @end example
  385. @item
  386. Set luma radius to 2, alpha and chroma radius to 0
  387. @example
  388. boxblur=2:1:0:0:0:0
  389. @end example
  390. @item
  391. Set luma and chroma radius to a fraction of the video dimension
  392. @example
  393. boxblur=min(h\,w)/10:1:min(cw\,ch)/10:1
  394. @end example
  395. @end itemize
  396. @section copy
  397. Copy the input source unchanged to the output. Mainly useful for
  398. testing purposes.
  399. @section crop
  400. Crop the input video to @var{out_w}:@var{out_h}:@var{x}:@var{y}.
  401. The parameters are expressions containing the following constants:
  402. @table @option
  403. @item x, y
  404. the computed values for @var{x} and @var{y}. They are evaluated for
  405. each new frame.
  406. @item in_w, in_h
  407. the input width and height
  408. @item iw, ih
  409. same as @var{in_w} and @var{in_h}
  410. @item out_w, out_h
  411. the output (cropped) width and height
  412. @item ow, oh
  413. same as @var{out_w} and @var{out_h}
  414. @item a
  415. same as @var{iw} / @var{ih}
  416. @item sar
  417. input sample aspect ratio
  418. @item dar
  419. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  420. @item hsub, vsub
  421. horizontal and vertical chroma subsample values. For example for the
  422. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  423. @item n
  424. the number of input frame, starting from 0
  425. @item pos
  426. the position in the file of the input frame, NAN if unknown
  427. @item t
  428. timestamp expressed in seconds, NAN if the input timestamp is unknown
  429. @end table
  430. The @var{out_w} and @var{out_h} parameters specify the expressions for
  431. the width and height of the output (cropped) video. They are
  432. evaluated just at the configuration of the filter.
  433. The default value of @var{out_w} is "in_w", and the default value of
  434. @var{out_h} is "in_h".
  435. The expression for @var{out_w} may depend on the value of @var{out_h},
  436. and the expression for @var{out_h} may depend on @var{out_w}, but they
  437. cannot depend on @var{x} and @var{y}, as @var{x} and @var{y} are
  438. evaluated after @var{out_w} and @var{out_h}.
  439. The @var{x} and @var{y} parameters specify the expressions for the
  440. position of the top-left corner of the output (non-cropped) area. They
  441. are evaluated for each frame. If the evaluated value is not valid, it
  442. is approximated to the nearest valid value.
  443. The default value of @var{x} is "(in_w-out_w)/2", and the default
  444. value for @var{y} is "(in_h-out_h)/2", which set the cropped area at
  445. the center of the input image.
  446. The expression for @var{x} may depend on @var{y}, and the expression
  447. for @var{y} may depend on @var{x}.
  448. Follow some examples:
  449. @example
  450. # crop the central input area with size 100x100
  451. crop=100:100
  452. # crop the central input area with size 2/3 of the input video
  453. "crop=2/3*in_w:2/3*in_h"
  454. # crop the input video central square
  455. crop=in_h
  456. # delimit the rectangle with the top-left corner placed at position
  457. # 100:100 and the right-bottom corner corresponding to the right-bottom
  458. # corner of the input image.
  459. crop=in_w-100:in_h-100:100:100
  460. # crop 10 pixels from the left and right borders, and 20 pixels from
  461. # the top and bottom borders
  462. "crop=in_w-2*10:in_h-2*20"
  463. # keep only the bottom right quarter of the input image
  464. "crop=in_w/2:in_h/2:in_w/2:in_h/2"
  465. # crop height for getting Greek harmony
  466. "crop=in_w:1/PHI*in_w"
  467. # trembling effect
  468. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(n/10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(n/7)"
  469. # erratic camera effect depending on timestamp
  470. "crop=in_w/2:in_h/2:(in_w-out_w)/2+((in_w-out_w)/2)*sin(t*10):(in_h-out_h)/2 +((in_h-out_h)/2)*sin(t*13)"
  471. # set x depending on the value of y
  472. "crop=in_w/2:in_h/2:y:10+10*sin(n/10)"
  473. @end example
  474. @section cropdetect
  475. Auto-detect crop size.
  476. Calculate necessary cropping parameters and prints the recommended
  477. parameters through the logging system. The detected dimensions
  478. correspond to the non-black area of the input video.
  479. It accepts the syntax:
  480. @example
  481. cropdetect[=@var{limit}[:@var{round}[:@var{reset}]]]
  482. @end example
  483. @table @option
  484. @item limit
  485. Threshold, which can be optionally specified from nothing (0) to
  486. everything (255), defaults to 24.
  487. @item round
  488. Value which the width/height should be divisible by, defaults to
  489. 16. The offset is automatically adjusted to center the video. Use 2 to
  490. get only even dimensions (needed for 4:2:2 video). 16 is best when
  491. encoding to most video codecs.
  492. @item reset
  493. Counter that determines after how many frames cropdetect will reset
  494. the previously detected largest video area and start over to detect
  495. the current optimal crop area. Defaults to 0.
  496. This can be useful when channel logos distort the video area. 0
  497. indicates never reset and return the largest area encountered during
  498. playback.
  499. @end table
  500. @section delogo
  501. Suppress a TV station logo by a simple interpolation of the surrounding
  502. pixels. Just set a rectangle covering the logo and watch it disappear
  503. (and sometimes something even uglier appear - your mileage may vary).
  504. The filter accepts parameters as a string of the form
  505. "@var{x}:@var{y}:@var{w}:@var{h}:@var{band}", or as a list of
  506. @var{key}=@var{value} pairs, separated by ":".
  507. The description of the accepted parameters follows.
  508. @table @option
  509. @item x, y
  510. Specify the top left corner coordinates of the logo. They must be
  511. specified.
  512. @item w, h
  513. Specify the width and height of the logo to clear. They must be
  514. specified.
  515. @item band, t
  516. Specify the thickness of the fuzzy edge of the rectangle (added to
  517. @var{w} and @var{h}). The default value is 4.
  518. @item show
  519. When set to 1, a green rectangle is drawn on the screen to simplify
  520. finding the right @var{x}, @var{y}, @var{w}, @var{h} parameters, and
  521. @var{band} is set to 4. The default value is 0.
  522. @end table
  523. Some examples follow.
  524. @itemize
  525. @item
  526. Set a rectangle covering the area with top left corner coordinates 0,0
  527. and size 100x77, setting a band of size 10:
  528. @example
  529. delogo=0:0:100:77:10
  530. @end example
  531. @item
  532. As the previous example, but use named options:
  533. @example
  534. delogo=x=0:y=0:w=100:h=77:band=10
  535. @end example
  536. @end itemize
  537. @section deshake
  538. Attempt to fix small changes in horizontal and/or vertical shift. This
  539. filter helps remove camera shake from hand-holding a camera, bumping a
  540. tripod, moving on a vehicle, etc.
  541. The filter accepts parameters as a string of the form
  542. "@var{x}:@var{y}:@var{w}:@var{h}:@var{rx}:@var{ry}:@var{edge}:@var{blocksize}:@var{contrast}:@var{search}:@var{filename}"
  543. A description of the accepted parameters follows.
  544. @table @option
  545. @item x, y, w, h
  546. Specify a rectangular area where to limit the sarch for motion
  547. vectors.
  548. If desired the search for motion vectors can be limited to a
  549. rectangular area of the frame defined by its top left corner, width
  550. and height. These parameters have the same meaning as the drawbox
  551. filter which can be used to visualise the position of the bounding
  552. box.
  553. This is useful when simultaneous movement of subjects within the frame
  554. might be confused for camera motion by the motion vector search.
  555. If any or all of @var{x}, @var{y}, @var{w} and @var{h} are set to -1
  556. then the full frame is used. This allows later options to be set
  557. without specifying the bounding box for the motion vector search.
  558. Default - search the whole frame.
  559. @item rx, ry
  560. Specify the maximum extent of movement in x and y directions in the
  561. range 0-64 pixels. Default 16.
  562. @item edge
  563. Specify how to generate pixels to fill blanks at the edge of the
  564. frame. An integer from 0 to 3 as follows:
  565. @table @option
  566. @item 0
  567. Fill zeroes at blank locations
  568. @item 1
  569. Original image at blank locations
  570. @item 2
  571. Extruded edge value at blank locations
  572. @item 3
  573. Mirrored edge at blank locations
  574. @end table
  575. The default setting is mirror edge at blank locations.
  576. @item blocksize
  577. Specify the blocksize to use for motion search. Range 4-128 pixels,
  578. default 8.
  579. @item contrast
  580. Specify the contrast threshold for blocks. Only blocks with more than
  581. the specified contrast (difference between darkest and lightest
  582. pixels) will be considered. Range 1-255, default 125.
  583. @item search
  584. Specify the search strategy 0 = exhaustive search, 1 = less exhaustive
  585. search. Default - exhaustive search.
  586. @item filename
  587. If set then a detailed log of the motion search is written to the
  588. specified file.
  589. @end table
  590. @section drawbox
  591. Draw a colored box on the input image.
  592. It accepts the syntax:
  593. @example
  594. drawbox=@var{x}:@var{y}:@var{width}:@var{height}:@var{color}
  595. @end example
  596. @table @option
  597. @item x, y
  598. Specify the top left corner coordinates of the box. Default to 0.
  599. @item width, height
  600. Specify the width and height of the box, if 0 they are interpreted as
  601. the input width and height. Default to 0.
  602. @item color
  603. Specify the color of the box to write, it can be the name of a color
  604. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  605. @end table
  606. Follow some examples:
  607. @example
  608. # draw a black box around the edge of the input image
  609. drawbox
  610. # draw a box with color red and an opacity of 50%
  611. drawbox=10:20:200:60:red@@0.5"
  612. @end example
  613. @section drawtext
  614. Draw text string or text from specified file on top of video using the
  615. libfreetype library.
  616. To enable compilation of this filter you need to configure FFmpeg with
  617. @code{--enable-libfreetype}.
  618. The filter also recognizes strftime() sequences in the provided text
  619. and expands them accordingly. Check the documentation of strftime().
  620. The filter accepts parameters as a list of @var{key}=@var{value} pairs,
  621. separated by ":".
  622. The description of the accepted parameters follows.
  623. @table @option
  624. @item fontfile
  625. The font file to be used for drawing text. Path must be included.
  626. This parameter is mandatory.
  627. @item text
  628. The text string to be drawn. The text must be a sequence of UTF-8
  629. encoded characters.
  630. This parameter is mandatory if no file is specified with the parameter
  631. @var{textfile}.
  632. @item textfile
  633. A text file containing text to be drawn. The text must be a sequence
  634. of UTF-8 encoded characters.
  635. This parameter is mandatory if no text string is specified with the
  636. parameter @var{text}.
  637. If both text and textfile are specified, an error is thrown.
  638. @item x, y
  639. The expressions which specify the offsets where text will be drawn
  640. within the video frame. They are relative to the top/left border of the
  641. output image.
  642. The default value of @var{x} and @var{y} is "0".
  643. See below for the list of accepted constants.
  644. @item fontsize
  645. The font size to be used for drawing text.
  646. The default value of @var{fontsize} is 16.
  647. @item fontcolor
  648. The color to be used for drawing fonts.
  649. Either a string (e.g. "red") or in 0xRRGGBB[AA] format
  650. (e.g. "0xff000033"), possibly followed by an alpha specifier.
  651. The default value of @var{fontcolor} is "black".
  652. @item boxcolor
  653. The color to be used for drawing box around text.
  654. Either a string (e.g. "yellow") or in 0xRRGGBB[AA] format
  655. (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  656. The default value of @var{boxcolor} is "white".
  657. @item box
  658. Used to draw a box around text using background color.
  659. Value should be either 1 (enable) or 0 (disable).
  660. The default value of @var{box} is 0.
  661. @item shadowx, shadowy
  662. The x and y offsets for the text shadow position with respect to the
  663. position of the text. They can be either positive or negative
  664. values. Default value for both is "0".
  665. @item shadowcolor
  666. The color to be used for drawing a shadow behind the drawn text. It
  667. can be a color name (e.g. "yellow") or a string in the 0xRRGGBB[AA]
  668. form (e.g. "0xff00ff"), possibly followed by an alpha specifier.
  669. The default value of @var{shadowcolor} is "black".
  670. @item ft_load_flags
  671. Flags to be used for loading the fonts.
  672. The flags map the corresponding flags supported by libfreetype, and are
  673. a combination of the following values:
  674. @table @var
  675. @item default
  676. @item no_scale
  677. @item no_hinting
  678. @item render
  679. @item no_bitmap
  680. @item vertical_layout
  681. @item force_autohint
  682. @item crop_bitmap
  683. @item pedantic
  684. @item ignore_global_advance_width
  685. @item no_recurse
  686. @item ignore_transform
  687. @item monochrome
  688. @item linear_design
  689. @item no_autohint
  690. @item end table
  691. @end table
  692. Default value is "render".
  693. For more information consult the documentation for the FT_LOAD_*
  694. libfreetype flags.
  695. @item tabsize
  696. The size in number of spaces to use for rendering the tab.
  697. Default value is 4.
  698. @end table
  699. The parameters for @var{x} and @var{y} are expressions containing the
  700. following constants:
  701. @table @option
  702. @item w, h
  703. the input width and heigth
  704. @item tw, text_w
  705. the width of the rendered text
  706. @item th, text_h
  707. the height of the rendered text
  708. @item lh, line_h
  709. the height of each text line
  710. @item sar
  711. input sample aspect ratio
  712. @item dar
  713. input display aspect ratio, it is the same as (@var{w} / @var{h}) * @var{sar}
  714. @item hsub, vsub
  715. horizontal and vertical chroma subsample values. For example for the
  716. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  717. @item max_glyph_w
  718. maximum glyph width, that is the maximum width for all the glyphs
  719. contained in the rendered text
  720. @item max_glyph_h
  721. maximum glyph height, that is the maximum height for all the glyphs
  722. contained in the rendered text, it is equivalent to @var{ascent} -
  723. @var{descent}.
  724. @item max_glyph_a, ascent
  725. the maximum distance from the baseline to the highest/upper grid
  726. coordinate used to place a glyph outline point, for all the rendered
  727. glyphs.
  728. It is a positive value, due to the grid's orientation with the Y axis
  729. upwards.
  730. @item max_glyph_d, descent
  731. the maximum distance from the baseline to the lowest grid coordinate
  732. used to place a glyph outline point, for all the rendered glyphs.
  733. This is a negative value, due to the grid's orientation, with the Y axis
  734. upwards.
  735. @item n
  736. the number of input frame, starting from 0
  737. @item t
  738. timestamp expressed in seconds, NAN if the input timestamp is unknown
  739. @end table
  740. Some examples follow.
  741. @itemize
  742. @item
  743. Draw "Test Text" with font FreeSerif, using the default values for the
  744. optional parameters.
  745. @example
  746. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text'"
  747. @end example
  748. @item
  749. Draw 'Test Text' with font FreeSerif of size 24 at position x=100
  750. and y=50 (counting from the top-left corner of the screen), text is
  751. yellow with a red box around it. Both the text and the box have an
  752. opacity of 20%.
  753. @example
  754. drawtext="fontfile=/usr/share/fonts/truetype/freefont/FreeSerif.ttf: text='Test Text':\
  755. x=100: y=50: fontsize=24: fontcolor=yellow@@0.2: box=1: boxcolor=red@@0.2"
  756. @end example
  757. Note that the double quotes are not necessary if spaces are not used
  758. within the parameter list.
  759. @item
  760. Show the text at the center of the video frame:
  761. @example
  762. drawtext=fontsize=30:fontfile=FreeSerif.ttf:text='hello world':x=(w-text_w)/2:y=(h-text_h-line_h)/2"
  763. @end example
  764. @item
  765. Show a text line sliding from right to left in the last row of the video
  766. frame. The file @file{LONG_LINE} is assumed to contain a single line
  767. with no newlines.
  768. @example
  769. drawtext=fontsize=15:fontfile=FreeSerif.ttf:text=LONG_LINE:y=h-line_h:x=-50*t
  770. @end example
  771. @item
  772. Show the content of file @file{CREDITS} off the bottom of the frame and scroll up.
  773. @example
  774. drawtext=fontsize=20:fontfile=FreeSerif.ttf:textfile=CREDITS:y=h-20*t"
  775. @end example
  776. @item
  777. Draw a single green letter "g", at the center of the input video.
  778. The glyph baseline is placed at half screen height.
  779. @example
  780. drawtext=fontsize=60:fontfile=FreeSerif.ttf:fontcolor=green:text=g:x=(w-max_glyph_w)/2:y=h/2-ascent
  781. @end example
  782. @end itemize
  783. For more information about libfreetype, check:
  784. @url{http://www.freetype.org/}.
  785. @section fade
  786. Apply fade-in/out effect to input video.
  787. It accepts the parameters:
  788. @var{type}:@var{start_frame}:@var{nb_frames}
  789. @var{type} specifies if the effect type, can be either "in" for
  790. fade-in, or "out" for a fade-out effect.
  791. @var{start_frame} specifies the number of the start frame for starting
  792. to apply the fade effect.
  793. @var{nb_frames} specifies the number of frames for which the fade
  794. effect has to last. At the end of the fade-in effect the output video
  795. will have the same intensity as the input video, at the end of the
  796. fade-out transition the output video will be completely black.
  797. A few usage examples follow, usable too as test scenarios.
  798. @example
  799. # fade in first 30 frames of video
  800. fade=in:0:30
  801. # fade out last 45 frames of a 200-frame video
  802. fade=out:155:45
  803. # fade in first 25 frames and fade out last 25 frames of a 1000-frame video
  804. fade=in:0:25, fade=out:975:25
  805. # make first 5 frames black, then fade in from frame 5-24
  806. fade=in:5:20
  807. @end example
  808. @section fieldorder
  809. Transform the field order of the input video.
  810. It accepts one parameter which specifies the required field order that
  811. the input interlaced video will be transformed to. The parameter can
  812. assume one of the following values:
  813. @table @option
  814. @item 0 or bff
  815. output bottom field first
  816. @item 1 or tff
  817. output top field first
  818. @end table
  819. Default value is "tff".
  820. Transformation is achieved by shifting the picture content up or down
  821. by one line, and filling the remaining line with appropriate picture content.
  822. This method is consistent with most broadcast field order converters.
  823. If the input video is not flagged as being interlaced, or it is already
  824. flagged as being of the required output field order then this filter does
  825. not alter the incoming video.
  826. This filter is very useful when converting to or from PAL DV material,
  827. which is bottom field first.
  828. For example:
  829. @example
  830. ./ffmpeg -i in.vob -vf "fieldorder=bff" out.dv
  831. @end example
  832. @section fifo
  833. Buffer input images and send them when they are requested.
  834. This filter is mainly useful when auto-inserted by the libavfilter
  835. framework.
  836. The filter does not take parameters.
  837. @section format
  838. Convert the input video to one of the specified pixel formats.
  839. Libavfilter will try to pick one that is supported for the input to
  840. the next filter.
  841. The filter accepts a list of pixel format names, separated by ":",
  842. for example "yuv420p:monow:rgb24".
  843. Some examples follow:
  844. @example
  845. # convert the input video to the format "yuv420p"
  846. format=yuv420p
  847. # convert the input video to any of the formats in the list
  848. format=yuv420p:yuv444p:yuv410p
  849. @end example
  850. @anchor{frei0r}
  851. @section frei0r
  852. Apply a frei0r effect to the input video.
  853. To enable compilation of this filter you need to install the frei0r
  854. header and configure FFmpeg with --enable-frei0r.
  855. The filter supports the syntax:
  856. @example
  857. @var{filter_name}[@{:|=@}@var{param1}:@var{param2}:...:@var{paramN}]
  858. @end example
  859. @var{filter_name} is the name to the frei0r effect to load. If the
  860. environment variable @env{FREI0R_PATH} is defined, the frei0r effect
  861. is searched in each one of the directories specified by the colon
  862. separated list in @env{FREIOR_PATH}, otherwise in the standard frei0r
  863. paths, which are in this order: @file{HOME/.frei0r-1/lib/},
  864. @file{/usr/local/lib/frei0r-1/}, @file{/usr/lib/frei0r-1/}.
  865. @var{param1}, @var{param2}, ... , @var{paramN} specify the parameters
  866. for the frei0r effect.
  867. A frei0r effect parameter can be a boolean (whose values are specified
  868. with "y" and "n"), a double, a color (specified by the syntax
  869. @var{R}/@var{G}/@var{B}, @var{R}, @var{G}, and @var{B} being float
  870. numbers from 0.0 to 1.0) or by an @code{av_parse_color()} color
  871. description), a position (specified by the syntax @var{X}/@var{Y},
  872. @var{X} and @var{Y} being float numbers) and a string.
  873. The number and kind of parameters depend on the loaded effect. If an
  874. effect parameter is not specified the default value is set.
  875. Some examples follow:
  876. @example
  877. # apply the distort0r effect, set the first two double parameters
  878. frei0r=distort0r:0.5:0.01
  879. # apply the colordistance effect, takes a color as first parameter
  880. frei0r=colordistance:0.2/0.3/0.4
  881. frei0r=colordistance:violet
  882. frei0r=colordistance:0x112233
  883. # apply the perspective effect, specify the top left and top right
  884. # image positions
  885. frei0r=perspective:0.2/0.2:0.8/0.2
  886. @end example
  887. For more information see:
  888. @url{http://piksel.org/frei0r}
  889. @section gradfun
  890. Fix the banding artifacts that are sometimes introduced into nearly flat
  891. regions by truncation to 8bit colordepth.
  892. Interpolate the gradients that should go where the bands are, and
  893. dither them.
  894. This filter is designed for playback only. Do not use it prior to
  895. lossy compression, because compression tends to lose the dither and
  896. bring back the bands.
  897. The filter takes two optional parameters, separated by ':':
  898. @var{strength}:@var{radius}
  899. @var{strength} is the maximum amount by which the filter will change
  900. any one pixel. Also the threshold for detecting nearly flat
  901. regions. Acceptable values range from .51 to 255, default value is
  902. 1.2, out-of-range values will be clipped to the valid range.
  903. @var{radius} is the neighborhood to fit the gradient to. A larger
  904. radius makes for smoother gradients, but also prevents the filter from
  905. modifying the pixels near detailed regions. Acceptable values are
  906. 8-32, default value is 16, out-of-range values will be clipped to the
  907. valid range.
  908. @example
  909. # default parameters
  910. gradfun=1.2:16
  911. # omitting radius
  912. gradfun=1.2
  913. @end example
  914. @section hflip
  915. Flip the input video horizontally.
  916. For example to horizontally flip the video in input with
  917. @file{ffmpeg}:
  918. @example
  919. ffmpeg -i in.avi -vf "hflip" out.avi
  920. @end example
  921. @section hqdn3d
  922. High precision/quality 3d denoise filter. This filter aims to reduce
  923. image noise producing smooth images and making still images really
  924. still. It should enhance compressibility.
  925. It accepts the following optional parameters:
  926. @var{luma_spatial}:@var{chroma_spatial}:@var{luma_tmp}:@var{chroma_tmp}
  927. @table @option
  928. @item luma_spatial
  929. a non-negative float number which specifies spatial luma strength,
  930. defaults to 4.0
  931. @item chroma_spatial
  932. a non-negative float number which specifies spatial chroma strength,
  933. defaults to 3.0*@var{luma_spatial}/4.0
  934. @item luma_tmp
  935. a float number which specifies luma temporal strength, defaults to
  936. 6.0*@var{luma_spatial}/4.0
  937. @item chroma_tmp
  938. a float number which specifies chroma temporal strength, defaults to
  939. @var{luma_tmp}*@var{chroma_spatial}/@var{luma_spatial}
  940. @end table
  941. @section lut, lutrgb, lutyuv
  942. Compute a look-up table for binding each pixel component input value
  943. to an output value, and apply it to input video.
  944. @var{lutyuv} applies a lookup table to a YUV input video, @var{lutrgb}
  945. to an RGB input video.
  946. These filters accept in input a ":"-separated list of options, which
  947. specify the expressions used for computing the lookup table for the
  948. corresponding pixel component values.
  949. The @var{lut} filter requires either YUV or RGB pixel formats in
  950. input, and accepts the options:
  951. @table @option
  952. @item c0
  953. first pixel component
  954. @item c1
  955. second pixel component
  956. @item c2
  957. third pixel component
  958. @item c3
  959. fourth pixel component, corresponds to the alpha component
  960. @end table
  961. The exact component associated to each option depends on the format in
  962. input.
  963. The @var{lutrgb} filter requires RGB pixel formats in input, and
  964. accepts the options:
  965. @table @option
  966. @item r
  967. red component
  968. @item g
  969. green component
  970. @item b
  971. blue component
  972. @item a
  973. alpha component
  974. @end table
  975. The @var{lutyuv} filter requires YUV pixel formats in input, and
  976. accepts the options:
  977. @table @option
  978. @item y
  979. Y/luminance component
  980. @item u
  981. U/Cb component
  982. @item v
  983. V/Cr component
  984. @item a
  985. alpha component
  986. @end table
  987. The expressions can contain the following constants and functions:
  988. @table @option
  989. @item w, h
  990. the input width and heigth
  991. @item val
  992. input value for the pixel component
  993. @item clipval
  994. the input value clipped in the @var{minval}-@var{maxval} range
  995. @item maxval
  996. maximum value for the pixel component
  997. @item minval
  998. minimum value for the pixel component
  999. @item negval
  1000. the negated value for the pixel component value clipped in the
  1001. @var{minval}-@var{maxval} range , it corresponds to the expression
  1002. "maxval-clipval+minval"
  1003. @item clip(val)
  1004. the computed value in @var{val} clipped in the
  1005. @var{minval}-@var{maxval} range
  1006. @item gammaval(gamma)
  1007. the computed gamma correction value of the pixel component value
  1008. clipped in the @var{minval}-@var{maxval} range, corresponds to the
  1009. expression
  1010. "pow((clipval-minval)/(maxval-minval)\,@var{gamma})*(maxval-minval)+minval"
  1011. @end table
  1012. All expressions default to "val".
  1013. Some examples follow:
  1014. @example
  1015. # negate input video
  1016. lutrgb="r=maxval+minval-val:g=maxval+minval-val:b=maxval+minval-val"
  1017. lutyuv="y=maxval+minval-val:u=maxval+minval-val:v=maxval+minval-val"
  1018. # the above is the same as
  1019. lutrgb="r=negval:g=negval:b=negval"
  1020. lutyuv="y=negval:u=negval:v=negval"
  1021. # negate luminance
  1022. lutyuv=y=negval
  1023. # remove chroma components, turns the video into a graytone image
  1024. lutyuv="u=128:v=128"
  1025. # apply a luma burning effect
  1026. lutyuv="y=2*val"
  1027. # remove green and blue components
  1028. lutrgb="g=0:b=0"
  1029. # set a constant alpha channel value on input
  1030. format=rgba,lutrgb=a="maxval-minval/2"
  1031. # correct luminance gamma by a 0.5 factor
  1032. lutyuv=y=gammaval(0.5)
  1033. @end example
  1034. @section mp
  1035. Apply an MPlayer filter to the input video.
  1036. This filter provides a wrapper around most of the filters of
  1037. MPlayer/MEncoder.
  1038. This wrapper is considered experimental. Some of the wrapped filters
  1039. may not work properly and we may drop support for them, as they will
  1040. be implemented natively into FFmpeg. Thus you should avoid
  1041. depending on them when writing portable scripts.
  1042. The filters accepts the parameters:
  1043. @var{filter_name}[:=]@var{filter_params}
  1044. @var{filter_name} is the name of a supported MPlayer filter,
  1045. @var{filter_params} is a string containing the parameters accepted by
  1046. the named filter.
  1047. The list of the currently supported filters follows:
  1048. @table @var
  1049. @item 2xsai
  1050. @item decimate
  1051. @item denoise3d
  1052. @item detc
  1053. @item dint
  1054. @item divtc
  1055. @item down3dright
  1056. @item dsize
  1057. @item eq2
  1058. @item eq
  1059. @item field
  1060. @item fil
  1061. @item fixpts
  1062. @item framestep
  1063. @item fspp
  1064. @item geq
  1065. @item harddup
  1066. @item hqdn3d
  1067. @item hue
  1068. @item il
  1069. @item ilpack
  1070. @item ivtc
  1071. @item kerndeint
  1072. @item mcdeint
  1073. @item mirror
  1074. @item noise
  1075. @item ow
  1076. @item palette
  1077. @item perspective
  1078. @item phase
  1079. @item pp7
  1080. @item pullup
  1081. @item qp
  1082. @item rectangle
  1083. @item remove-logo
  1084. @item rotate
  1085. @item sab
  1086. @item screenshot
  1087. @item smartblur
  1088. @item softpulldown
  1089. @item softskip
  1090. @item spp
  1091. @item swapuv
  1092. @item telecine
  1093. @item tile
  1094. @item tinterlace
  1095. @item unsharp
  1096. @item uspp
  1097. @item yuvcsp
  1098. @item yvu9
  1099. @end table
  1100. The parameter syntax and behavior for the listed filters are the same
  1101. of the corresponding MPlayer filters. For detailed instructions check
  1102. the "VIDEO FILTERS" section in the MPlayer manual.
  1103. Some examples follow:
  1104. @example
  1105. # remove a logo by interpolating the surrounding pixels
  1106. mp=delogo=200:200:80:20:1
  1107. # adjust gamma, brightness, contrast
  1108. mp=eq2=1.0:2:0.5
  1109. # tweak hue and saturation
  1110. mp=hue=100:-10
  1111. @end example
  1112. See also mplayer(1), @url{http://www.mplayerhq.hu/}.
  1113. @section negate
  1114. Negate input video.
  1115. This filter accepts an integer in input, if non-zero it negates the
  1116. alpha component (if available). The default value in input is 0.
  1117. @section noformat
  1118. Force libavfilter not to use any of the specified pixel formats for the
  1119. input to the next filter.
  1120. The filter accepts a list of pixel format names, separated by ":",
  1121. for example "yuv420p:monow:rgb24".
  1122. Some examples follow:
  1123. @example
  1124. # force libavfilter to use a format different from "yuv420p" for the
  1125. # input to the vflip filter
  1126. noformat=yuv420p,vflip
  1127. # convert the input video to any of the formats not contained in the list
  1128. noformat=yuv420p:yuv444p:yuv410p
  1129. @end example
  1130. @section null
  1131. Pass the video source unchanged to the output.
  1132. @section ocv
  1133. Apply video transform using libopencv.
  1134. To enable this filter install libopencv library and headers and
  1135. configure FFmpeg with --enable-libopencv.
  1136. The filter takes the parameters: @var{filter_name}@{:=@}@var{filter_params}.
  1137. @var{filter_name} is the name of the libopencv filter to apply.
  1138. @var{filter_params} specifies the parameters to pass to the libopencv
  1139. filter. If not specified the default values are assumed.
  1140. Refer to the official libopencv documentation for more precise
  1141. informations:
  1142. @url{http://opencv.willowgarage.com/documentation/c/image_filtering.html}
  1143. Follows the list of supported libopencv filters.
  1144. @anchor{dilate}
  1145. @subsection dilate
  1146. Dilate an image by using a specific structuring element.
  1147. This filter corresponds to the libopencv function @code{cvDilate}.
  1148. It accepts the parameters: @var{struct_el}:@var{nb_iterations}.
  1149. @var{struct_el} represents a structuring element, and has the syntax:
  1150. @var{cols}x@var{rows}+@var{anchor_x}x@var{anchor_y}/@var{shape}
  1151. @var{cols} and @var{rows} represent the number of colums and rows of
  1152. the structuring element, @var{anchor_x} and @var{anchor_y} the anchor
  1153. point, and @var{shape} the shape for the structuring element, and
  1154. can be one of the values "rect", "cross", "ellipse", "custom".
  1155. If the value for @var{shape} is "custom", it must be followed by a
  1156. string of the form "=@var{filename}". The file with name
  1157. @var{filename} is assumed to represent a binary image, with each
  1158. printable character corresponding to a bright pixel. When a custom
  1159. @var{shape} is used, @var{cols} and @var{rows} are ignored, the number
  1160. or columns and rows of the read file are assumed instead.
  1161. The default value for @var{struct_el} is "3x3+0x0/rect".
  1162. @var{nb_iterations} specifies the number of times the transform is
  1163. applied to the image, and defaults to 1.
  1164. Follow some example:
  1165. @example
  1166. # use the default values
  1167. ocv=dilate
  1168. # dilate using a structuring element with a 5x5 cross, iterate two times
  1169. ocv=dilate=5x5+2x2/cross:2
  1170. # read the shape from the file diamond.shape, iterate two times
  1171. # the file diamond.shape may contain a pattern of characters like this:
  1172. # *
  1173. # ***
  1174. # *****
  1175. # ***
  1176. # *
  1177. # the specified cols and rows are ignored (but not the anchor point coordinates)
  1178. ocv=0x0+2x2/custom=diamond.shape:2
  1179. @end example
  1180. @subsection erode
  1181. Erode an image by using a specific structuring element.
  1182. This filter corresponds to the libopencv function @code{cvErode}.
  1183. The filter accepts the parameters: @var{struct_el}:@var{nb_iterations},
  1184. with the same syntax and semantics as the @ref{dilate} filter.
  1185. @subsection smooth
  1186. Smooth the input video.
  1187. The filter takes the following parameters:
  1188. @var{type}:@var{param1}:@var{param2}:@var{param3}:@var{param4}.
  1189. @var{type} is the type of smooth filter to apply, and can be one of
  1190. the following values: "blur", "blur_no_scale", "median", "gaussian",
  1191. "bilateral". The default value is "gaussian".
  1192. @var{param1}, @var{param2}, @var{param3}, and @var{param4} are
  1193. parameters whose meanings depend on smooth type. @var{param1} and
  1194. @var{param2} accept integer positive values or 0, @var{param3} and
  1195. @var{param4} accept float values.
  1196. The default value for @var{param1} is 3, the default value for the
  1197. other parameters is 0.
  1198. These parameters correspond to the parameters assigned to the
  1199. libopencv function @code{cvSmooth}.
  1200. @section overlay
  1201. Overlay one video on top of another.
  1202. It takes two inputs and one output, the first input is the "main"
  1203. video on which the second input is overlayed.
  1204. It accepts the parameters: @var{x}:@var{y}.
  1205. @var{x} is the x coordinate of the overlayed video on the main video,
  1206. @var{y} is the y coordinate. The parameters are expressions containing
  1207. the following parameters:
  1208. @table @option
  1209. @item main_w, main_h
  1210. main input width and height
  1211. @item W, H
  1212. same as @var{main_w} and @var{main_h}
  1213. @item overlay_w, overlay_h
  1214. overlay input width and height
  1215. @item w, h
  1216. same as @var{overlay_w} and @var{overlay_h}
  1217. @end table
  1218. Be aware that frames are taken from each input video in timestamp
  1219. order, hence, if their initial timestamps differ, it is a a good idea
  1220. to pass the two inputs through a @var{setpts=PTS-STARTPTS} filter to
  1221. have them begin in the same zero timestamp, as it does the example for
  1222. the @var{movie} filter.
  1223. Follow some examples:
  1224. @example
  1225. # draw the overlay at 10 pixels from the bottom right
  1226. # corner of the main video.
  1227. overlay=main_w-overlay_w-10:main_h-overlay_h-10
  1228. # insert a transparent PNG logo in the bottom left corner of the input
  1229. movie=logo.png [logo];
  1230. [in][logo] overlay=10:main_h-overlay_h-10 [out]
  1231. # insert 2 different transparent PNG logos (second logo on bottom
  1232. # right corner):
  1233. movie=logo1.png [logo1];
  1234. movie=logo2.png [logo2];
  1235. [in][logo1] overlay=10:H-h-10 [in+logo1];
  1236. [in+logo1][logo2] overlay=W-w-10:H-h-10 [out]
  1237. # add a transparent color layer on top of the main video,
  1238. # WxH specifies the size of the main input to the overlay filter
  1239. color=red@.3:WxH [over]; [in][over] overlay [out]
  1240. @end example
  1241. You can chain togheter more overlays but the efficiency of such
  1242. approach is yet to be tested.
  1243. @section pad
  1244. Add paddings to the input image, and places the original input at the
  1245. given coordinates @var{x}, @var{y}.
  1246. It accepts the following parameters:
  1247. @var{width}:@var{height}:@var{x}:@var{y}:@var{color}.
  1248. The parameters @var{width}, @var{height}, @var{x}, and @var{y} are
  1249. expressions containing the following constants:
  1250. @table @option
  1251. @item in_w, in_h
  1252. the input video width and height
  1253. @item iw, ih
  1254. same as @var{in_w} and @var{in_h}
  1255. @item out_w, out_h
  1256. the output width and height, that is the size of the padded area as
  1257. specified by the @var{width} and @var{height} expressions
  1258. @item ow, oh
  1259. same as @var{out_w} and @var{out_h}
  1260. @item x, y
  1261. x and y offsets as specified by the @var{x} and @var{y}
  1262. expressions, or NAN if not yet specified
  1263. @item a
  1264. same as @var{iw} / @var{ih}
  1265. @item sar
  1266. input sample aspect ratio
  1267. @item dar
  1268. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1269. @item hsub, vsub
  1270. horizontal and vertical chroma subsample values. For example for the
  1271. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1272. @end table
  1273. Follows the description of the accepted parameters.
  1274. @table @option
  1275. @item width, height
  1276. Specify the size of the output image with the paddings added. If the
  1277. value for @var{width} or @var{height} is 0, the corresponding input size
  1278. is used for the output.
  1279. The @var{width} expression can reference the value set by the
  1280. @var{height} expression, and viceversa.
  1281. The default value of @var{width} and @var{height} is 0.
  1282. @item x, y
  1283. Specify the offsets where to place the input image in the padded area
  1284. with respect to the top/left border of the output image.
  1285. The @var{x} expression can reference the value set by the @var{y}
  1286. expression, and viceversa.
  1287. The default value of @var{x} and @var{y} is 0.
  1288. @item color
  1289. Specify the color of the padded area, it can be the name of a color
  1290. (case insensitive match) or a 0xRRGGBB[AA] sequence.
  1291. The default value of @var{color} is "black".
  1292. @end table
  1293. Some examples follow:
  1294. @example
  1295. # Add paddings with color "violet" to the input video. Output video
  1296. # size is 640x480, the top-left corner of the input video is placed at
  1297. # column 0, row 40.
  1298. pad=640:480:0:40:violet
  1299. # pad the input to get an output with dimensions increased bt 3/2,
  1300. # and put the input video at the center of the padded area
  1301. pad="3/2*iw:3/2*ih:(ow-iw)/2:(oh-ih)/2"
  1302. # pad the input to get a squared output with size equal to the maximum
  1303. # value between the input width and height, and put the input video at
  1304. # the center of the padded area
  1305. pad="max(iw\,ih):ow:(ow-iw)/2:(oh-ih)/2"
  1306. # pad the input to get a final w/h ratio of 16:9
  1307. pad="ih*16/9:ih:(ow-iw)/2:(oh-ih)/2"
  1308. # for anamorphic video, in order to set the output display aspect ratio,
  1309. # it is necessary to use sar in the expression, according to the relation:
  1310. # (ih * X / ih) * sar = output_dar
  1311. # X = output_dar / sar
  1312. pad="ih*16/9/sar:ih:(ow-iw)/2:(oh-ih)/2"
  1313. # double output size and put the input video in the bottom-right
  1314. # corner of the output padded area
  1315. pad="2*iw:2*ih:ow-iw:oh-ih"
  1316. @end example
  1317. @section pixdesctest
  1318. Pixel format descriptor test filter, mainly useful for internal
  1319. testing. The output video should be equal to the input video.
  1320. For example:
  1321. @example
  1322. format=monow, pixdesctest
  1323. @end example
  1324. can be used to test the monowhite pixel format descriptor definition.
  1325. @section scale
  1326. Scale the input video to @var{width}:@var{height}[:@var{interl}=@{1|-1@}] and/or convert the image format.
  1327. The parameters @var{width} and @var{height} are expressions containing
  1328. the following constants:
  1329. @table @option
  1330. @item in_w, in_h
  1331. the input width and height
  1332. @item iw, ih
  1333. same as @var{in_w} and @var{in_h}
  1334. @item out_w, out_h
  1335. the output (cropped) width and height
  1336. @item ow, oh
  1337. same as @var{out_w} and @var{out_h}
  1338. @item a
  1339. same as @var{iw} / @var{ih}
  1340. @item sar
  1341. input sample aspect ratio
  1342. @item dar
  1343. input display aspect ratio, it is the same as (@var{iw} / @var{ih}) * @var{sar}
  1344. @item sar
  1345. input sample aspect ratio
  1346. @item hsub, vsub
  1347. horizontal and vertical chroma subsample values. For example for the
  1348. pixel format "yuv422p" @var{hsub} is 2 and @var{vsub} is 1.
  1349. @end table
  1350. If the input image format is different from the format requested by
  1351. the next filter, the scale filter will convert the input to the
  1352. requested format.
  1353. If the value for @var{width} or @var{height} is 0, the respective input
  1354. size is used for the output.
  1355. If the value for @var{width} or @var{height} is -1, the scale filter will
  1356. use, for the respective output size, a value that maintains the aspect
  1357. ratio of the input image.
  1358. The default value of @var{width} and @var{height} is 0.
  1359. Valid values for the optional parameter @var{interl} are:
  1360. @table @option
  1361. @item 1
  1362. force interlaced aware scaling
  1363. @item -1
  1364. select interlaced aware scaling depending on whether the source frames
  1365. are flagged as interlaced or not
  1366. @end table
  1367. Some examples follow:
  1368. @example
  1369. # scale the input video to a size of 200x100.
  1370. scale=200:100
  1371. # scale the input to 2x
  1372. scale=2*iw:2*ih
  1373. # the above is the same as
  1374. scale=2*in_w:2*in_h
  1375. # scale the input to half size
  1376. scale=iw/2:ih/2
  1377. # increase the width, and set the height to the same size
  1378. scale=3/2*iw:ow
  1379. # seek for Greek harmony
  1380. scale=iw:1/PHI*iw
  1381. scale=ih*PHI:ih
  1382. # increase the height, and set the width to 3/2 of the height
  1383. scale=3/2*oh:3/5*ih
  1384. # increase the size, but make the size a multiple of the chroma
  1385. scale="trunc(3/2*iw/hsub)*hsub:trunc(3/2*ih/vsub)*vsub"
  1386. # increase the width to a maximum of 500 pixels, keep the same input aspect ratio
  1387. scale='min(500\, iw*3/2):-1'
  1388. @end example
  1389. @section select
  1390. Select frames to pass in output.
  1391. It accepts in input an expression, which is evaluated for each input
  1392. frame. If the expression is evaluated to a non-zero value, the frame
  1393. is selected and passed to the output, otherwise it is discarded.
  1394. The expression can contain the following constants:
  1395. @table @option
  1396. @item n
  1397. the sequential number of the filtered frame, starting from 0
  1398. @item selected_n
  1399. the sequential number of the selected frame, starting from 0
  1400. @item prev_selected_n
  1401. the sequential number of the last selected frame, NAN if undefined
  1402. @item TB
  1403. timebase of the input timestamps
  1404. @item pts
  1405. the PTS (Presentation TimeStamp) of the filtered video frame,
  1406. expressed in @var{TB} units, NAN if undefined
  1407. @item t
  1408. the PTS (Presentation TimeStamp) of the filtered video frame,
  1409. expressed in seconds, NAN if undefined
  1410. @item prev_pts
  1411. the PTS of the previously filtered video frame, NAN if undefined
  1412. @item prev_selected_pts
  1413. the PTS of the last previously filtered video frame, NAN if undefined
  1414. @item prev_selected_t
  1415. the PTS of the last previously selected video frame, NAN if undefined
  1416. @item start_pts
  1417. the PTS of the first video frame in the video, NAN if undefined
  1418. @item start_t
  1419. the time of the first video frame in the video, NAN if undefined
  1420. @item pict_type
  1421. the type of the filtered frame, can assume one of the following
  1422. values:
  1423. @table @option
  1424. @item I
  1425. @item P
  1426. @item B
  1427. @item S
  1428. @item SI
  1429. @item SP
  1430. @item BI
  1431. @end table
  1432. @item interlace_type
  1433. the frame interlace type, can assume one of the following values:
  1434. @table @option
  1435. @item PROGRESSIVE
  1436. the frame is progressive (not interlaced)
  1437. @item TOPFIRST
  1438. the frame is top-field-first
  1439. @item BOTTOMFIRST
  1440. the frame is bottom-field-first
  1441. @end table
  1442. @item key
  1443. 1 if the filtered frame is a key-frame, 0 otherwise
  1444. @item pos
  1445. the position in the file of the filtered frame, -1 if the information
  1446. is not available (e.g. for synthetic video)
  1447. @end table
  1448. The default value of the select expression is "1".
  1449. Some examples follow:
  1450. @example
  1451. # select all frames in input
  1452. select
  1453. # the above is the same as:
  1454. select=1
  1455. # skip all frames:
  1456. select=0
  1457. # select only I-frames
  1458. select='eq(pict_type\,I)'
  1459. # select one frame every 100
  1460. select='not(mod(n\,100))'
  1461. # select only frames contained in the 10-20 time interval
  1462. select='gte(t\,10)*lte(t\,20)'
  1463. # select only I frames contained in the 10-20 time interval
  1464. select='gte(t\,10)*lte(t\,20)*eq(pict_type\,I)'
  1465. # select frames with a minimum distance of 10 seconds
  1466. select='isnan(prev_selected_t)+gte(t-prev_selected_t\,10)'
  1467. @end example
  1468. @anchor{setdar}
  1469. @section setdar
  1470. Set the Display Aspect Ratio for the filter output video.
  1471. This is done by changing the specified Sample (aka Pixel) Aspect
  1472. Ratio, according to the following equation:
  1473. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1474. Keep in mind that this filter does not modify the pixel dimensions of
  1475. the video frame. Also the display aspect ratio set by this filter may
  1476. be changed by later filters in the filterchain, e.g. in case of
  1477. scaling or if another "setdar" or a "setsar" filter is applied.
  1478. The filter accepts a parameter string which represents the wanted
  1479. display aspect ratio.
  1480. The parameter can be a floating point number string, or an expression
  1481. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1482. numerator and denominator of the aspect ratio.
  1483. If the parameter is not specified, it is assumed the value "0:1".
  1484. For example to change the display aspect ratio to 16:9, specify:
  1485. @example
  1486. setdar=16:9
  1487. # the above is equivalent to
  1488. setdar=1.77777
  1489. @end example
  1490. See also the @ref{setsar} filter documentation.
  1491. @section setpts
  1492. Change the PTS (presentation timestamp) of the input video frames.
  1493. Accept in input an expression evaluated through the eval API, which
  1494. can contain the following constants:
  1495. @table @option
  1496. @item PTS
  1497. the presentation timestamp in input
  1498. @item N
  1499. the count of the input frame, starting from 0.
  1500. @item STARTPTS
  1501. the PTS of the first video frame
  1502. @item INTERLACED
  1503. tell if the current frame is interlaced
  1504. @item POS
  1505. original position in the file of the frame, or undefined if undefined
  1506. for the current frame
  1507. @item PREV_INPTS
  1508. previous input PTS
  1509. @item PREV_OUTPTS
  1510. previous output PTS
  1511. @end table
  1512. Some examples follow:
  1513. @example
  1514. # start counting PTS from zero
  1515. setpts=PTS-STARTPTS
  1516. # fast motion
  1517. setpts=0.5*PTS
  1518. # slow motion
  1519. setpts=2.0*PTS
  1520. # fixed rate 25 fps
  1521. setpts=N/(25*TB)
  1522. # fixed rate 25 fps with some jitter
  1523. setpts='1/(25*TB) * (N + 0.05 * sin(N*2*PI/25))'
  1524. @end example
  1525. @anchor{setsar}
  1526. @section setsar
  1527. Set the Sample (aka Pixel) Aspect Ratio for the filter output video.
  1528. Note that as a consequence of the application of this filter, the
  1529. output display aspect ratio will change according to the following
  1530. equation:
  1531. @math{DAR = HORIZONTAL_RESOLUTION / VERTICAL_RESOLUTION * SAR}
  1532. Keep in mind that the sample aspect ratio set by this filter may be
  1533. changed by later filters in the filterchain, e.g. if another "setsar"
  1534. or a "setdar" filter is applied.
  1535. The filter accepts a parameter string which represents the wanted
  1536. sample aspect ratio.
  1537. The parameter can be a floating point number string, or an expression
  1538. of the form @var{num}:@var{den}, where @var{num} and @var{den} are the
  1539. numerator and denominator of the aspect ratio.
  1540. If the parameter is not specified, it is assumed the value "0:1".
  1541. For example to change the sample aspect ratio to 10:11, specify:
  1542. @example
  1543. setsar=10:11
  1544. @end example
  1545. @section settb
  1546. Set the timebase to use for the output frames timestamps.
  1547. It is mainly useful for testing timebase configuration.
  1548. It accepts in input an arithmetic expression representing a rational.
  1549. The expression can contain the constants "AVTB" (the
  1550. default timebase), and "intb" (the input timebase).
  1551. The default value for the input is "intb".
  1552. Follow some examples.
  1553. @example
  1554. # set the timebase to 1/25
  1555. settb=1/25
  1556. # set the timebase to 1/10
  1557. settb=0.1
  1558. #set the timebase to 1001/1000
  1559. settb=1+0.001
  1560. #set the timebase to 2*intb
  1561. settb=2*intb
  1562. #set the default timebase value
  1563. settb=AVTB
  1564. @end example
  1565. @section showinfo
  1566. Show a line containing various information for each input video frame.
  1567. The input video is not modified.
  1568. The shown line contains a sequence of key/value pairs of the form
  1569. @var{key}:@var{value}.
  1570. A description of each shown parameter follows:
  1571. @table @option
  1572. @item n
  1573. sequential number of the input frame, starting from 0
  1574. @item pts
  1575. Presentation TimeStamp of the input frame, expressed as a number of
  1576. time base units. The time base unit depends on the filter input pad.
  1577. @item pts_time
  1578. Presentation TimeStamp of the input frame, expressed as a number of
  1579. seconds
  1580. @item pos
  1581. position of the frame in the input stream, -1 if this information in
  1582. unavailable and/or meanigless (for example in case of synthetic video)
  1583. @item fmt
  1584. pixel format name
  1585. @item sar
  1586. sample aspect ratio of the input frame, expressed in the form
  1587. @var{num}/@var{den}
  1588. @item s
  1589. size of the input frame, expressed in the form
  1590. @var{width}x@var{height}
  1591. @item i
  1592. interlaced mode ("P" for "progressive", "T" for top field first, "B"
  1593. for bottom field first)
  1594. @item iskey
  1595. 1 if the frame is a key frame, 0 otherwise
  1596. @item type
  1597. picture type of the input frame ("I" for an I-frame, "P" for a
  1598. P-frame, "B" for a B-frame, "?" for unknown type).
  1599. Check also the documentation of the @code{AVPictureType} enum and of
  1600. the @code{av_get_picture_type_char} function defined in
  1601. @file{libavutil/avutil.h}.
  1602. @item checksum
  1603. Adler-32 checksum (printed in hexadecimal) of all the planes of the input frame
  1604. @item plane_checksum
  1605. Adler-32 checksum (printed in hexadecimal) of each plane of the input frame,
  1606. expressed in the form "[@var{c0} @var{c1} @var{c2} @var{c3}]"
  1607. @end table
  1608. @section slicify
  1609. Pass the images of input video on to next video filter as multiple
  1610. slices.
  1611. @example
  1612. ./ffmpeg -i in.avi -vf "slicify=32" out.avi
  1613. @end example
  1614. The filter accepts the slice height as parameter. If the parameter is
  1615. not specified it will use the default value of 16.
  1616. Adding this in the beginning of filter chains should make filtering
  1617. faster due to better use of the memory cache.
  1618. @section split
  1619. Pass on the input video to two outputs. Both outputs are identical to
  1620. the input video.
  1621. For example:
  1622. @example
  1623. [in] split [splitout1][splitout2];
  1624. [splitout1] crop=100:100:0:0 [cropout];
  1625. [splitout2] pad=200:200:100:100 [padout];
  1626. @end example
  1627. will create two separate outputs from the same input, one cropped and
  1628. one padded.
  1629. @section transpose
  1630. Transpose rows with columns in the input video and optionally flip it.
  1631. It accepts a parameter representing an integer, which can assume the
  1632. values:
  1633. @table @samp
  1634. @item 0
  1635. Rotate by 90 degrees counterclockwise and vertically flip (default), that is:
  1636. @example
  1637. L.R L.l
  1638. . . -> . .
  1639. l.r R.r
  1640. @end example
  1641. @item 1
  1642. Rotate by 90 degrees clockwise, that is:
  1643. @example
  1644. L.R l.L
  1645. . . -> . .
  1646. l.r r.R
  1647. @end example
  1648. @item 2
  1649. Rotate by 90 degrees counterclockwise, that is:
  1650. @example
  1651. L.R R.r
  1652. . . -> . .
  1653. l.r L.l
  1654. @end example
  1655. @item 3
  1656. Rotate by 90 degrees clockwise and vertically flip, that is:
  1657. @example
  1658. L.R r.R
  1659. . . -> . .
  1660. l.r l.L
  1661. @end example
  1662. @end table
  1663. @section unsharp
  1664. Sharpen or blur the input video.
  1665. It accepts the following parameters:
  1666. @var{luma_msize_x}:@var{luma_msize_y}:@var{luma_amount}:@var{chroma_msize_x}:@var{chroma_msize_y}:@var{chroma_amount}
  1667. Negative values for the amount will blur the input video, while positive
  1668. values will sharpen. All parameters are optional and default to the
  1669. equivalent of the string '5:5:1.0:5:5:0.0'.
  1670. @table @option
  1671. @item luma_msize_x
  1672. Set the luma matrix horizontal size. It can be an integer between 3
  1673. and 13, default value is 5.
  1674. @item luma_msize_y
  1675. Set the luma matrix vertical size. It can be an integer between 3
  1676. and 13, default value is 5.
  1677. @item luma_amount
  1678. Set the luma effect strength. It can be a float number between -2.0
  1679. and 5.0, default value is 1.0.
  1680. @item chroma_msize_x
  1681. Set the chroma matrix horizontal size. It can be an integer between 3
  1682. and 13, default value is 5.
  1683. @item chroma_msize_y
  1684. Set the chroma matrix vertical size. It can be an integer between 3
  1685. and 13, default value is 5.
  1686. @item chroma_amount
  1687. Set the chroma effect strength. It can be a float number between -2.0
  1688. and 5.0, default value is 0.0.
  1689. @end table
  1690. @example
  1691. # Strong luma sharpen effect parameters
  1692. unsharp=7:7:2.5
  1693. # Strong blur of both luma and chroma parameters
  1694. unsharp=7:7:-2:7:7:-2
  1695. # Use the default values with @command{ffmpeg}
  1696. ./ffmpeg -i in.avi -vf "unsharp" out.mp4
  1697. @end example
  1698. @section vflip
  1699. Flip the input video vertically.
  1700. @example
  1701. ./ffmpeg -i in.avi -vf "vflip" out.avi
  1702. @end example
  1703. @section yadif
  1704. Deinterlace the input video ("yadif" means "yet another deinterlacing
  1705. filter").
  1706. It accepts the optional parameters: @var{mode}:@var{parity}:@var{auto}.
  1707. @var{mode} specifies the interlacing mode to adopt, accepts one of the
  1708. following values:
  1709. @table @option
  1710. @item 0
  1711. output 1 frame for each frame
  1712. @item 1
  1713. output 1 frame for each field
  1714. @item 2
  1715. like 0 but skips spatial interlacing check
  1716. @item 3
  1717. like 1 but skips spatial interlacing check
  1718. @end table
  1719. Default value is 0.
  1720. @var{parity} specifies the picture field parity assumed for the input
  1721. interlaced video, accepts one of the following values:
  1722. @table @option
  1723. @item 0
  1724. assume top field first
  1725. @item 1
  1726. assume bottom field first
  1727. @item -1
  1728. enable automatic detection
  1729. @end table
  1730. Default value is -1.
  1731. If interlacing is unknown or decoder does not export this information,
  1732. top field first will be assumed.
  1733. @var{auto} specifies if deinterlacer should trust the interlaced flag
  1734. and only deinterlace frames marked as interlaced
  1735. @table @option
  1736. @item 0
  1737. deinterlace all frames
  1738. @item 1
  1739. only deinterlace frames marked as interlaced
  1740. @end table
  1741. Default value is 0.
  1742. @c man end VIDEO FILTERS
  1743. @chapter Video Sources
  1744. @c man begin VIDEO SOURCES
  1745. Below is a description of the currently available video sources.
  1746. @section buffer
  1747. Buffer video frames, and make them available to the filter chain.
  1748. This source is mainly intended for a programmatic use, in particular
  1749. through the interface defined in @file{libavfilter/vsrc_buffer.h}.
  1750. It accepts the following parameters:
  1751. @var{width}:@var{height}:@var{pix_fmt_string}:@var{timebase_num}:@var{timebase_den}:@var{sample_aspect_ratio_num}:@var{sample_aspect_ratio.den}:@var{scale_params}
  1752. All the parameters but @var{scale_params} need to be explicitely
  1753. defined.
  1754. Follows the list of the accepted parameters.
  1755. @table @option
  1756. @item width, height
  1757. Specify the width and height of the buffered video frames.
  1758. @item pix_fmt_string
  1759. A string representing the pixel format of the buffered video frames.
  1760. It may be a number corresponding to a pixel format, or a pixel format
  1761. name.
  1762. @item timebase_num, timebase_den
  1763. Specify numerator and denomitor of the timebase assumed by the
  1764. timestamps of the buffered frames.
  1765. @item sample_aspect_ratio.num, sample_aspect_ratio.den
  1766. Specify numerator and denominator of the sample aspect ratio assumed
  1767. by the video frames.
  1768. @item scale_params
  1769. Specify the optional parameters to be used for the scale filter which
  1770. is automatically inserted when an input change is detected in the
  1771. input size or format.
  1772. @end table
  1773. For example:
  1774. @example
  1775. buffer=320:240:yuv410p:1:24:1:1
  1776. @end example
  1777. will instruct the source to accept video frames with size 320x240 and
  1778. with format "yuv410p", assuming 1/24 as the timestamps timebase and
  1779. square pixels (1:1 sample aspect ratio).
  1780. Since the pixel format with name "yuv410p" corresponds to the number 6
  1781. (check the enum PixelFormat definition in @file{libavutil/pixfmt.h}),
  1782. this example corresponds to:
  1783. @example
  1784. buffer=320:240:6:1:24:1:1
  1785. @end example
  1786. @section color
  1787. Provide an uniformly colored input.
  1788. It accepts the following parameters:
  1789. @var{color}:@var{frame_size}:@var{frame_rate}
  1790. Follows the description of the accepted parameters.
  1791. @table @option
  1792. @item color
  1793. Specify the color of the source. It can be the name of a color (case
  1794. insensitive match) or a 0xRRGGBB[AA] sequence, possibly followed by an
  1795. alpha specifier. The default value is "black".
  1796. @item frame_size
  1797. Specify the size of the sourced video, it may be a string of the form
  1798. @var{width}x@var{height}, or the name of a size abbreviation. The
  1799. default value is "320x240".
  1800. @item frame_rate
  1801. Specify the frame rate of the sourced video, as the number of frames
  1802. generated per second. It has to be a string in the format
  1803. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1804. number or a valid video frame rate abbreviation. The default value is
  1805. "25".
  1806. @end table
  1807. For example the following graph description will generate a red source
  1808. with an opacity of 0.2, with size "qcif" and a frame rate of 10
  1809. frames per second, which will be overlayed over the source connected
  1810. to the pad with identifier "in".
  1811. @example
  1812. "color=red@@0.2:qcif:10 [color]; [in][color] overlay [out]"
  1813. @end example
  1814. @section movie
  1815. Read a video stream from a movie container.
  1816. It accepts the syntax: @var{movie_name}[:@var{options}] where
  1817. @var{movie_name} is the name of the resource to read (not necessarily
  1818. a file but also a device or a stream accessed through some protocol),
  1819. and @var{options} is an optional sequence of @var{key}=@var{value}
  1820. pairs, separated by ":".
  1821. The description of the accepted options follows.
  1822. @table @option
  1823. @item format_name, f
  1824. Specifies the format assumed for the movie to read, and can be either
  1825. the name of a container or an input device. If not specified the
  1826. format is guessed from @var{movie_name} or by probing.
  1827. @item seek_point, sp
  1828. Specifies the seek point in seconds, the frames will be output
  1829. starting from this seek point, the parameter is evaluated with
  1830. @code{av_strtod} so the numerical value may be suffixed by an IS
  1831. postfix. Default value is "0".
  1832. @item stream_index, si
  1833. Specifies the index of the video stream to read. If the value is -1,
  1834. the best suited video stream will be automatically selected. Default
  1835. value is "-1".
  1836. @end table
  1837. This filter allows to overlay a second video on top of main input of
  1838. a filtergraph as shown in this graph:
  1839. @example
  1840. input -----------> deltapts0 --> overlay --> output
  1841. ^
  1842. |
  1843. movie --> scale--> deltapts1 -------+
  1844. @end example
  1845. Some examples follow:
  1846. @example
  1847. # skip 3.2 seconds from the start of the avi file in.avi, and overlay it
  1848. # on top of the input labelled as "in".
  1849. movie=in.avi:seek_point=3.2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1850. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1851. # read from a video4linux2 device, and overlay it on top of the input
  1852. # labelled as "in"
  1853. movie=/dev/video0:f=video4linux2, scale=180:-1, setpts=PTS-STARTPTS [movie];
  1854. [in] setpts=PTS-STARTPTS, [movie] overlay=16:16 [out]
  1855. @end example
  1856. @section mptestsrc
  1857. Generate various test patterns, as generated by the MPlayer test filter.
  1858. The size of the generated video is fixed, and is 256x256.
  1859. This source is useful in particular for testing encoding features.
  1860. This source accepts an optional sequence of @var{key}=@var{value} pairs,
  1861. separated by ":". The description of the accepted options follows.
  1862. @table @option
  1863. @item rate, r
  1864. Specify the frame rate of the sourced video, as the number of frames
  1865. generated per second. It has to be a string in the format
  1866. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1867. number or a valid video frame rate abbreviation. The default value is
  1868. "25".
  1869. @item duration, d
  1870. Set the video duration of the sourced video. The accepted syntax is:
  1871. @example
  1872. [-]HH[:MM[:SS[.m...]]]
  1873. [-]S+[.m...]
  1874. @end example
  1875. See also the function @code{av_parse_time()}.
  1876. If not specified, or the expressed duration is negative, the video is
  1877. supposed to be generated forever.
  1878. @item test, t
  1879. Set the number or the name of the test to perform. Supported tests are:
  1880. @table @option
  1881. @item dc_luma
  1882. @item dc_chroma
  1883. @item freq_luma
  1884. @item freq_chroma
  1885. @item amp_luma
  1886. @item amp_chroma
  1887. @item cbp
  1888. @item mv
  1889. @item ring1
  1890. @item ring2
  1891. @item all
  1892. @end table
  1893. Default value is "all", which will cycle through the list of all tests.
  1894. @end table
  1895. For example the following:
  1896. @example
  1897. testsrc=t=dc_luma
  1898. @end example
  1899. will generate a "dc_luma" test pattern.
  1900. @section frei0r_src
  1901. Provide a frei0r source.
  1902. To enable compilation of this filter you need to install the frei0r
  1903. header and configure FFmpeg with --enable-frei0r.
  1904. The source supports the syntax:
  1905. @example
  1906. @var{size}:@var{rate}:@var{src_name}[@{=|:@}@var{param1}:@var{param2}:...:@var{paramN}]
  1907. @end example
  1908. @var{size} is the size of the video to generate, may be a string of the
  1909. form @var{width}x@var{height} or a frame size abbreviation.
  1910. @var{rate} is the rate of the video to generate, may be a string of
  1911. the form @var{num}/@var{den} or a frame rate abbreviation.
  1912. @var{src_name} is the name to the frei0r source to load. For more
  1913. information regarding frei0r and how to set the parameters read the
  1914. section @ref{frei0r} in the description of the video filters.
  1915. Some examples follow:
  1916. @example
  1917. # generate a frei0r partik0l source with size 200x200 and framerate 10
  1918. # which is overlayed on the overlay filter main input
  1919. frei0r_src=200x200:10:partik0l=1234 [overlay]; [in][overlay] overlay
  1920. @end example
  1921. @section nullsrc, rgbtestsrc, testsrc
  1922. The @code{nullsrc} source returns unprocessed video frames. It is
  1923. mainly useful to be employed in analysis / debugging tools, or as the
  1924. source for filters which ignore the input data.
  1925. The @code{rgbtestsrc} source generates an RGB test pattern useful for
  1926. detecting RGB vs BGR issues. You should see a red, green and blue
  1927. stripe from top to bottom.
  1928. The @code{testsrc} source generates a test video pattern, showing a
  1929. color pattern, a scrolling gradient and a timestamp. This is mainly
  1930. intended for testing purposes.
  1931. These sources accept an optional sequence of @var{key}=@var{value} pairs,
  1932. separated by ":". The description of the accepted options follows.
  1933. @table @option
  1934. @item size, s
  1935. Specify the size of the sourced video, it may be a string of the form
  1936. @var{width}x@var{heigth}, or the name of a size abbreviation. The
  1937. default value is "320x240".
  1938. @item rate, r
  1939. Specify the frame rate of the sourced video, as the number of frames
  1940. generated per second. It has to be a string in the format
  1941. @var{frame_rate_num}/@var{frame_rate_den}, an integer number, a float
  1942. number or a valid video frame rate abbreviation. The default value is
  1943. "25".
  1944. @item sar
  1945. Set the sample aspect ratio of the sourced video.
  1946. @item duration
  1947. Set the video duration of the sourced video. The accepted syntax is:
  1948. @example
  1949. [-]HH[:MM[:SS[.m...]]]
  1950. [-]S+[.m...]
  1951. @end example
  1952. See also the function @code{av_parse_time()}.
  1953. If not specified, or the expressed duration is negative, the video is
  1954. supposed to be generated forever.
  1955. @end table
  1956. For example the following:
  1957. @example
  1958. testsrc=duration=5.3:size=qcif:rate=10
  1959. @end example
  1960. will generate a video with a duration of 5.3 seconds, with size
  1961. 176x144 and a framerate of 10 frames per second.
  1962. If the input content is to be ignored, @code{nullsrc} can be used. The
  1963. following command generates noise in the luminance plane by employing
  1964. the @code{mp=geq} filter:
  1965. @example
  1966. nullsrc=s=256x256, mp=geq=random(1)*255:128:128
  1967. @end example
  1968. @c man end VIDEO SOURCES
  1969. @chapter Video Sinks
  1970. @c man begin VIDEO SINKS
  1971. Below is a description of the currently available video sinks.
  1972. @section buffersink
  1973. Buffer video frames, and make them available to the end of the filter
  1974. graph.
  1975. This sink is mainly intended for a programmatic use, in particular
  1976. through the interface defined in @file{libavfilter/buffersink.h}.
  1977. It does not require a string parameter in input, but you need to
  1978. specify a pointer to a list of supported pixel formats terminated by
  1979. -1 in the opaque parameter provided to @code{avfilter_init_filter}
  1980. when initializing this sink.
  1981. @section nullsink
  1982. Null video sink, do absolutely nothing with the input video. It is
  1983. mainly useful as a template and to be employed in analysis / debugging
  1984. tools.
  1985. @c man end VIDEO SINKS