You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2562 lines
77KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodecheader.h"
  35. #include "mathops.h"
  36. /* WARNING: only correct for posititive numbers */
  37. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  38. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  39. /****************/
  40. #define HEADER_SIZE 4
  41. #include "mpegaudiodata.h"
  42. #include "mpegaudiodectab.h"
  43. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  44. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  45. /* vlc structure for decoding layer 3 huffman tables */
  46. static VLC huff_vlc[16];
  47. static VLC_TYPE huff_vlc_tables[
  48. 0+128+128+128+130+128+154+166+
  49. 142+204+190+170+542+460+662+414
  50. ][2];
  51. static const int huff_vlc_tables_sizes[16] = {
  52. 0, 128, 128, 128, 130, 128, 154, 166,
  53. 142, 204, 190, 170, 542, 460, 662, 414
  54. };
  55. static VLC huff_quad_vlc[2];
  56. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  57. static const int huff_quad_vlc_tables_sizes[2] = {
  58. 128, 16
  59. };
  60. /* computed from band_size_long */
  61. static uint16_t band_index_long[9][23];
  62. #include "mpegaudio_tablegen.h"
  63. /* intensity stereo coef table */
  64. static int32_t is_table[2][16];
  65. static int32_t is_table_lsf[2][2][16];
  66. static int32_t csa_table[8][4];
  67. static float csa_table_float[8][4];
  68. static int32_t mdct_win[8][36];
  69. /* lower 2 bits: modulo 3, higher bits: shift */
  70. static uint16_t scale_factor_modshift[64];
  71. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  72. static int32_t scale_factor_mult[15][3];
  73. /* mult table for layer 2 group quantization */
  74. #define SCALE_GEN(v) \
  75. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  76. static const int32_t scale_factor_mult2[3][3] = {
  77. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  78. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  79. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  80. };
  81. DECLARE_ALIGNED(16, MPA_INT, ff_mpa_synth_window)[512];
  82. /**
  83. * Convert region offsets to region sizes and truncate
  84. * size to big_values.
  85. */
  86. static void ff_region_offset2size(GranuleDef *g){
  87. int i, k, j=0;
  88. g->region_size[2] = (576 / 2);
  89. for(i=0;i<3;i++) {
  90. k = FFMIN(g->region_size[i], g->big_values);
  91. g->region_size[i] = k - j;
  92. j = k;
  93. }
  94. }
  95. static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  96. if (g->block_type == 2)
  97. g->region_size[0] = (36 / 2);
  98. else {
  99. if (s->sample_rate_index <= 2)
  100. g->region_size[0] = (36 / 2);
  101. else if (s->sample_rate_index != 8)
  102. g->region_size[0] = (54 / 2);
  103. else
  104. g->region_size[0] = (108 / 2);
  105. }
  106. g->region_size[1] = (576 / 2);
  107. }
  108. static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  109. int l;
  110. g->region_size[0] =
  111. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  112. /* should not overflow */
  113. l = FFMIN(ra1 + ra2 + 2, 22);
  114. g->region_size[1] =
  115. band_index_long[s->sample_rate_index][l] >> 1;
  116. }
  117. static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  118. if (g->block_type == 2) {
  119. if (g->switch_point) {
  120. /* if switched mode, we handle the 36 first samples as
  121. long blocks. For 8000Hz, we handle the 48 first
  122. exponents as long blocks (XXX: check this!) */
  123. if (s->sample_rate_index <= 2)
  124. g->long_end = 8;
  125. else if (s->sample_rate_index != 8)
  126. g->long_end = 6;
  127. else
  128. g->long_end = 4; /* 8000 Hz */
  129. g->short_start = 2 + (s->sample_rate_index != 8);
  130. } else {
  131. g->long_end = 0;
  132. g->short_start = 0;
  133. }
  134. } else {
  135. g->short_start = 13;
  136. g->long_end = 22;
  137. }
  138. }
  139. /* layer 1 unscaling */
  140. /* n = number of bits of the mantissa minus 1 */
  141. static inline int l1_unscale(int n, int mant, int scale_factor)
  142. {
  143. int shift, mod;
  144. int64_t val;
  145. shift = scale_factor_modshift[scale_factor];
  146. mod = shift & 3;
  147. shift >>= 2;
  148. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  149. shift += n;
  150. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  151. return (int)((val + (1LL << (shift - 1))) >> shift);
  152. }
  153. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  154. {
  155. int shift, mod, val;
  156. shift = scale_factor_modshift[scale_factor];
  157. mod = shift & 3;
  158. shift >>= 2;
  159. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  160. /* NOTE: at this point, 0 <= shift <= 21 */
  161. if (shift > 0)
  162. val = (val + (1 << (shift - 1))) >> shift;
  163. return val;
  164. }
  165. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  166. static inline int l3_unscale(int value, int exponent)
  167. {
  168. unsigned int m;
  169. int e;
  170. e = table_4_3_exp [4*value + (exponent&3)];
  171. m = table_4_3_value[4*value + (exponent&3)];
  172. e -= (exponent >> 2);
  173. assert(e>=1);
  174. if (e > 31)
  175. return 0;
  176. m = (m + (1 << (e-1))) >> e;
  177. return m;
  178. }
  179. /* all integer n^(4/3) computation code */
  180. #define DEV_ORDER 13
  181. #define POW_FRAC_BITS 24
  182. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  183. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  184. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  185. static int dev_4_3_coefs[DEV_ORDER];
  186. #if 0 /* unused */
  187. static int pow_mult3[3] = {
  188. POW_FIX(1.0),
  189. POW_FIX(1.25992104989487316476),
  190. POW_FIX(1.58740105196819947474),
  191. };
  192. #endif
  193. static av_cold void int_pow_init(void)
  194. {
  195. int i, a;
  196. a = POW_FIX(1.0);
  197. for(i=0;i<DEV_ORDER;i++) {
  198. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  199. dev_4_3_coefs[i] = a;
  200. }
  201. }
  202. #if 0 /* unused, remove? */
  203. /* return the mantissa and the binary exponent */
  204. static int int_pow(int i, int *exp_ptr)
  205. {
  206. int e, er, eq, j;
  207. int a, a1;
  208. /* renormalize */
  209. a = i;
  210. e = POW_FRAC_BITS;
  211. while (a < (1 << (POW_FRAC_BITS - 1))) {
  212. a = a << 1;
  213. e--;
  214. }
  215. a -= (1 << POW_FRAC_BITS);
  216. a1 = 0;
  217. for(j = DEV_ORDER - 1; j >= 0; j--)
  218. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  219. a = (1 << POW_FRAC_BITS) + a1;
  220. /* exponent compute (exact) */
  221. e = e * 4;
  222. er = e % 3;
  223. eq = e / 3;
  224. a = POW_MULL(a, pow_mult3[er]);
  225. while (a >= 2 * POW_FRAC_ONE) {
  226. a = a >> 1;
  227. eq++;
  228. }
  229. /* convert to float */
  230. while (a < POW_FRAC_ONE) {
  231. a = a << 1;
  232. eq--;
  233. }
  234. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  235. #if POW_FRAC_BITS > FRAC_BITS
  236. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  237. /* correct overflow */
  238. if (a >= 2 * (1 << FRAC_BITS)) {
  239. a = a >> 1;
  240. eq++;
  241. }
  242. #endif
  243. *exp_ptr = eq;
  244. return a;
  245. }
  246. #endif
  247. static av_cold int decode_init(AVCodecContext * avctx)
  248. {
  249. MPADecodeContext *s = avctx->priv_data;
  250. static int init=0;
  251. int i, j, k;
  252. s->avctx = avctx;
  253. avctx->sample_fmt= OUT_FMT;
  254. s->error_recognition= avctx->error_recognition;
  255. if(avctx->antialias_algo != FF_AA_FLOAT)
  256. s->compute_antialias= compute_antialias_integer;
  257. else
  258. s->compute_antialias= compute_antialias_float;
  259. if (!init && !avctx->parse_only) {
  260. int offset;
  261. /* scale factors table for layer 1/2 */
  262. for(i=0;i<64;i++) {
  263. int shift, mod;
  264. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  265. shift = (i / 3);
  266. mod = i % 3;
  267. scale_factor_modshift[i] = mod | (shift << 2);
  268. }
  269. /* scale factor multiply for layer 1 */
  270. for(i=0;i<15;i++) {
  271. int n, norm;
  272. n = i + 2;
  273. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  274. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
  275. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
  276. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
  277. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  278. i, norm,
  279. scale_factor_mult[i][0],
  280. scale_factor_mult[i][1],
  281. scale_factor_mult[i][2]);
  282. }
  283. ff_mpa_synth_init(ff_mpa_synth_window);
  284. /* huffman decode tables */
  285. offset = 0;
  286. for(i=1;i<16;i++) {
  287. const HuffTable *h = &mpa_huff_tables[i];
  288. int xsize, x, y;
  289. uint8_t tmp_bits [512];
  290. uint16_t tmp_codes[512];
  291. memset(tmp_bits , 0, sizeof(tmp_bits ));
  292. memset(tmp_codes, 0, sizeof(tmp_codes));
  293. xsize = h->xsize;
  294. j = 0;
  295. for(x=0;x<xsize;x++) {
  296. for(y=0;y<xsize;y++){
  297. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  298. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  299. }
  300. }
  301. /* XXX: fail test */
  302. huff_vlc[i].table = huff_vlc_tables+offset;
  303. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  304. init_vlc(&huff_vlc[i], 7, 512,
  305. tmp_bits, 1, 1, tmp_codes, 2, 2,
  306. INIT_VLC_USE_NEW_STATIC);
  307. offset += huff_vlc_tables_sizes[i];
  308. }
  309. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  310. offset = 0;
  311. for(i=0;i<2;i++) {
  312. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  313. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  314. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  315. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  316. INIT_VLC_USE_NEW_STATIC);
  317. offset += huff_quad_vlc_tables_sizes[i];
  318. }
  319. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  320. for(i=0;i<9;i++) {
  321. k = 0;
  322. for(j=0;j<22;j++) {
  323. band_index_long[i][j] = k;
  324. k += band_size_long[i][j];
  325. }
  326. band_index_long[i][22] = k;
  327. }
  328. /* compute n ^ (4/3) and store it in mantissa/exp format */
  329. int_pow_init();
  330. mpegaudio_tableinit();
  331. for(i=0;i<7;i++) {
  332. float f;
  333. int v;
  334. if (i != 6) {
  335. f = tan((double)i * M_PI / 12.0);
  336. v = FIXR(f / (1.0 + f));
  337. } else {
  338. v = FIXR(1.0);
  339. }
  340. is_table[0][i] = v;
  341. is_table[1][6 - i] = v;
  342. }
  343. /* invalid values */
  344. for(i=7;i<16;i++)
  345. is_table[0][i] = is_table[1][i] = 0.0;
  346. for(i=0;i<16;i++) {
  347. double f;
  348. int e, k;
  349. for(j=0;j<2;j++) {
  350. e = -(j + 1) * ((i + 1) >> 1);
  351. f = pow(2.0, e / 4.0);
  352. k = i & 1;
  353. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  354. is_table_lsf[j][k][i] = FIXR(1.0);
  355. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  356. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  357. }
  358. }
  359. for(i=0;i<8;i++) {
  360. float ci, cs, ca;
  361. ci = ci_table[i];
  362. cs = 1.0 / sqrt(1.0 + ci * ci);
  363. ca = cs * ci;
  364. csa_table[i][0] = FIXHR(cs/4);
  365. csa_table[i][1] = FIXHR(ca/4);
  366. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  367. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  368. csa_table_float[i][0] = cs;
  369. csa_table_float[i][1] = ca;
  370. csa_table_float[i][2] = ca + cs;
  371. csa_table_float[i][3] = ca - cs;
  372. }
  373. /* compute mdct windows */
  374. for(i=0;i<36;i++) {
  375. for(j=0; j<4; j++){
  376. double d;
  377. if(j==2 && i%3 != 1)
  378. continue;
  379. d= sin(M_PI * (i + 0.5) / 36.0);
  380. if(j==1){
  381. if (i>=30) d= 0;
  382. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  383. else if(i>=18) d= 1;
  384. }else if(j==3){
  385. if (i< 6) d= 0;
  386. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  387. else if(i< 18) d= 1;
  388. }
  389. //merge last stage of imdct into the window coefficients
  390. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  391. if(j==2)
  392. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  393. else
  394. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  395. }
  396. }
  397. /* NOTE: we do frequency inversion adter the MDCT by changing
  398. the sign of the right window coefs */
  399. for(j=0;j<4;j++) {
  400. for(i=0;i<36;i+=2) {
  401. mdct_win[j + 4][i] = mdct_win[j][i];
  402. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  403. }
  404. }
  405. init = 1;
  406. }
  407. if (avctx->codec_id == CODEC_ID_MP3ADU)
  408. s->adu_mode = 1;
  409. return 0;
  410. }
  411. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  412. /* cos(i*pi/64) */
  413. #define COS0_0 FIXHR(0.50060299823519630134/2)
  414. #define COS0_1 FIXHR(0.50547095989754365998/2)
  415. #define COS0_2 FIXHR(0.51544730992262454697/2)
  416. #define COS0_3 FIXHR(0.53104259108978417447/2)
  417. #define COS0_4 FIXHR(0.55310389603444452782/2)
  418. #define COS0_5 FIXHR(0.58293496820613387367/2)
  419. #define COS0_6 FIXHR(0.62250412303566481615/2)
  420. #define COS0_7 FIXHR(0.67480834145500574602/2)
  421. #define COS0_8 FIXHR(0.74453627100229844977/2)
  422. #define COS0_9 FIXHR(0.83934964541552703873/2)
  423. #define COS0_10 FIXHR(0.97256823786196069369/2)
  424. #define COS0_11 FIXHR(1.16943993343288495515/4)
  425. #define COS0_12 FIXHR(1.48416461631416627724/4)
  426. #define COS0_13 FIXHR(2.05778100995341155085/8)
  427. #define COS0_14 FIXHR(3.40760841846871878570/8)
  428. #define COS0_15 FIXHR(10.19000812354805681150/32)
  429. #define COS1_0 FIXHR(0.50241928618815570551/2)
  430. #define COS1_1 FIXHR(0.52249861493968888062/2)
  431. #define COS1_2 FIXHR(0.56694403481635770368/2)
  432. #define COS1_3 FIXHR(0.64682178335999012954/2)
  433. #define COS1_4 FIXHR(0.78815462345125022473/2)
  434. #define COS1_5 FIXHR(1.06067768599034747134/4)
  435. #define COS1_6 FIXHR(1.72244709823833392782/4)
  436. #define COS1_7 FIXHR(5.10114861868916385802/16)
  437. #define COS2_0 FIXHR(0.50979557910415916894/2)
  438. #define COS2_1 FIXHR(0.60134488693504528054/2)
  439. #define COS2_2 FIXHR(0.89997622313641570463/2)
  440. #define COS2_3 FIXHR(2.56291544774150617881/8)
  441. #define COS3_0 FIXHR(0.54119610014619698439/2)
  442. #define COS3_1 FIXHR(1.30656296487637652785/4)
  443. #define COS4_0 FIXHR(0.70710678118654752439/2)
  444. /* butterfly operator */
  445. #define BF(a, b, c, s)\
  446. {\
  447. tmp0 = tab[a] + tab[b];\
  448. tmp1 = tab[a] - tab[b];\
  449. tab[a] = tmp0;\
  450. tab[b] = MULH(tmp1<<(s), c);\
  451. }
  452. #define BF1(a, b, c, d)\
  453. {\
  454. BF(a, b, COS4_0, 1);\
  455. BF(c, d,-COS4_0, 1);\
  456. tab[c] += tab[d];\
  457. }
  458. #define BF2(a, b, c, d)\
  459. {\
  460. BF(a, b, COS4_0, 1);\
  461. BF(c, d,-COS4_0, 1);\
  462. tab[c] += tab[d];\
  463. tab[a] += tab[c];\
  464. tab[c] += tab[b];\
  465. tab[b] += tab[d];\
  466. }
  467. #define ADD(a, b) tab[a] += tab[b]
  468. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  469. static void dct32(int32_t *out, int32_t *tab)
  470. {
  471. int tmp0, tmp1;
  472. /* pass 1 */
  473. BF( 0, 31, COS0_0 , 1);
  474. BF(15, 16, COS0_15, 5);
  475. /* pass 2 */
  476. BF( 0, 15, COS1_0 , 1);
  477. BF(16, 31,-COS1_0 , 1);
  478. /* pass 1 */
  479. BF( 7, 24, COS0_7 , 1);
  480. BF( 8, 23, COS0_8 , 1);
  481. /* pass 2 */
  482. BF( 7, 8, COS1_7 , 4);
  483. BF(23, 24,-COS1_7 , 4);
  484. /* pass 3 */
  485. BF( 0, 7, COS2_0 , 1);
  486. BF( 8, 15,-COS2_0 , 1);
  487. BF(16, 23, COS2_0 , 1);
  488. BF(24, 31,-COS2_0 , 1);
  489. /* pass 1 */
  490. BF( 3, 28, COS0_3 , 1);
  491. BF(12, 19, COS0_12, 2);
  492. /* pass 2 */
  493. BF( 3, 12, COS1_3 , 1);
  494. BF(19, 28,-COS1_3 , 1);
  495. /* pass 1 */
  496. BF( 4, 27, COS0_4 , 1);
  497. BF(11, 20, COS0_11, 2);
  498. /* pass 2 */
  499. BF( 4, 11, COS1_4 , 1);
  500. BF(20, 27,-COS1_4 , 1);
  501. /* pass 3 */
  502. BF( 3, 4, COS2_3 , 3);
  503. BF(11, 12,-COS2_3 , 3);
  504. BF(19, 20, COS2_3 , 3);
  505. BF(27, 28,-COS2_3 , 3);
  506. /* pass 4 */
  507. BF( 0, 3, COS3_0 , 1);
  508. BF( 4, 7,-COS3_0 , 1);
  509. BF( 8, 11, COS3_0 , 1);
  510. BF(12, 15,-COS3_0 , 1);
  511. BF(16, 19, COS3_0 , 1);
  512. BF(20, 23,-COS3_0 , 1);
  513. BF(24, 27, COS3_0 , 1);
  514. BF(28, 31,-COS3_0 , 1);
  515. /* pass 1 */
  516. BF( 1, 30, COS0_1 , 1);
  517. BF(14, 17, COS0_14, 3);
  518. /* pass 2 */
  519. BF( 1, 14, COS1_1 , 1);
  520. BF(17, 30,-COS1_1 , 1);
  521. /* pass 1 */
  522. BF( 6, 25, COS0_6 , 1);
  523. BF( 9, 22, COS0_9 , 1);
  524. /* pass 2 */
  525. BF( 6, 9, COS1_6 , 2);
  526. BF(22, 25,-COS1_6 , 2);
  527. /* pass 3 */
  528. BF( 1, 6, COS2_1 , 1);
  529. BF( 9, 14,-COS2_1 , 1);
  530. BF(17, 22, COS2_1 , 1);
  531. BF(25, 30,-COS2_1 , 1);
  532. /* pass 1 */
  533. BF( 2, 29, COS0_2 , 1);
  534. BF(13, 18, COS0_13, 3);
  535. /* pass 2 */
  536. BF( 2, 13, COS1_2 , 1);
  537. BF(18, 29,-COS1_2 , 1);
  538. /* pass 1 */
  539. BF( 5, 26, COS0_5 , 1);
  540. BF(10, 21, COS0_10, 1);
  541. /* pass 2 */
  542. BF( 5, 10, COS1_5 , 2);
  543. BF(21, 26,-COS1_5 , 2);
  544. /* pass 3 */
  545. BF( 2, 5, COS2_2 , 1);
  546. BF(10, 13,-COS2_2 , 1);
  547. BF(18, 21, COS2_2 , 1);
  548. BF(26, 29,-COS2_2 , 1);
  549. /* pass 4 */
  550. BF( 1, 2, COS3_1 , 2);
  551. BF( 5, 6,-COS3_1 , 2);
  552. BF( 9, 10, COS3_1 , 2);
  553. BF(13, 14,-COS3_1 , 2);
  554. BF(17, 18, COS3_1 , 2);
  555. BF(21, 22,-COS3_1 , 2);
  556. BF(25, 26, COS3_1 , 2);
  557. BF(29, 30,-COS3_1 , 2);
  558. /* pass 5 */
  559. BF1( 0, 1, 2, 3);
  560. BF2( 4, 5, 6, 7);
  561. BF1( 8, 9, 10, 11);
  562. BF2(12, 13, 14, 15);
  563. BF1(16, 17, 18, 19);
  564. BF2(20, 21, 22, 23);
  565. BF1(24, 25, 26, 27);
  566. BF2(28, 29, 30, 31);
  567. /* pass 6 */
  568. ADD( 8, 12);
  569. ADD(12, 10);
  570. ADD(10, 14);
  571. ADD(14, 9);
  572. ADD( 9, 13);
  573. ADD(13, 11);
  574. ADD(11, 15);
  575. out[ 0] = tab[0];
  576. out[16] = tab[1];
  577. out[ 8] = tab[2];
  578. out[24] = tab[3];
  579. out[ 4] = tab[4];
  580. out[20] = tab[5];
  581. out[12] = tab[6];
  582. out[28] = tab[7];
  583. out[ 2] = tab[8];
  584. out[18] = tab[9];
  585. out[10] = tab[10];
  586. out[26] = tab[11];
  587. out[ 6] = tab[12];
  588. out[22] = tab[13];
  589. out[14] = tab[14];
  590. out[30] = tab[15];
  591. ADD(24, 28);
  592. ADD(28, 26);
  593. ADD(26, 30);
  594. ADD(30, 25);
  595. ADD(25, 29);
  596. ADD(29, 27);
  597. ADD(27, 31);
  598. out[ 1] = tab[16] + tab[24];
  599. out[17] = tab[17] + tab[25];
  600. out[ 9] = tab[18] + tab[26];
  601. out[25] = tab[19] + tab[27];
  602. out[ 5] = tab[20] + tab[28];
  603. out[21] = tab[21] + tab[29];
  604. out[13] = tab[22] + tab[30];
  605. out[29] = tab[23] + tab[31];
  606. out[ 3] = tab[24] + tab[20];
  607. out[19] = tab[25] + tab[21];
  608. out[11] = tab[26] + tab[22];
  609. out[27] = tab[27] + tab[23];
  610. out[ 7] = tab[28] + tab[18];
  611. out[23] = tab[29] + tab[19];
  612. out[15] = tab[30] + tab[17];
  613. out[31] = tab[31];
  614. }
  615. #if FRAC_BITS <= 15
  616. static inline int round_sample(int *sum)
  617. {
  618. int sum1;
  619. sum1 = (*sum) >> OUT_SHIFT;
  620. *sum &= (1<<OUT_SHIFT)-1;
  621. return av_clip(sum1, OUT_MIN, OUT_MAX);
  622. }
  623. /* signed 16x16 -> 32 multiply add accumulate */
  624. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  625. /* signed 16x16 -> 32 multiply */
  626. #define MULS(ra, rb) MUL16(ra, rb)
  627. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  628. #else
  629. static inline int round_sample(int64_t *sum)
  630. {
  631. int sum1;
  632. sum1 = (int)((*sum) >> OUT_SHIFT);
  633. *sum &= (1<<OUT_SHIFT)-1;
  634. return av_clip(sum1, OUT_MIN, OUT_MAX);
  635. }
  636. # define MULS(ra, rb) MUL64(ra, rb)
  637. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  638. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  639. #endif
  640. #define SUM8(op, sum, w, p) \
  641. { \
  642. op(sum, (w)[0 * 64], (p)[0 * 64]); \
  643. op(sum, (w)[1 * 64], (p)[1 * 64]); \
  644. op(sum, (w)[2 * 64], (p)[2 * 64]); \
  645. op(sum, (w)[3 * 64], (p)[3 * 64]); \
  646. op(sum, (w)[4 * 64], (p)[4 * 64]); \
  647. op(sum, (w)[5 * 64], (p)[5 * 64]); \
  648. op(sum, (w)[6 * 64], (p)[6 * 64]); \
  649. op(sum, (w)[7 * 64], (p)[7 * 64]); \
  650. }
  651. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  652. { \
  653. int tmp;\
  654. tmp = p[0 * 64];\
  655. op1(sum1, (w1)[0 * 64], tmp);\
  656. op2(sum2, (w2)[0 * 64], tmp);\
  657. tmp = p[1 * 64];\
  658. op1(sum1, (w1)[1 * 64], tmp);\
  659. op2(sum2, (w2)[1 * 64], tmp);\
  660. tmp = p[2 * 64];\
  661. op1(sum1, (w1)[2 * 64], tmp);\
  662. op2(sum2, (w2)[2 * 64], tmp);\
  663. tmp = p[3 * 64];\
  664. op1(sum1, (w1)[3 * 64], tmp);\
  665. op2(sum2, (w2)[3 * 64], tmp);\
  666. tmp = p[4 * 64];\
  667. op1(sum1, (w1)[4 * 64], tmp);\
  668. op2(sum2, (w2)[4 * 64], tmp);\
  669. tmp = p[5 * 64];\
  670. op1(sum1, (w1)[5 * 64], tmp);\
  671. op2(sum2, (w2)[5 * 64], tmp);\
  672. tmp = p[6 * 64];\
  673. op1(sum1, (w1)[6 * 64], tmp);\
  674. op2(sum2, (w2)[6 * 64], tmp);\
  675. tmp = p[7 * 64];\
  676. op1(sum1, (w1)[7 * 64], tmp);\
  677. op2(sum2, (w2)[7 * 64], tmp);\
  678. }
  679. void av_cold ff_mpa_synth_init(MPA_INT *window)
  680. {
  681. int i;
  682. /* max = 18760, max sum over all 16 coefs : 44736 */
  683. for(i=0;i<257;i++) {
  684. int v;
  685. v = ff_mpa_enwindow[i];
  686. #if WFRAC_BITS < 16
  687. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  688. #endif
  689. window[i] = v;
  690. if ((i & 63) != 0)
  691. v = -v;
  692. if (i != 0)
  693. window[512 - i] = v;
  694. }
  695. }
  696. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  697. 32 samples. */
  698. /* XXX: optimize by avoiding ring buffer usage */
  699. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  700. MPA_INT *window, int *dither_state,
  701. OUT_INT *samples, int incr,
  702. int32_t sb_samples[SBLIMIT])
  703. {
  704. register MPA_INT *synth_buf;
  705. register const MPA_INT *w, *w2, *p;
  706. int j, offset;
  707. OUT_INT *samples2;
  708. #if FRAC_BITS <= 15
  709. int32_t tmp[32];
  710. int sum, sum2;
  711. #else
  712. int64_t sum, sum2;
  713. #endif
  714. offset = *synth_buf_offset;
  715. synth_buf = synth_buf_ptr + offset;
  716. #if FRAC_BITS <= 15
  717. dct32(tmp, sb_samples);
  718. for(j=0;j<32;j++) {
  719. /* NOTE: can cause a loss in precision if very high amplitude
  720. sound */
  721. synth_buf[j] = av_clip_int16(tmp[j]);
  722. }
  723. #else
  724. dct32(synth_buf, sb_samples);
  725. #endif
  726. /* copy to avoid wrap */
  727. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  728. samples2 = samples + 31 * incr;
  729. w = window;
  730. w2 = window + 31;
  731. sum = *dither_state;
  732. p = synth_buf + 16;
  733. SUM8(MACS, sum, w, p);
  734. p = synth_buf + 48;
  735. SUM8(MLSS, sum, w + 32, p);
  736. *samples = round_sample(&sum);
  737. samples += incr;
  738. w++;
  739. /* we calculate two samples at the same time to avoid one memory
  740. access per two sample */
  741. for(j=1;j<16;j++) {
  742. sum2 = 0;
  743. p = synth_buf + 16 + j;
  744. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  745. p = synth_buf + 48 - j;
  746. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  747. *samples = round_sample(&sum);
  748. samples += incr;
  749. sum += sum2;
  750. *samples2 = round_sample(&sum);
  751. samples2 -= incr;
  752. w++;
  753. w2--;
  754. }
  755. p = synth_buf + 32;
  756. SUM8(MLSS, sum, w + 32, p);
  757. *samples = round_sample(&sum);
  758. *dither_state= sum;
  759. offset = (offset - 32) & 511;
  760. *synth_buf_offset = offset;
  761. }
  762. #define C3 FIXHR(0.86602540378443864676/2)
  763. /* 0.5 / cos(pi*(2*i+1)/36) */
  764. static const int icos36[9] = {
  765. FIXR(0.50190991877167369479),
  766. FIXR(0.51763809020504152469), //0
  767. FIXR(0.55168895948124587824),
  768. FIXR(0.61038729438072803416),
  769. FIXR(0.70710678118654752439), //1
  770. FIXR(0.87172339781054900991),
  771. FIXR(1.18310079157624925896),
  772. FIXR(1.93185165257813657349), //2
  773. FIXR(5.73685662283492756461),
  774. };
  775. /* 0.5 / cos(pi*(2*i+1)/36) */
  776. static const int icos36h[9] = {
  777. FIXHR(0.50190991877167369479/2),
  778. FIXHR(0.51763809020504152469/2), //0
  779. FIXHR(0.55168895948124587824/2),
  780. FIXHR(0.61038729438072803416/2),
  781. FIXHR(0.70710678118654752439/2), //1
  782. FIXHR(0.87172339781054900991/2),
  783. FIXHR(1.18310079157624925896/4),
  784. FIXHR(1.93185165257813657349/4), //2
  785. // FIXHR(5.73685662283492756461),
  786. };
  787. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  788. cases. */
  789. static void imdct12(int *out, int *in)
  790. {
  791. int in0, in1, in2, in3, in4, in5, t1, t2;
  792. in0= in[0*3];
  793. in1= in[1*3] + in[0*3];
  794. in2= in[2*3] + in[1*3];
  795. in3= in[3*3] + in[2*3];
  796. in4= in[4*3] + in[3*3];
  797. in5= in[5*3] + in[4*3];
  798. in5 += in3;
  799. in3 += in1;
  800. in2= MULH(2*in2, C3);
  801. in3= MULH(4*in3, C3);
  802. t1 = in0 - in4;
  803. t2 = MULH(2*(in1 - in5), icos36h[4]);
  804. out[ 7]=
  805. out[10]= t1 + t2;
  806. out[ 1]=
  807. out[ 4]= t1 - t2;
  808. in0 += in4>>1;
  809. in4 = in0 + in2;
  810. in5 += 2*in1;
  811. in1 = MULH(in5 + in3, icos36h[1]);
  812. out[ 8]=
  813. out[ 9]= in4 + in1;
  814. out[ 2]=
  815. out[ 3]= in4 - in1;
  816. in0 -= in2;
  817. in5 = MULH(2*(in5 - in3), icos36h[7]);
  818. out[ 0]=
  819. out[ 5]= in0 - in5;
  820. out[ 6]=
  821. out[11]= in0 + in5;
  822. }
  823. /* cos(pi*i/18) */
  824. #define C1 FIXHR(0.98480775301220805936/2)
  825. #define C2 FIXHR(0.93969262078590838405/2)
  826. #define C3 FIXHR(0.86602540378443864676/2)
  827. #define C4 FIXHR(0.76604444311897803520/2)
  828. #define C5 FIXHR(0.64278760968653932632/2)
  829. #define C6 FIXHR(0.5/2)
  830. #define C7 FIXHR(0.34202014332566873304/2)
  831. #define C8 FIXHR(0.17364817766693034885/2)
  832. /* using Lee like decomposition followed by hand coded 9 points DCT */
  833. static void imdct36(int *out, int *buf, int *in, int *win)
  834. {
  835. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  836. int tmp[18], *tmp1, *in1;
  837. for(i=17;i>=1;i--)
  838. in[i] += in[i-1];
  839. for(i=17;i>=3;i-=2)
  840. in[i] += in[i-2];
  841. for(j=0;j<2;j++) {
  842. tmp1 = tmp + j;
  843. in1 = in + j;
  844. #if 0
  845. //more accurate but slower
  846. int64_t t0, t1, t2, t3;
  847. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  848. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  849. t1 = in1[2*0] - in1[2*6];
  850. tmp1[ 6] = t1 - (t2>>1);
  851. tmp1[16] = t1 + t2;
  852. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  853. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  854. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  855. tmp1[10] = (t3 - t0 - t2) >> 32;
  856. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  857. tmp1[14] = (t3 + t2 - t1) >> 32;
  858. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  859. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  860. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  861. t0 = MUL64(2*in1[2*3], C3);
  862. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  863. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  864. tmp1[12] = (t2 + t1 - t0) >> 32;
  865. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  866. #else
  867. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  868. t3 = in1[2*0] + (in1[2*6]>>1);
  869. t1 = in1[2*0] - in1[2*6];
  870. tmp1[ 6] = t1 - (t2>>1);
  871. tmp1[16] = t1 + t2;
  872. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  873. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  874. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  875. tmp1[10] = t3 - t0 - t2;
  876. tmp1[ 2] = t3 + t0 + t1;
  877. tmp1[14] = t3 + t2 - t1;
  878. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  879. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  880. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  881. t0 = MULH(2*in1[2*3], C3);
  882. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  883. tmp1[ 0] = t2 + t3 + t0;
  884. tmp1[12] = t2 + t1 - t0;
  885. tmp1[ 8] = t3 - t1 - t0;
  886. #endif
  887. }
  888. i = 0;
  889. for(j=0;j<4;j++) {
  890. t0 = tmp[i];
  891. t1 = tmp[i + 2];
  892. s0 = t1 + t0;
  893. s2 = t1 - t0;
  894. t2 = tmp[i + 1];
  895. t3 = tmp[i + 3];
  896. s1 = MULH(2*(t3 + t2), icos36h[j]);
  897. s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
  898. t0 = s0 + s1;
  899. t1 = s0 - s1;
  900. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  901. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  902. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  903. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  904. t0 = s2 + s3;
  905. t1 = s2 - s3;
  906. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  907. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  908. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  909. buf[ + j] = MULH(t0, win[18 + j]);
  910. i += 4;
  911. }
  912. s0 = tmp[16];
  913. s1 = MULH(2*tmp[17], icos36h[4]);
  914. t0 = s0 + s1;
  915. t1 = s0 - s1;
  916. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  917. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  918. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  919. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  920. }
  921. /* return the number of decoded frames */
  922. static int mp_decode_layer1(MPADecodeContext *s)
  923. {
  924. int bound, i, v, n, ch, j, mant;
  925. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  926. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  927. if (s->mode == MPA_JSTEREO)
  928. bound = (s->mode_ext + 1) * 4;
  929. else
  930. bound = SBLIMIT;
  931. /* allocation bits */
  932. for(i=0;i<bound;i++) {
  933. for(ch=0;ch<s->nb_channels;ch++) {
  934. allocation[ch][i] = get_bits(&s->gb, 4);
  935. }
  936. }
  937. for(i=bound;i<SBLIMIT;i++) {
  938. allocation[0][i] = get_bits(&s->gb, 4);
  939. }
  940. /* scale factors */
  941. for(i=0;i<bound;i++) {
  942. for(ch=0;ch<s->nb_channels;ch++) {
  943. if (allocation[ch][i])
  944. scale_factors[ch][i] = get_bits(&s->gb, 6);
  945. }
  946. }
  947. for(i=bound;i<SBLIMIT;i++) {
  948. if (allocation[0][i]) {
  949. scale_factors[0][i] = get_bits(&s->gb, 6);
  950. scale_factors[1][i] = get_bits(&s->gb, 6);
  951. }
  952. }
  953. /* compute samples */
  954. for(j=0;j<12;j++) {
  955. for(i=0;i<bound;i++) {
  956. for(ch=0;ch<s->nb_channels;ch++) {
  957. n = allocation[ch][i];
  958. if (n) {
  959. mant = get_bits(&s->gb, n + 1);
  960. v = l1_unscale(n, mant, scale_factors[ch][i]);
  961. } else {
  962. v = 0;
  963. }
  964. s->sb_samples[ch][j][i] = v;
  965. }
  966. }
  967. for(i=bound;i<SBLIMIT;i++) {
  968. n = allocation[0][i];
  969. if (n) {
  970. mant = get_bits(&s->gb, n + 1);
  971. v = l1_unscale(n, mant, scale_factors[0][i]);
  972. s->sb_samples[0][j][i] = v;
  973. v = l1_unscale(n, mant, scale_factors[1][i]);
  974. s->sb_samples[1][j][i] = v;
  975. } else {
  976. s->sb_samples[0][j][i] = 0;
  977. s->sb_samples[1][j][i] = 0;
  978. }
  979. }
  980. }
  981. return 12;
  982. }
  983. static int mp_decode_layer2(MPADecodeContext *s)
  984. {
  985. int sblimit; /* number of used subbands */
  986. const unsigned char *alloc_table;
  987. int table, bit_alloc_bits, i, j, ch, bound, v;
  988. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  989. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  990. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  991. int scale, qindex, bits, steps, k, l, m, b;
  992. /* select decoding table */
  993. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  994. s->sample_rate, s->lsf);
  995. sblimit = ff_mpa_sblimit_table[table];
  996. alloc_table = ff_mpa_alloc_tables[table];
  997. if (s->mode == MPA_JSTEREO)
  998. bound = (s->mode_ext + 1) * 4;
  999. else
  1000. bound = sblimit;
  1001. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1002. /* sanity check */
  1003. if( bound > sblimit ) bound = sblimit;
  1004. /* parse bit allocation */
  1005. j = 0;
  1006. for(i=0;i<bound;i++) {
  1007. bit_alloc_bits = alloc_table[j];
  1008. for(ch=0;ch<s->nb_channels;ch++) {
  1009. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1010. }
  1011. j += 1 << bit_alloc_bits;
  1012. }
  1013. for(i=bound;i<sblimit;i++) {
  1014. bit_alloc_bits = alloc_table[j];
  1015. v = get_bits(&s->gb, bit_alloc_bits);
  1016. bit_alloc[0][i] = v;
  1017. bit_alloc[1][i] = v;
  1018. j += 1 << bit_alloc_bits;
  1019. }
  1020. /* scale codes */
  1021. for(i=0;i<sblimit;i++) {
  1022. for(ch=0;ch<s->nb_channels;ch++) {
  1023. if (bit_alloc[ch][i])
  1024. scale_code[ch][i] = get_bits(&s->gb, 2);
  1025. }
  1026. }
  1027. /* scale factors */
  1028. for(i=0;i<sblimit;i++) {
  1029. for(ch=0;ch<s->nb_channels;ch++) {
  1030. if (bit_alloc[ch][i]) {
  1031. sf = scale_factors[ch][i];
  1032. switch(scale_code[ch][i]) {
  1033. default:
  1034. case 0:
  1035. sf[0] = get_bits(&s->gb, 6);
  1036. sf[1] = get_bits(&s->gb, 6);
  1037. sf[2] = get_bits(&s->gb, 6);
  1038. break;
  1039. case 2:
  1040. sf[0] = get_bits(&s->gb, 6);
  1041. sf[1] = sf[0];
  1042. sf[2] = sf[0];
  1043. break;
  1044. case 1:
  1045. sf[0] = get_bits(&s->gb, 6);
  1046. sf[2] = get_bits(&s->gb, 6);
  1047. sf[1] = sf[0];
  1048. break;
  1049. case 3:
  1050. sf[0] = get_bits(&s->gb, 6);
  1051. sf[2] = get_bits(&s->gb, 6);
  1052. sf[1] = sf[2];
  1053. break;
  1054. }
  1055. }
  1056. }
  1057. }
  1058. /* samples */
  1059. for(k=0;k<3;k++) {
  1060. for(l=0;l<12;l+=3) {
  1061. j = 0;
  1062. for(i=0;i<bound;i++) {
  1063. bit_alloc_bits = alloc_table[j];
  1064. for(ch=0;ch<s->nb_channels;ch++) {
  1065. b = bit_alloc[ch][i];
  1066. if (b) {
  1067. scale = scale_factors[ch][i][k];
  1068. qindex = alloc_table[j+b];
  1069. bits = ff_mpa_quant_bits[qindex];
  1070. if (bits < 0) {
  1071. /* 3 values at the same time */
  1072. v = get_bits(&s->gb, -bits);
  1073. steps = ff_mpa_quant_steps[qindex];
  1074. s->sb_samples[ch][k * 12 + l + 0][i] =
  1075. l2_unscale_group(steps, v % steps, scale);
  1076. v = v / steps;
  1077. s->sb_samples[ch][k * 12 + l + 1][i] =
  1078. l2_unscale_group(steps, v % steps, scale);
  1079. v = v / steps;
  1080. s->sb_samples[ch][k * 12 + l + 2][i] =
  1081. l2_unscale_group(steps, v, scale);
  1082. } else {
  1083. for(m=0;m<3;m++) {
  1084. v = get_bits(&s->gb, bits);
  1085. v = l1_unscale(bits - 1, v, scale);
  1086. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1087. }
  1088. }
  1089. } else {
  1090. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1091. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1092. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1093. }
  1094. }
  1095. /* next subband in alloc table */
  1096. j += 1 << bit_alloc_bits;
  1097. }
  1098. /* XXX: find a way to avoid this duplication of code */
  1099. for(i=bound;i<sblimit;i++) {
  1100. bit_alloc_bits = alloc_table[j];
  1101. b = bit_alloc[0][i];
  1102. if (b) {
  1103. int mant, scale0, scale1;
  1104. scale0 = scale_factors[0][i][k];
  1105. scale1 = scale_factors[1][i][k];
  1106. qindex = alloc_table[j+b];
  1107. bits = ff_mpa_quant_bits[qindex];
  1108. if (bits < 0) {
  1109. /* 3 values at the same time */
  1110. v = get_bits(&s->gb, -bits);
  1111. steps = ff_mpa_quant_steps[qindex];
  1112. mant = v % steps;
  1113. v = v / steps;
  1114. s->sb_samples[0][k * 12 + l + 0][i] =
  1115. l2_unscale_group(steps, mant, scale0);
  1116. s->sb_samples[1][k * 12 + l + 0][i] =
  1117. l2_unscale_group(steps, mant, scale1);
  1118. mant = v % steps;
  1119. v = v / steps;
  1120. s->sb_samples[0][k * 12 + l + 1][i] =
  1121. l2_unscale_group(steps, mant, scale0);
  1122. s->sb_samples[1][k * 12 + l + 1][i] =
  1123. l2_unscale_group(steps, mant, scale1);
  1124. s->sb_samples[0][k * 12 + l + 2][i] =
  1125. l2_unscale_group(steps, v, scale0);
  1126. s->sb_samples[1][k * 12 + l + 2][i] =
  1127. l2_unscale_group(steps, v, scale1);
  1128. } else {
  1129. for(m=0;m<3;m++) {
  1130. mant = get_bits(&s->gb, bits);
  1131. s->sb_samples[0][k * 12 + l + m][i] =
  1132. l1_unscale(bits - 1, mant, scale0);
  1133. s->sb_samples[1][k * 12 + l + m][i] =
  1134. l1_unscale(bits - 1, mant, scale1);
  1135. }
  1136. }
  1137. } else {
  1138. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1139. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1140. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1141. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1142. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1143. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1144. }
  1145. /* next subband in alloc table */
  1146. j += 1 << bit_alloc_bits;
  1147. }
  1148. /* fill remaining samples to zero */
  1149. for(i=sblimit;i<SBLIMIT;i++) {
  1150. for(ch=0;ch<s->nb_channels;ch++) {
  1151. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1152. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1153. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1154. }
  1155. }
  1156. }
  1157. }
  1158. return 3 * 12;
  1159. }
  1160. static inline void lsf_sf_expand(int *slen,
  1161. int sf, int n1, int n2, int n3)
  1162. {
  1163. if (n3) {
  1164. slen[3] = sf % n3;
  1165. sf /= n3;
  1166. } else {
  1167. slen[3] = 0;
  1168. }
  1169. if (n2) {
  1170. slen[2] = sf % n2;
  1171. sf /= n2;
  1172. } else {
  1173. slen[2] = 0;
  1174. }
  1175. slen[1] = sf % n1;
  1176. sf /= n1;
  1177. slen[0] = sf;
  1178. }
  1179. static void exponents_from_scale_factors(MPADecodeContext *s,
  1180. GranuleDef *g,
  1181. int16_t *exponents)
  1182. {
  1183. const uint8_t *bstab, *pretab;
  1184. int len, i, j, k, l, v0, shift, gain, gains[3];
  1185. int16_t *exp_ptr;
  1186. exp_ptr = exponents;
  1187. gain = g->global_gain - 210;
  1188. shift = g->scalefac_scale + 1;
  1189. bstab = band_size_long[s->sample_rate_index];
  1190. pretab = mpa_pretab[g->preflag];
  1191. for(i=0;i<g->long_end;i++) {
  1192. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1193. len = bstab[i];
  1194. for(j=len;j>0;j--)
  1195. *exp_ptr++ = v0;
  1196. }
  1197. if (g->short_start < 13) {
  1198. bstab = band_size_short[s->sample_rate_index];
  1199. gains[0] = gain - (g->subblock_gain[0] << 3);
  1200. gains[1] = gain - (g->subblock_gain[1] << 3);
  1201. gains[2] = gain - (g->subblock_gain[2] << 3);
  1202. k = g->long_end;
  1203. for(i=g->short_start;i<13;i++) {
  1204. len = bstab[i];
  1205. for(l=0;l<3;l++) {
  1206. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1207. for(j=len;j>0;j--)
  1208. *exp_ptr++ = v0;
  1209. }
  1210. }
  1211. }
  1212. }
  1213. /* handle n = 0 too */
  1214. static inline int get_bitsz(GetBitContext *s, int n)
  1215. {
  1216. if (n == 0)
  1217. return 0;
  1218. else
  1219. return get_bits(s, n);
  1220. }
  1221. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1222. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1223. s->gb= s->in_gb;
  1224. s->in_gb.buffer=NULL;
  1225. assert((get_bits_count(&s->gb) & 7) == 0);
  1226. skip_bits_long(&s->gb, *pos - *end_pos);
  1227. *end_pos2=
  1228. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1229. *pos= get_bits_count(&s->gb);
  1230. }
  1231. }
  1232. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1233. int16_t *exponents, int end_pos2)
  1234. {
  1235. int s_index;
  1236. int i;
  1237. int last_pos, bits_left;
  1238. VLC *vlc;
  1239. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1240. /* low frequencies (called big values) */
  1241. s_index = 0;
  1242. for(i=0;i<3;i++) {
  1243. int j, k, l, linbits;
  1244. j = g->region_size[i];
  1245. if (j == 0)
  1246. continue;
  1247. /* select vlc table */
  1248. k = g->table_select[i];
  1249. l = mpa_huff_data[k][0];
  1250. linbits = mpa_huff_data[k][1];
  1251. vlc = &huff_vlc[l];
  1252. if(!l){
  1253. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1254. s_index += 2*j;
  1255. continue;
  1256. }
  1257. /* read huffcode and compute each couple */
  1258. for(;j>0;j--) {
  1259. int exponent, x, y, v;
  1260. int pos= get_bits_count(&s->gb);
  1261. if (pos >= end_pos){
  1262. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1263. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1264. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1265. if(pos >= end_pos)
  1266. break;
  1267. }
  1268. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1269. if(!y){
  1270. g->sb_hybrid[s_index ] =
  1271. g->sb_hybrid[s_index+1] = 0;
  1272. s_index += 2;
  1273. continue;
  1274. }
  1275. exponent= exponents[s_index];
  1276. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1277. i, g->region_size[i] - j, x, y, exponent);
  1278. if(y&16){
  1279. x = y >> 5;
  1280. y = y & 0x0f;
  1281. if (x < 15){
  1282. v = expval_table[ exponent ][ x ];
  1283. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1284. }else{
  1285. x += get_bitsz(&s->gb, linbits);
  1286. v = l3_unscale(x, exponent);
  1287. }
  1288. if (get_bits1(&s->gb))
  1289. v = -v;
  1290. g->sb_hybrid[s_index] = v;
  1291. if (y < 15){
  1292. v = expval_table[ exponent ][ y ];
  1293. }else{
  1294. y += get_bitsz(&s->gb, linbits);
  1295. v = l3_unscale(y, exponent);
  1296. }
  1297. if (get_bits1(&s->gb))
  1298. v = -v;
  1299. g->sb_hybrid[s_index+1] = v;
  1300. }else{
  1301. x = y >> 5;
  1302. y = y & 0x0f;
  1303. x += y;
  1304. if (x < 15){
  1305. v = expval_table[ exponent ][ x ];
  1306. }else{
  1307. x += get_bitsz(&s->gb, linbits);
  1308. v = l3_unscale(x, exponent);
  1309. }
  1310. if (get_bits1(&s->gb))
  1311. v = -v;
  1312. g->sb_hybrid[s_index+!!y] = v;
  1313. g->sb_hybrid[s_index+ !y] = 0;
  1314. }
  1315. s_index+=2;
  1316. }
  1317. }
  1318. /* high frequencies */
  1319. vlc = &huff_quad_vlc[g->count1table_select];
  1320. last_pos=0;
  1321. while (s_index <= 572) {
  1322. int pos, code;
  1323. pos = get_bits_count(&s->gb);
  1324. if (pos >= end_pos) {
  1325. if (pos > end_pos2 && last_pos){
  1326. /* some encoders generate an incorrect size for this
  1327. part. We must go back into the data */
  1328. s_index -= 4;
  1329. skip_bits_long(&s->gb, last_pos - pos);
  1330. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1331. if(s->error_recognition >= FF_ER_COMPLIANT)
  1332. s_index=0;
  1333. break;
  1334. }
  1335. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1336. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1337. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1338. if(pos >= end_pos)
  1339. break;
  1340. }
  1341. last_pos= pos;
  1342. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1343. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1344. g->sb_hybrid[s_index+0]=
  1345. g->sb_hybrid[s_index+1]=
  1346. g->sb_hybrid[s_index+2]=
  1347. g->sb_hybrid[s_index+3]= 0;
  1348. while(code){
  1349. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1350. int v;
  1351. int pos= s_index+idxtab[code];
  1352. code ^= 8>>idxtab[code];
  1353. v = exp_table[ exponents[pos] ];
  1354. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1355. if(get_bits1(&s->gb))
  1356. v = -v;
  1357. g->sb_hybrid[pos] = v;
  1358. }
  1359. s_index+=4;
  1360. }
  1361. /* skip extension bits */
  1362. bits_left = end_pos2 - get_bits_count(&s->gb);
  1363. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1364. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1365. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1366. s_index=0;
  1367. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1368. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1369. s_index=0;
  1370. }
  1371. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1372. skip_bits_long(&s->gb, bits_left);
  1373. i= get_bits_count(&s->gb);
  1374. switch_buffer(s, &i, &end_pos, &end_pos2);
  1375. return 0;
  1376. }
  1377. /* Reorder short blocks from bitstream order to interleaved order. It
  1378. would be faster to do it in parsing, but the code would be far more
  1379. complicated */
  1380. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1381. {
  1382. int i, j, len;
  1383. int32_t *ptr, *dst, *ptr1;
  1384. int32_t tmp[576];
  1385. if (g->block_type != 2)
  1386. return;
  1387. if (g->switch_point) {
  1388. if (s->sample_rate_index != 8) {
  1389. ptr = g->sb_hybrid + 36;
  1390. } else {
  1391. ptr = g->sb_hybrid + 48;
  1392. }
  1393. } else {
  1394. ptr = g->sb_hybrid;
  1395. }
  1396. for(i=g->short_start;i<13;i++) {
  1397. len = band_size_short[s->sample_rate_index][i];
  1398. ptr1 = ptr;
  1399. dst = tmp;
  1400. for(j=len;j>0;j--) {
  1401. *dst++ = ptr[0*len];
  1402. *dst++ = ptr[1*len];
  1403. *dst++ = ptr[2*len];
  1404. ptr++;
  1405. }
  1406. ptr+=2*len;
  1407. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1408. }
  1409. }
  1410. #define ISQRT2 FIXR(0.70710678118654752440)
  1411. static void compute_stereo(MPADecodeContext *s,
  1412. GranuleDef *g0, GranuleDef *g1)
  1413. {
  1414. int i, j, k, l;
  1415. int32_t v1, v2;
  1416. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1417. int32_t (*is_tab)[16];
  1418. int32_t *tab0, *tab1;
  1419. int non_zero_found_short[3];
  1420. /* intensity stereo */
  1421. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1422. if (!s->lsf) {
  1423. is_tab = is_table;
  1424. sf_max = 7;
  1425. } else {
  1426. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1427. sf_max = 16;
  1428. }
  1429. tab0 = g0->sb_hybrid + 576;
  1430. tab1 = g1->sb_hybrid + 576;
  1431. non_zero_found_short[0] = 0;
  1432. non_zero_found_short[1] = 0;
  1433. non_zero_found_short[2] = 0;
  1434. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1435. for(i = 12;i >= g1->short_start;i--) {
  1436. /* for last band, use previous scale factor */
  1437. if (i != 11)
  1438. k -= 3;
  1439. len = band_size_short[s->sample_rate_index][i];
  1440. for(l=2;l>=0;l--) {
  1441. tab0 -= len;
  1442. tab1 -= len;
  1443. if (!non_zero_found_short[l]) {
  1444. /* test if non zero band. if so, stop doing i-stereo */
  1445. for(j=0;j<len;j++) {
  1446. if (tab1[j] != 0) {
  1447. non_zero_found_short[l] = 1;
  1448. goto found1;
  1449. }
  1450. }
  1451. sf = g1->scale_factors[k + l];
  1452. if (sf >= sf_max)
  1453. goto found1;
  1454. v1 = is_tab[0][sf];
  1455. v2 = is_tab[1][sf];
  1456. for(j=0;j<len;j++) {
  1457. tmp0 = tab0[j];
  1458. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1459. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1460. }
  1461. } else {
  1462. found1:
  1463. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1464. /* lower part of the spectrum : do ms stereo
  1465. if enabled */
  1466. for(j=0;j<len;j++) {
  1467. tmp0 = tab0[j];
  1468. tmp1 = tab1[j];
  1469. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1470. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1471. }
  1472. }
  1473. }
  1474. }
  1475. }
  1476. non_zero_found = non_zero_found_short[0] |
  1477. non_zero_found_short[1] |
  1478. non_zero_found_short[2];
  1479. for(i = g1->long_end - 1;i >= 0;i--) {
  1480. len = band_size_long[s->sample_rate_index][i];
  1481. tab0 -= len;
  1482. tab1 -= len;
  1483. /* test if non zero band. if so, stop doing i-stereo */
  1484. if (!non_zero_found) {
  1485. for(j=0;j<len;j++) {
  1486. if (tab1[j] != 0) {
  1487. non_zero_found = 1;
  1488. goto found2;
  1489. }
  1490. }
  1491. /* for last band, use previous scale factor */
  1492. k = (i == 21) ? 20 : i;
  1493. sf = g1->scale_factors[k];
  1494. if (sf >= sf_max)
  1495. goto found2;
  1496. v1 = is_tab[0][sf];
  1497. v2 = is_tab[1][sf];
  1498. for(j=0;j<len;j++) {
  1499. tmp0 = tab0[j];
  1500. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1501. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1502. }
  1503. } else {
  1504. found2:
  1505. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1506. /* lower part of the spectrum : do ms stereo
  1507. if enabled */
  1508. for(j=0;j<len;j++) {
  1509. tmp0 = tab0[j];
  1510. tmp1 = tab1[j];
  1511. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1512. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1513. }
  1514. }
  1515. }
  1516. }
  1517. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1518. /* ms stereo ONLY */
  1519. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1520. global gain */
  1521. tab0 = g0->sb_hybrid;
  1522. tab1 = g1->sb_hybrid;
  1523. for(i=0;i<576;i++) {
  1524. tmp0 = tab0[i];
  1525. tmp1 = tab1[i];
  1526. tab0[i] = tmp0 + tmp1;
  1527. tab1[i] = tmp0 - tmp1;
  1528. }
  1529. }
  1530. }
  1531. static void compute_antialias_integer(MPADecodeContext *s,
  1532. GranuleDef *g)
  1533. {
  1534. int32_t *ptr, *csa;
  1535. int n, i;
  1536. /* we antialias only "long" bands */
  1537. if (g->block_type == 2) {
  1538. if (!g->switch_point)
  1539. return;
  1540. /* XXX: check this for 8000Hz case */
  1541. n = 1;
  1542. } else {
  1543. n = SBLIMIT - 1;
  1544. }
  1545. ptr = g->sb_hybrid + 18;
  1546. for(i = n;i > 0;i--) {
  1547. int tmp0, tmp1, tmp2;
  1548. csa = &csa_table[0][0];
  1549. #define INT_AA(j) \
  1550. tmp0 = ptr[-1-j];\
  1551. tmp1 = ptr[ j];\
  1552. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1553. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1554. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1555. INT_AA(0)
  1556. INT_AA(1)
  1557. INT_AA(2)
  1558. INT_AA(3)
  1559. INT_AA(4)
  1560. INT_AA(5)
  1561. INT_AA(6)
  1562. INT_AA(7)
  1563. ptr += 18;
  1564. }
  1565. }
  1566. static void compute_antialias_float(MPADecodeContext *s,
  1567. GranuleDef *g)
  1568. {
  1569. int32_t *ptr;
  1570. int n, i;
  1571. /* we antialias only "long" bands */
  1572. if (g->block_type == 2) {
  1573. if (!g->switch_point)
  1574. return;
  1575. /* XXX: check this for 8000Hz case */
  1576. n = 1;
  1577. } else {
  1578. n = SBLIMIT - 1;
  1579. }
  1580. ptr = g->sb_hybrid + 18;
  1581. for(i = n;i > 0;i--) {
  1582. float tmp0, tmp1;
  1583. float *csa = &csa_table_float[0][0];
  1584. #define FLOAT_AA(j)\
  1585. tmp0= ptr[-1-j];\
  1586. tmp1= ptr[ j];\
  1587. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1588. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1589. FLOAT_AA(0)
  1590. FLOAT_AA(1)
  1591. FLOAT_AA(2)
  1592. FLOAT_AA(3)
  1593. FLOAT_AA(4)
  1594. FLOAT_AA(5)
  1595. FLOAT_AA(6)
  1596. FLOAT_AA(7)
  1597. ptr += 18;
  1598. }
  1599. }
  1600. static void compute_imdct(MPADecodeContext *s,
  1601. GranuleDef *g,
  1602. int32_t *sb_samples,
  1603. int32_t *mdct_buf)
  1604. {
  1605. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1606. int32_t out2[12];
  1607. int i, j, mdct_long_end, v, sblimit;
  1608. /* find last non zero block */
  1609. ptr = g->sb_hybrid + 576;
  1610. ptr1 = g->sb_hybrid + 2 * 18;
  1611. while (ptr >= ptr1) {
  1612. ptr -= 6;
  1613. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1614. if (v != 0)
  1615. break;
  1616. }
  1617. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1618. if (g->block_type == 2) {
  1619. /* XXX: check for 8000 Hz */
  1620. if (g->switch_point)
  1621. mdct_long_end = 2;
  1622. else
  1623. mdct_long_end = 0;
  1624. } else {
  1625. mdct_long_end = sblimit;
  1626. }
  1627. buf = mdct_buf;
  1628. ptr = g->sb_hybrid;
  1629. for(j=0;j<mdct_long_end;j++) {
  1630. /* apply window & overlap with previous buffer */
  1631. out_ptr = sb_samples + j;
  1632. /* select window */
  1633. if (g->switch_point && j < 2)
  1634. win1 = mdct_win[0];
  1635. else
  1636. win1 = mdct_win[g->block_type];
  1637. /* select frequency inversion */
  1638. win = win1 + ((4 * 36) & -(j & 1));
  1639. imdct36(out_ptr, buf, ptr, win);
  1640. out_ptr += 18*SBLIMIT;
  1641. ptr += 18;
  1642. buf += 18;
  1643. }
  1644. for(j=mdct_long_end;j<sblimit;j++) {
  1645. /* select frequency inversion */
  1646. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1647. out_ptr = sb_samples + j;
  1648. for(i=0; i<6; i++){
  1649. *out_ptr = buf[i];
  1650. out_ptr += SBLIMIT;
  1651. }
  1652. imdct12(out2, ptr + 0);
  1653. for(i=0;i<6;i++) {
  1654. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1655. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1656. out_ptr += SBLIMIT;
  1657. }
  1658. imdct12(out2, ptr + 1);
  1659. for(i=0;i<6;i++) {
  1660. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1661. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1662. out_ptr += SBLIMIT;
  1663. }
  1664. imdct12(out2, ptr + 2);
  1665. for(i=0;i<6;i++) {
  1666. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1667. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1668. buf[i + 6*2] = 0;
  1669. }
  1670. ptr += 18;
  1671. buf += 18;
  1672. }
  1673. /* zero bands */
  1674. for(j=sblimit;j<SBLIMIT;j++) {
  1675. /* overlap */
  1676. out_ptr = sb_samples + j;
  1677. for(i=0;i<18;i++) {
  1678. *out_ptr = buf[i];
  1679. buf[i] = 0;
  1680. out_ptr += SBLIMIT;
  1681. }
  1682. buf += 18;
  1683. }
  1684. }
  1685. /* main layer3 decoding function */
  1686. static int mp_decode_layer3(MPADecodeContext *s)
  1687. {
  1688. int nb_granules, main_data_begin, private_bits;
  1689. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1690. GranuleDef *g;
  1691. int16_t exponents[576];
  1692. /* read side info */
  1693. if (s->lsf) {
  1694. main_data_begin = get_bits(&s->gb, 8);
  1695. private_bits = get_bits(&s->gb, s->nb_channels);
  1696. nb_granules = 1;
  1697. } else {
  1698. main_data_begin = get_bits(&s->gb, 9);
  1699. if (s->nb_channels == 2)
  1700. private_bits = get_bits(&s->gb, 3);
  1701. else
  1702. private_bits = get_bits(&s->gb, 5);
  1703. nb_granules = 2;
  1704. for(ch=0;ch<s->nb_channels;ch++) {
  1705. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1706. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1707. }
  1708. }
  1709. for(gr=0;gr<nb_granules;gr++) {
  1710. for(ch=0;ch<s->nb_channels;ch++) {
  1711. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1712. g = &s->granules[ch][gr];
  1713. g->part2_3_length = get_bits(&s->gb, 12);
  1714. g->big_values = get_bits(&s->gb, 9);
  1715. if(g->big_values > 288){
  1716. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1717. return -1;
  1718. }
  1719. g->global_gain = get_bits(&s->gb, 8);
  1720. /* if MS stereo only is selected, we precompute the
  1721. 1/sqrt(2) renormalization factor */
  1722. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1723. MODE_EXT_MS_STEREO)
  1724. g->global_gain -= 2;
  1725. if (s->lsf)
  1726. g->scalefac_compress = get_bits(&s->gb, 9);
  1727. else
  1728. g->scalefac_compress = get_bits(&s->gb, 4);
  1729. blocksplit_flag = get_bits1(&s->gb);
  1730. if (blocksplit_flag) {
  1731. g->block_type = get_bits(&s->gb, 2);
  1732. if (g->block_type == 0){
  1733. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1734. return -1;
  1735. }
  1736. g->switch_point = get_bits1(&s->gb);
  1737. for(i=0;i<2;i++)
  1738. g->table_select[i] = get_bits(&s->gb, 5);
  1739. for(i=0;i<3;i++)
  1740. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1741. ff_init_short_region(s, g);
  1742. } else {
  1743. int region_address1, region_address2;
  1744. g->block_type = 0;
  1745. g->switch_point = 0;
  1746. for(i=0;i<3;i++)
  1747. g->table_select[i] = get_bits(&s->gb, 5);
  1748. /* compute huffman coded region sizes */
  1749. region_address1 = get_bits(&s->gb, 4);
  1750. region_address2 = get_bits(&s->gb, 3);
  1751. dprintf(s->avctx, "region1=%d region2=%d\n",
  1752. region_address1, region_address2);
  1753. ff_init_long_region(s, g, region_address1, region_address2);
  1754. }
  1755. ff_region_offset2size(g);
  1756. ff_compute_band_indexes(s, g);
  1757. g->preflag = 0;
  1758. if (!s->lsf)
  1759. g->preflag = get_bits1(&s->gb);
  1760. g->scalefac_scale = get_bits1(&s->gb);
  1761. g->count1table_select = get_bits1(&s->gb);
  1762. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1763. g->block_type, g->switch_point);
  1764. }
  1765. }
  1766. if (!s->adu_mode) {
  1767. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1768. assert((get_bits_count(&s->gb) & 7) == 0);
  1769. /* now we get bits from the main_data_begin offset */
  1770. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1771. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1772. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1773. s->in_gb= s->gb;
  1774. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1775. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1776. }
  1777. for(gr=0;gr<nb_granules;gr++) {
  1778. for(ch=0;ch<s->nb_channels;ch++) {
  1779. g = &s->granules[ch][gr];
  1780. if(get_bits_count(&s->gb)<0){
  1781. av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1782. main_data_begin, s->last_buf_size, gr);
  1783. skip_bits_long(&s->gb, g->part2_3_length);
  1784. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1785. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1786. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1787. s->gb= s->in_gb;
  1788. s->in_gb.buffer=NULL;
  1789. }
  1790. continue;
  1791. }
  1792. bits_pos = get_bits_count(&s->gb);
  1793. if (!s->lsf) {
  1794. uint8_t *sc;
  1795. int slen, slen1, slen2;
  1796. /* MPEG1 scale factors */
  1797. slen1 = slen_table[0][g->scalefac_compress];
  1798. slen2 = slen_table[1][g->scalefac_compress];
  1799. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1800. if (g->block_type == 2) {
  1801. n = g->switch_point ? 17 : 18;
  1802. j = 0;
  1803. if(slen1){
  1804. for(i=0;i<n;i++)
  1805. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1806. }else{
  1807. for(i=0;i<n;i++)
  1808. g->scale_factors[j++] = 0;
  1809. }
  1810. if(slen2){
  1811. for(i=0;i<18;i++)
  1812. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1813. for(i=0;i<3;i++)
  1814. g->scale_factors[j++] = 0;
  1815. }else{
  1816. for(i=0;i<21;i++)
  1817. g->scale_factors[j++] = 0;
  1818. }
  1819. } else {
  1820. sc = s->granules[ch][0].scale_factors;
  1821. j = 0;
  1822. for(k=0;k<4;k++) {
  1823. n = (k == 0 ? 6 : 5);
  1824. if ((g->scfsi & (0x8 >> k)) == 0) {
  1825. slen = (k < 2) ? slen1 : slen2;
  1826. if(slen){
  1827. for(i=0;i<n;i++)
  1828. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1829. }else{
  1830. for(i=0;i<n;i++)
  1831. g->scale_factors[j++] = 0;
  1832. }
  1833. } else {
  1834. /* simply copy from last granule */
  1835. for(i=0;i<n;i++) {
  1836. g->scale_factors[j] = sc[j];
  1837. j++;
  1838. }
  1839. }
  1840. }
  1841. g->scale_factors[j++] = 0;
  1842. }
  1843. } else {
  1844. int tindex, tindex2, slen[4], sl, sf;
  1845. /* LSF scale factors */
  1846. if (g->block_type == 2) {
  1847. tindex = g->switch_point ? 2 : 1;
  1848. } else {
  1849. tindex = 0;
  1850. }
  1851. sf = g->scalefac_compress;
  1852. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1853. /* intensity stereo case */
  1854. sf >>= 1;
  1855. if (sf < 180) {
  1856. lsf_sf_expand(slen, sf, 6, 6, 0);
  1857. tindex2 = 3;
  1858. } else if (sf < 244) {
  1859. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1860. tindex2 = 4;
  1861. } else {
  1862. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1863. tindex2 = 5;
  1864. }
  1865. } else {
  1866. /* normal case */
  1867. if (sf < 400) {
  1868. lsf_sf_expand(slen, sf, 5, 4, 4);
  1869. tindex2 = 0;
  1870. } else if (sf < 500) {
  1871. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1872. tindex2 = 1;
  1873. } else {
  1874. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1875. tindex2 = 2;
  1876. g->preflag = 1;
  1877. }
  1878. }
  1879. j = 0;
  1880. for(k=0;k<4;k++) {
  1881. n = lsf_nsf_table[tindex2][tindex][k];
  1882. sl = slen[k];
  1883. if(sl){
  1884. for(i=0;i<n;i++)
  1885. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1886. }else{
  1887. for(i=0;i<n;i++)
  1888. g->scale_factors[j++] = 0;
  1889. }
  1890. }
  1891. /* XXX: should compute exact size */
  1892. for(;j<40;j++)
  1893. g->scale_factors[j] = 0;
  1894. }
  1895. exponents_from_scale_factors(s, g, exponents);
  1896. /* read Huffman coded residue */
  1897. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1898. } /* ch */
  1899. if (s->nb_channels == 2)
  1900. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1901. for(ch=0;ch<s->nb_channels;ch++) {
  1902. g = &s->granules[ch][gr];
  1903. reorder_block(s, g);
  1904. s->compute_antialias(s, g);
  1905. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1906. }
  1907. } /* gr */
  1908. if(get_bits_count(&s->gb)<0)
  1909. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1910. return nb_granules * 18;
  1911. }
  1912. static int mp_decode_frame(MPADecodeContext *s,
  1913. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1914. {
  1915. int i, nb_frames, ch;
  1916. OUT_INT *samples_ptr;
  1917. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1918. /* skip error protection field */
  1919. if (s->error_protection)
  1920. skip_bits(&s->gb, 16);
  1921. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  1922. switch(s->layer) {
  1923. case 1:
  1924. s->avctx->frame_size = 384;
  1925. nb_frames = mp_decode_layer1(s);
  1926. break;
  1927. case 2:
  1928. s->avctx->frame_size = 1152;
  1929. nb_frames = mp_decode_layer2(s);
  1930. break;
  1931. case 3:
  1932. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1933. default:
  1934. nb_frames = mp_decode_layer3(s);
  1935. s->last_buf_size=0;
  1936. if(s->in_gb.buffer){
  1937. align_get_bits(&s->gb);
  1938. i= get_bits_left(&s->gb)>>3;
  1939. if(i >= 0 && i <= BACKSTEP_SIZE){
  1940. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1941. s->last_buf_size=i;
  1942. }else
  1943. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1944. s->gb= s->in_gb;
  1945. s->in_gb.buffer= NULL;
  1946. }
  1947. align_get_bits(&s->gb);
  1948. assert((get_bits_count(&s->gb) & 7) == 0);
  1949. i= get_bits_left(&s->gb)>>3;
  1950. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  1951. if(i<0)
  1952. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1953. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1954. }
  1955. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  1956. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1957. s->last_buf_size += i;
  1958. break;
  1959. }
  1960. /* apply the synthesis filter */
  1961. for(ch=0;ch<s->nb_channels;ch++) {
  1962. samples_ptr = samples + ch;
  1963. for(i=0;i<nb_frames;i++) {
  1964. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  1965. ff_mpa_synth_window, &s->dither_state,
  1966. samples_ptr, s->nb_channels,
  1967. s->sb_samples[ch][i]);
  1968. samples_ptr += 32 * s->nb_channels;
  1969. }
  1970. }
  1971. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1972. }
  1973. static int decode_frame(AVCodecContext * avctx,
  1974. void *data, int *data_size,
  1975. AVPacket *avpkt)
  1976. {
  1977. const uint8_t *buf = avpkt->data;
  1978. int buf_size = avpkt->size;
  1979. MPADecodeContext *s = avctx->priv_data;
  1980. uint32_t header;
  1981. int out_size;
  1982. OUT_INT *out_samples = data;
  1983. if(buf_size < HEADER_SIZE)
  1984. return -1;
  1985. header = AV_RB32(buf);
  1986. if(ff_mpa_check_header(header) < 0){
  1987. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1988. return -1;
  1989. }
  1990. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  1991. /* free format: prepare to compute frame size */
  1992. s->frame_size = -1;
  1993. return -1;
  1994. }
  1995. /* update codec info */
  1996. avctx->channels = s->nb_channels;
  1997. avctx->bit_rate = s->bit_rate;
  1998. avctx->sub_id = s->layer;
  1999. if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
  2000. return -1;
  2001. *data_size = 0;
  2002. if(s->frame_size<=0 || s->frame_size > buf_size){
  2003. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2004. return -1;
  2005. }else if(s->frame_size < buf_size){
  2006. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2007. buf_size= s->frame_size;
  2008. }
  2009. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2010. if(out_size>=0){
  2011. *data_size = out_size;
  2012. avctx->sample_rate = s->sample_rate;
  2013. //FIXME maybe move the other codec info stuff from above here too
  2014. }else
  2015. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2016. s->frame_size = 0;
  2017. return buf_size;
  2018. }
  2019. static void flush(AVCodecContext *avctx){
  2020. MPADecodeContext *s = avctx->priv_data;
  2021. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2022. s->last_buf_size= 0;
  2023. }
  2024. #if CONFIG_MP3ADU_DECODER
  2025. static int decode_frame_adu(AVCodecContext * avctx,
  2026. void *data, int *data_size,
  2027. AVPacket *avpkt)
  2028. {
  2029. const uint8_t *buf = avpkt->data;
  2030. int buf_size = avpkt->size;
  2031. MPADecodeContext *s = avctx->priv_data;
  2032. uint32_t header;
  2033. int len, out_size;
  2034. OUT_INT *out_samples = data;
  2035. len = buf_size;
  2036. // Discard too short frames
  2037. if (buf_size < HEADER_SIZE) {
  2038. *data_size = 0;
  2039. return buf_size;
  2040. }
  2041. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2042. len = MPA_MAX_CODED_FRAME_SIZE;
  2043. // Get header and restore sync word
  2044. header = AV_RB32(buf) | 0xffe00000;
  2045. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2046. *data_size = 0;
  2047. return buf_size;
  2048. }
  2049. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  2050. /* update codec info */
  2051. avctx->sample_rate = s->sample_rate;
  2052. avctx->channels = s->nb_channels;
  2053. avctx->bit_rate = s->bit_rate;
  2054. avctx->sub_id = s->layer;
  2055. s->frame_size = len;
  2056. if (avctx->parse_only) {
  2057. out_size = buf_size;
  2058. } else {
  2059. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2060. }
  2061. *data_size = out_size;
  2062. return buf_size;
  2063. }
  2064. #endif /* CONFIG_MP3ADU_DECODER */
  2065. #if CONFIG_MP3ON4_DECODER
  2066. /**
  2067. * Context for MP3On4 decoder
  2068. */
  2069. typedef struct MP3On4DecodeContext {
  2070. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2071. int syncword; ///< syncword patch
  2072. const uint8_t *coff; ///< channels offsets in output buffer
  2073. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2074. } MP3On4DecodeContext;
  2075. #include "mpeg4audio.h"
  2076. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2077. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2078. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2079. static const uint8_t chan_offset[8][5] = {
  2080. {0},
  2081. {0}, // C
  2082. {0}, // FLR
  2083. {2,0}, // C FLR
  2084. {2,0,3}, // C FLR BS
  2085. {4,0,2}, // C FLR BLRS
  2086. {4,0,2,5}, // C FLR BLRS LFE
  2087. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2088. };
  2089. static int decode_init_mp3on4(AVCodecContext * avctx)
  2090. {
  2091. MP3On4DecodeContext *s = avctx->priv_data;
  2092. MPEG4AudioConfig cfg;
  2093. int i;
  2094. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2095. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2096. return -1;
  2097. }
  2098. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2099. if (!cfg.chan_config || cfg.chan_config > 7) {
  2100. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2101. return -1;
  2102. }
  2103. s->frames = mp3Frames[cfg.chan_config];
  2104. s->coff = chan_offset[cfg.chan_config];
  2105. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2106. if (cfg.sample_rate < 16000)
  2107. s->syncword = 0xffe00000;
  2108. else
  2109. s->syncword = 0xfff00000;
  2110. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2111. * We replace avctx->priv_data with the context of the first decoder so that
  2112. * decode_init() does not have to be changed.
  2113. * Other decoders will be initialized here copying data from the first context
  2114. */
  2115. // Allocate zeroed memory for the first decoder context
  2116. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2117. // Put decoder context in place to make init_decode() happy
  2118. avctx->priv_data = s->mp3decctx[0];
  2119. decode_init(avctx);
  2120. // Restore mp3on4 context pointer
  2121. avctx->priv_data = s;
  2122. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2123. /* Create a separate codec/context for each frame (first is already ok).
  2124. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2125. */
  2126. for (i = 1; i < s->frames; i++) {
  2127. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2128. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2129. s->mp3decctx[i]->adu_mode = 1;
  2130. s->mp3decctx[i]->avctx = avctx;
  2131. }
  2132. return 0;
  2133. }
  2134. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  2135. {
  2136. MP3On4DecodeContext *s = avctx->priv_data;
  2137. int i;
  2138. for (i = 0; i < s->frames; i++)
  2139. if (s->mp3decctx[i])
  2140. av_free(s->mp3decctx[i]);
  2141. return 0;
  2142. }
  2143. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2144. void *data, int *data_size,
  2145. AVPacket *avpkt)
  2146. {
  2147. const uint8_t *buf = avpkt->data;
  2148. int buf_size = avpkt->size;
  2149. MP3On4DecodeContext *s = avctx->priv_data;
  2150. MPADecodeContext *m;
  2151. int fsize, len = buf_size, out_size = 0;
  2152. uint32_t header;
  2153. OUT_INT *out_samples = data;
  2154. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2155. OUT_INT *outptr, *bp;
  2156. int fr, j, n;
  2157. if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
  2158. return -1;
  2159. *data_size = 0;
  2160. // Discard too short frames
  2161. if (buf_size < HEADER_SIZE)
  2162. return -1;
  2163. // If only one decoder interleave is not needed
  2164. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2165. avctx->bit_rate = 0;
  2166. for (fr = 0; fr < s->frames; fr++) {
  2167. fsize = AV_RB16(buf) >> 4;
  2168. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2169. m = s->mp3decctx[fr];
  2170. assert (m != NULL);
  2171. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2172. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2173. break;
  2174. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  2175. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2176. buf += fsize;
  2177. len -= fsize;
  2178. if(s->frames > 1) {
  2179. n = m->avctx->frame_size*m->nb_channels;
  2180. /* interleave output data */
  2181. bp = out_samples + s->coff[fr];
  2182. if(m->nb_channels == 1) {
  2183. for(j = 0; j < n; j++) {
  2184. *bp = decoded_buf[j];
  2185. bp += avctx->channels;
  2186. }
  2187. } else {
  2188. for(j = 0; j < n; j++) {
  2189. bp[0] = decoded_buf[j++];
  2190. bp[1] = decoded_buf[j];
  2191. bp += avctx->channels;
  2192. }
  2193. }
  2194. }
  2195. avctx->bit_rate += m->bit_rate;
  2196. }
  2197. /* update codec info */
  2198. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2199. *data_size = out_size;
  2200. return buf_size;
  2201. }
  2202. #endif /* CONFIG_MP3ON4_DECODER */
  2203. #if CONFIG_MP1_DECODER
  2204. AVCodec mp1_decoder =
  2205. {
  2206. "mp1",
  2207. AVMEDIA_TYPE_AUDIO,
  2208. CODEC_ID_MP1,
  2209. sizeof(MPADecodeContext),
  2210. decode_init,
  2211. NULL,
  2212. NULL,
  2213. decode_frame,
  2214. CODEC_CAP_PARSE_ONLY,
  2215. .flush= flush,
  2216. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  2217. };
  2218. #endif
  2219. #if CONFIG_MP2_DECODER
  2220. AVCodec mp2_decoder =
  2221. {
  2222. "mp2",
  2223. AVMEDIA_TYPE_AUDIO,
  2224. CODEC_ID_MP2,
  2225. sizeof(MPADecodeContext),
  2226. decode_init,
  2227. NULL,
  2228. NULL,
  2229. decode_frame,
  2230. CODEC_CAP_PARSE_ONLY,
  2231. .flush= flush,
  2232. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2233. };
  2234. #endif
  2235. #if CONFIG_MP3_DECODER
  2236. AVCodec mp3_decoder =
  2237. {
  2238. "mp3",
  2239. AVMEDIA_TYPE_AUDIO,
  2240. CODEC_ID_MP3,
  2241. sizeof(MPADecodeContext),
  2242. decode_init,
  2243. NULL,
  2244. NULL,
  2245. decode_frame,
  2246. CODEC_CAP_PARSE_ONLY,
  2247. .flush= flush,
  2248. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2249. };
  2250. #endif
  2251. #if CONFIG_MP3ADU_DECODER
  2252. AVCodec mp3adu_decoder =
  2253. {
  2254. "mp3adu",
  2255. AVMEDIA_TYPE_AUDIO,
  2256. CODEC_ID_MP3ADU,
  2257. sizeof(MPADecodeContext),
  2258. decode_init,
  2259. NULL,
  2260. NULL,
  2261. decode_frame_adu,
  2262. CODEC_CAP_PARSE_ONLY,
  2263. .flush= flush,
  2264. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2265. };
  2266. #endif
  2267. #if CONFIG_MP3ON4_DECODER
  2268. AVCodec mp3on4_decoder =
  2269. {
  2270. "mp3on4",
  2271. AVMEDIA_TYPE_AUDIO,
  2272. CODEC_ID_MP3ON4,
  2273. sizeof(MP3On4DecodeContext),
  2274. decode_init_mp3on4,
  2275. NULL,
  2276. decode_close_mp3on4,
  2277. decode_frame_mp3on4,
  2278. .flush= flush,
  2279. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2280. };
  2281. #endif