You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

492 lines
16KB

  1. /*
  2. * RTMP Diffie-Hellmann utilities
  3. * Copyright (c) 2009 Andrej Stepanchuk
  4. * Copyright (c) 2009-2010 Howard Chu
  5. * Copyright (c) 2012 Samuel Pitoiset
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * RTMP Diffie-Hellmann utilities
  26. */
  27. #include "config.h"
  28. #include "rtmpdh.h"
  29. #include "libavutil/random_seed.h"
  30. #define P1024 \
  31. "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" \
  32. "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" \
  33. "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" \
  34. "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" \
  35. "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381" \
  36. "FFFFFFFFFFFFFFFF"
  37. #define Q1024 \
  38. "7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68" \
  39. "948127044533E63A0105DF531D89CD9128A5043CC71A026E" \
  40. "F7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122" \
  41. "F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6" \
  42. "F71C35FDAD44CFD2D74F9208BE258FF324943328F67329C0" \
  43. "FFFFFFFFFFFFFFFF"
  44. #if CONFIG_NETTLE || CONFIG_GCRYPT
  45. #if CONFIG_NETTLE
  46. #define bn_new(bn) \
  47. do { \
  48. bn = av_malloc(sizeof(*bn)); \
  49. if (bn) \
  50. mpz_init2(bn, 1); \
  51. } while (0)
  52. #define bn_free(bn) \
  53. do { \
  54. mpz_clear(bn); \
  55. av_free(bn); \
  56. } while (0)
  57. #define bn_set_word(bn, w) mpz_set_ui(bn, w)
  58. #define bn_cmp(a, b) mpz_cmp(a, b)
  59. #define bn_copy(to, from) mpz_set(to, from)
  60. #define bn_sub_word(bn, w) mpz_sub_ui(bn, bn, w)
  61. #define bn_cmp_1(bn) mpz_cmp_ui(bn, 1)
  62. #define bn_num_bytes(bn) (mpz_sizeinbase(bn, 2) + 7) / 8
  63. #define bn_bn2bin(bn, buf, len) nettle_mpz_get_str_256(len, buf, bn)
  64. #define bn_bin2bn(bn, buf, len) \
  65. do { \
  66. bn_new(bn); \
  67. if (bn) \
  68. nettle_mpz_set_str_256_u(bn, len, buf); \
  69. } while (0)
  70. #define bn_hex2bn(bn, buf, ret) \
  71. do { \
  72. bn_new(bn); \
  73. if (bn) \
  74. ret = (mpz_set_str(bn, buf, 16) == 0); \
  75. else \
  76. ret = 1; \
  77. } while (0)
  78. #define bn_modexp(bn, y, q, p) mpz_powm(bn, y, q, p)
  79. #define bn_random(bn, num_bytes) \
  80. do { \
  81. gmp_randstate_t rs; \
  82. gmp_randinit_mt(rs); \
  83. gmp_randseed_ui(rs, av_get_random_seed()); \
  84. mpz_urandomb(bn, rs, num_bytes); \
  85. gmp_randclear(rs); \
  86. } while (0)
  87. #elif CONFIG_GCRYPT
  88. #define bn_new(bn) bn = gcry_mpi_new(1)
  89. #define bn_free(bn) gcry_mpi_release(bn)
  90. #define bn_set_word(bn, w) gcry_mpi_set_ui(bn, w)
  91. #define bn_cmp(a, b) gcry_mpi_cmp(a, b)
  92. #define bn_copy(to, from) gcry_mpi_set(to, from)
  93. #define bn_sub_word(bn, w) gcry_mpi_sub_ui(bn, bn, w)
  94. #define bn_cmp_1(bn) gcry_mpi_cmp_ui(bn, 1)
  95. #define bn_num_bytes(bn) (gcry_mpi_get_nbits(bn) + 7) / 8
  96. #define bn_bn2bin(bn, buf, len) gcry_mpi_print(GCRYMPI_FMT_USG, buf, len, NULL, bn)
  97. #define bn_bin2bn(bn, buf, len) gcry_mpi_scan(&bn, GCRYMPI_FMT_USG, buf, len, NULL)
  98. #define bn_hex2bn(bn, buf, ret) ret = (gcry_mpi_scan(&bn, GCRYMPI_FMT_HEX, buf, 0, 0) == 0)
  99. #define bn_modexp(bn, y, q, p) gcry_mpi_powm(bn, y, q, p)
  100. #define bn_random(bn, num_bytes) gcry_mpi_randomize(bn, num_bytes, GCRY_WEAK_RANDOM)
  101. #endif
  102. #define MAX_BYTES 18000
  103. #define dh_new() av_malloc(sizeof(FF_DH))
  104. static FFBigNum dh_generate_key(FF_DH *dh)
  105. {
  106. int num_bytes;
  107. num_bytes = bn_num_bytes(dh->p) - 1;
  108. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  109. return NULL;
  110. bn_new(dh->priv_key);
  111. if (!dh->priv_key)
  112. return NULL;
  113. bn_random(dh->priv_key, num_bytes);
  114. bn_new(dh->pub_key);
  115. if (!dh->pub_key) {
  116. bn_free(dh->priv_key);
  117. return NULL;
  118. }
  119. bn_modexp(dh->pub_key, dh->g, dh->priv_key, dh->p);
  120. return dh->pub_key;
  121. }
  122. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  123. uint32_t secret_key_len, uint8_t *secret_key)
  124. {
  125. FFBigNum k;
  126. int num_bytes;
  127. num_bytes = bn_num_bytes(dh->p);
  128. if (num_bytes <= 0 || num_bytes > MAX_BYTES)
  129. return -1;
  130. bn_new(k);
  131. if (!k)
  132. return -1;
  133. bn_modexp(k, pub_key_bn, dh->priv_key, dh->p);
  134. bn_bn2bin(k, secret_key, secret_key_len);
  135. bn_free(k);
  136. /* return the length of the shared secret key like DH_compute_key */
  137. return secret_key_len;
  138. }
  139. void ff_dh_free(FF_DH *dh)
  140. {
  141. if (!dh)
  142. return;
  143. bn_free(dh->p);
  144. bn_free(dh->g);
  145. bn_free(dh->pub_key);
  146. bn_free(dh->priv_key);
  147. av_free(dh);
  148. }
  149. #elif CONFIG_OPENSSL
  150. #define bn_new(bn) bn = BN_new()
  151. #define bn_free(bn) BN_free(bn)
  152. #define bn_set_word(bn, w) BN_set_word(bn, w)
  153. #define bn_cmp(a, b) BN_cmp(a, b)
  154. #define bn_copy(to, from) BN_copy(to, from)
  155. #define bn_sub_word(bn, w) BN_sub_word(bn, w)
  156. #define bn_cmp_1(bn) BN_cmp(bn, BN_value_one())
  157. #define bn_num_bytes(bn) BN_num_bytes(bn)
  158. #define bn_bn2bin(bn, buf, len) BN_bn2bin(bn, buf)
  159. #define bn_bin2bn(bn, buf, len) bn = BN_bin2bn(buf, len, 0)
  160. #define bn_hex2bn(bn, buf, ret) ret = BN_hex2bn(&bn, buf)
  161. #define bn_modexp(bn, y, q, p) \
  162. do { \
  163. BN_CTX *ctx = BN_CTX_new(); \
  164. if (!ctx) \
  165. return AVERROR(ENOMEM); \
  166. if (!BN_mod_exp(bn, y, q, p, ctx)) { \
  167. BN_CTX_free(ctx); \
  168. return AVERROR(EINVAL); \
  169. } \
  170. BN_CTX_free(ctx); \
  171. } while (0)
  172. #define dh_new() DH_new()
  173. #define dh_generate_key(dh) DH_generate_key(dh)
  174. static int dh_compute_key(FF_DH *dh, FFBigNum pub_key_bn,
  175. uint32_t secret_key_len, uint8_t *secret_key)
  176. {
  177. if (secret_key_len < DH_size(dh))
  178. return AVERROR(EINVAL);
  179. return DH_compute_key(secret_key, pub_key_bn, dh);
  180. }
  181. void ff_dh_free(FF_DH *dh)
  182. {
  183. if (!dh)
  184. return;
  185. DH_free(dh);
  186. }
  187. #endif
  188. static int dh_is_valid_public_key(FFBigNum y, FFBigNum p, FFBigNum q)
  189. {
  190. FFBigNum bn = NULL;
  191. int ret = AVERROR(EINVAL);
  192. bn_new(bn);
  193. if (!bn)
  194. return AVERROR(ENOMEM);
  195. /* y must lie in [2, p - 1] */
  196. bn_set_word(bn, 1);
  197. if (!bn_cmp(y, bn))
  198. goto fail;
  199. /* bn = p - 2 */
  200. bn_copy(bn, p);
  201. bn_sub_word(bn, 1);
  202. if (!bn_cmp(y, bn))
  203. goto fail;
  204. /* Verify with Sophie-Germain prime
  205. *
  206. * This is a nice test to make sure the public key position is calculated
  207. * correctly. This test will fail in about 50% of the cases if applied to
  208. * random data.
  209. */
  210. /* y must fulfill y^q mod p = 1 */
  211. bn_modexp(bn, y, q, p);
  212. if (bn_cmp_1(bn))
  213. goto fail;
  214. ret = 0;
  215. fail:
  216. bn_free(bn);
  217. return ret;
  218. }
  219. av_cold FF_DH *ff_dh_init(int key_len)
  220. {
  221. FF_DH *dh;
  222. int ret;
  223. if (!(dh = dh_new()))
  224. return NULL;
  225. bn_new(dh->g);
  226. if (!dh->g)
  227. goto fail;
  228. bn_hex2bn(dh->p, P1024, ret);
  229. if (!ret)
  230. goto fail;
  231. bn_set_word(dh->g, 2);
  232. dh->length = key_len;
  233. return dh;
  234. fail:
  235. ff_dh_free(dh);
  236. return NULL;
  237. }
  238. int ff_dh_generate_public_key(FF_DH *dh)
  239. {
  240. int ret = 0;
  241. while (!ret) {
  242. FFBigNum q1 = NULL;
  243. if (!dh_generate_key(dh))
  244. return AVERROR(EINVAL);
  245. bn_hex2bn(q1, Q1024, ret);
  246. if (!ret)
  247. return AVERROR(ENOMEM);
  248. ret = dh_is_valid_public_key(dh->pub_key, dh->p, q1);
  249. bn_free(q1);
  250. if (!ret) {
  251. /* the public key is valid */
  252. break;
  253. }
  254. }
  255. return ret;
  256. }
  257. int ff_dh_write_public_key(FF_DH *dh, uint8_t *pub_key, int pub_key_len)
  258. {
  259. int len;
  260. /* compute the length of the public key */
  261. len = bn_num_bytes(dh->pub_key);
  262. if (len <= 0 || len > pub_key_len)
  263. return AVERROR(EINVAL);
  264. /* convert the public key value into big-endian form */
  265. memset(pub_key, 0, pub_key_len);
  266. bn_bn2bin(dh->pub_key, pub_key + pub_key_len - len, len);
  267. return 0;
  268. }
  269. int ff_dh_compute_shared_secret_key(FF_DH *dh, const uint8_t *pub_key,
  270. int pub_key_len, uint8_t *secret_key,
  271. int secret_key_len)
  272. {
  273. FFBigNum q1 = NULL, pub_key_bn = NULL;
  274. int ret;
  275. /* convert the big-endian form of the public key into a bignum */
  276. bn_bin2bn(pub_key_bn, pub_key, pub_key_len);
  277. if (!pub_key_bn)
  278. return AVERROR(ENOMEM);
  279. /* convert the string containing a hexadecimal number into a bignum */
  280. bn_hex2bn(q1, Q1024, ret);
  281. if (!ret) {
  282. ret = AVERROR(ENOMEM);
  283. goto fail;
  284. }
  285. /* when the public key is valid we have to compute the shared secret key */
  286. if ((ret = dh_is_valid_public_key(pub_key_bn, dh->p, q1)) < 0) {
  287. goto fail;
  288. } else if ((ret = dh_compute_key(dh, pub_key_bn, secret_key_len,
  289. secret_key)) < 0) {
  290. ret = AVERROR(EINVAL);
  291. goto fail;
  292. }
  293. fail:
  294. bn_free(pub_key_bn);
  295. bn_free(q1);
  296. return ret;
  297. }
  298. #ifdef TEST
  299. static int test_random_shared_secret(void)
  300. {
  301. FF_DH *peer1 = NULL, *peer2 = NULL;
  302. int ret;
  303. uint8_t pubkey1[128], pubkey2[128];
  304. uint8_t sharedkey1[128], sharedkey2[128];
  305. peer1 = ff_dh_init(1024);
  306. peer2 = ff_dh_init(1024);
  307. if (!peer1 || !peer2) {
  308. ret = AVERROR(ENOMEM);
  309. goto fail;
  310. }
  311. if ((ret = ff_dh_generate_public_key(peer1)) < 0)
  312. goto fail;
  313. if ((ret = ff_dh_generate_public_key(peer2)) < 0)
  314. goto fail;
  315. if ((ret = ff_dh_write_public_key(peer1, pubkey1, sizeof(pubkey1))) < 0)
  316. goto fail;
  317. if ((ret = ff_dh_write_public_key(peer2, pubkey2, sizeof(pubkey2))) < 0)
  318. goto fail;
  319. if ((ret = ff_dh_compute_shared_secret_key(peer1, pubkey2, sizeof(pubkey2),
  320. sharedkey1, sizeof(sharedkey1))) < 0)
  321. goto fail;
  322. if ((ret = ff_dh_compute_shared_secret_key(peer2, pubkey1, sizeof(pubkey1),
  323. sharedkey2, sizeof(sharedkey2))) < 0)
  324. goto fail;
  325. if (memcmp(sharedkey1, sharedkey2, sizeof(sharedkey1))) {
  326. printf("Mismatched generated shared key\n");
  327. ret = AVERROR_INVALIDDATA;
  328. } else {
  329. printf("Generated shared key ok\n");
  330. }
  331. fail:
  332. ff_dh_free(peer1);
  333. ff_dh_free(peer2);
  334. return ret;
  335. }
  336. static const char *private_key =
  337. "976C18FCADC255B456564F74F3EEDA59D28AF6B744D743F2357BFD2404797EF896EF1A"
  338. "7C1CBEAAA3AB60AF3192D189CFF3F991C9CBBFD78119FCA2181384B94011943B6D6F28"
  339. "9E1B708E2D1A0C7771169293F03DA27E561F15F16F0AC9BC858C77A80FA98FD088A232"
  340. "19D08BE6F165DE0B02034B18705829FAD0ACB26A5B75EF";
  341. static const char *public_key =
  342. "F272ECF8362257C5D2C3CC2229CF9C0A03225BC109B1DBC76A68C394F256ACA3EF5F64"
  343. "FC270C26382BF315C19E97A76104A716FC998A651E8610A3AE6CF65D8FAE5D3F32EEA0"
  344. "0B32CB9609B494116A825D7142D17B88E3D20EDD98743DE29CF37A23A9F6A58B960591"
  345. "3157D5965FCB46DDA73A1F08DD897BAE88DFE6FC937CBA";
  346. static const uint8_t public_key_bin[] = {
  347. 0xf2, 0x72, 0xec, 0xf8, 0x36, 0x22, 0x57, 0xc5, 0xd2, 0xc3, 0xcc, 0x22,
  348. 0x29, 0xcf, 0x9c, 0x0a, 0x03, 0x22, 0x5b, 0xc1, 0x09, 0xb1, 0xdb, 0xc7,
  349. 0x6a, 0x68, 0xc3, 0x94, 0xf2, 0x56, 0xac, 0xa3, 0xef, 0x5f, 0x64, 0xfc,
  350. 0x27, 0x0c, 0x26, 0x38, 0x2b, 0xf3, 0x15, 0xc1, 0x9e, 0x97, 0xa7, 0x61,
  351. 0x04, 0xa7, 0x16, 0xfc, 0x99, 0x8a, 0x65, 0x1e, 0x86, 0x10, 0xa3, 0xae,
  352. 0x6c, 0xf6, 0x5d, 0x8f, 0xae, 0x5d, 0x3f, 0x32, 0xee, 0xa0, 0x0b, 0x32,
  353. 0xcb, 0x96, 0x09, 0xb4, 0x94, 0x11, 0x6a, 0x82, 0x5d, 0x71, 0x42, 0xd1,
  354. 0x7b, 0x88, 0xe3, 0xd2, 0x0e, 0xdd, 0x98, 0x74, 0x3d, 0xe2, 0x9c, 0xf3,
  355. 0x7a, 0x23, 0xa9, 0xf6, 0xa5, 0x8b, 0x96, 0x05, 0x91, 0x31, 0x57, 0xd5,
  356. 0x96, 0x5f, 0xcb, 0x46, 0xdd, 0xa7, 0x3a, 0x1f, 0x08, 0xdd, 0x89, 0x7b,
  357. 0xae, 0x88, 0xdf, 0xe6, 0xfc, 0x93, 0x7c, 0xba
  358. };
  359. static const uint8_t peer_public_key[] = {
  360. 0x58, 0x66, 0x05, 0x49, 0x94, 0x23, 0x2b, 0x66, 0x52, 0x13, 0xff, 0x46,
  361. 0xf2, 0xb3, 0x79, 0xa9, 0xee, 0xae, 0x1a, 0x13, 0xf0, 0x71, 0x52, 0xfb,
  362. 0x93, 0x4e, 0xee, 0x97, 0x05, 0x73, 0x50, 0x7d, 0xaf, 0x02, 0x07, 0x72,
  363. 0xac, 0xdc, 0xa3, 0x95, 0x78, 0xee, 0x9a, 0x19, 0x71, 0x7e, 0x99, 0x9f,
  364. 0x2a, 0xd4, 0xb3, 0xe2, 0x0c, 0x1d, 0x1a, 0x78, 0x4c, 0xde, 0xf1, 0xad,
  365. 0xb4, 0x60, 0xa8, 0x51, 0xac, 0x71, 0xec, 0x86, 0x70, 0xa2, 0x63, 0x36,
  366. 0x92, 0x7c, 0xe3, 0x87, 0xee, 0xe4, 0xf1, 0x62, 0x24, 0x74, 0xb4, 0x04,
  367. 0xfa, 0x5c, 0xdf, 0xba, 0xfa, 0xa3, 0xc2, 0xbb, 0x62, 0x27, 0xd0, 0xf4,
  368. 0xe4, 0x43, 0xda, 0x8a, 0x88, 0x69, 0x60, 0xe2, 0xdb, 0x75, 0x2a, 0x98,
  369. 0x9d, 0xb5, 0x50, 0xe3, 0x99, 0xda, 0xe0, 0xa6, 0x14, 0xc9, 0x80, 0x12,
  370. 0xf9, 0x3c, 0xac, 0x06, 0x02, 0x7a, 0xde, 0x74
  371. };
  372. static const uint8_t shared_secret[] = {
  373. 0xb2, 0xeb, 0xcb, 0x71, 0xf3, 0x61, 0xfb, 0x5b, 0x4e, 0x5c, 0x4c, 0xcf,
  374. 0x5c, 0x08, 0x5f, 0x96, 0x26, 0x77, 0x1d, 0x31, 0xf1, 0xe1, 0xf7, 0x4b,
  375. 0x92, 0xac, 0x82, 0x2a, 0x88, 0xc7, 0x83, 0xe1, 0xc7, 0xf3, 0xd3, 0x1a,
  376. 0x7d, 0xc8, 0x31, 0xe3, 0x97, 0xe4, 0xec, 0x31, 0x0e, 0x8f, 0x73, 0x1a,
  377. 0xe4, 0xf6, 0xd8, 0xc8, 0x94, 0xff, 0xa0, 0x03, 0x84, 0x03, 0x0f, 0xa5,
  378. 0x30, 0x5d, 0x67, 0xe0, 0x7a, 0x3b, 0x5f, 0xed, 0x4c, 0xf5, 0xbc, 0x18,
  379. 0xea, 0xd4, 0x77, 0xa9, 0x07, 0xb3, 0x54, 0x0b, 0x02, 0xd9, 0xc6, 0xb8,
  380. 0x66, 0x5e, 0xec, 0xa4, 0xcd, 0x47, 0xed, 0xc9, 0x38, 0xc6, 0x91, 0x08,
  381. 0xf3, 0x85, 0x9b, 0x69, 0x16, 0x78, 0x0d, 0xb7, 0x74, 0x51, 0xaa, 0x5b,
  382. 0x4d, 0x74, 0xe4, 0x29, 0x2e, 0x9e, 0x8e, 0xf7, 0xe5, 0x42, 0x83, 0xb0,
  383. 0x65, 0xb0, 0xce, 0xc6, 0xb2, 0x8f, 0x5b, 0xb0
  384. };
  385. static int test_ref_data(void)
  386. {
  387. FF_DH *dh;
  388. int ret = AVERROR(ENOMEM);
  389. uint8_t pubkey_test[128];
  390. uint8_t sharedkey_test[128];
  391. dh = ff_dh_init(1024);
  392. if (!dh)
  393. goto fail;
  394. bn_hex2bn(dh->priv_key, private_key, ret);
  395. if (!ret)
  396. goto fail;
  397. bn_hex2bn(dh->pub_key, public_key, ret);
  398. if (!ret)
  399. goto fail;
  400. if ((ret = ff_dh_write_public_key(dh, pubkey_test, sizeof(pubkey_test))) < 0)
  401. goto fail;
  402. if (memcmp(pubkey_test, public_key_bin, sizeof(pubkey_test))) {
  403. printf("Mismatched generated public key\n");
  404. ret = AVERROR_INVALIDDATA;
  405. goto fail;
  406. } else {
  407. printf("Generated public key ok\n");
  408. }
  409. if ((ret = ff_dh_compute_shared_secret_key(dh, peer_public_key, sizeof(peer_public_key),
  410. sharedkey_test, sizeof(sharedkey_test))) < 0)
  411. goto fail;
  412. if (memcmp(shared_secret, sharedkey_test, sizeof(sharedkey_test))) {
  413. printf("Mismatched generated shared key\n");
  414. ret = AVERROR_INVALIDDATA;
  415. } else {
  416. printf("Generated shared key ok\n");
  417. }
  418. fail:
  419. ff_dh_free(dh);
  420. return ret;
  421. }
  422. int main(void)
  423. {
  424. if (test_random_shared_secret() < 0)
  425. return 1;
  426. if (test_ref_data() < 0)
  427. return 1;
  428. return 0;
  429. }
  430. #endif