You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

586 lines
20KB

  1. /*
  2. * SVQ1 Encoder
  3. * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Sorenson Vector Quantizer #1 (SVQ1) video codec.
  24. * For more information of the SVQ1 algorithm, visit:
  25. * http://www.pcisys.net/~melanson/codecs/
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "mpegvideo.h"
  30. #include "h263.h"
  31. #include "internal.h"
  32. #include "svq1.h"
  33. #include "svq1enc_cb.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. typedef struct SVQ1Context {
  37. MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
  38. AVCodecContext *avctx;
  39. DSPContext dsp;
  40. AVFrame picture;
  41. AVFrame current_picture;
  42. AVFrame last_picture;
  43. PutBitContext pb;
  44. GetBitContext gb;
  45. PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex
  46. int frame_width;
  47. int frame_height;
  48. /* Y plane block dimensions */
  49. int y_block_width;
  50. int y_block_height;
  51. /* U & V plane (C planes) block dimensions */
  52. int c_block_width;
  53. int c_block_height;
  54. uint16_t *mb_type;
  55. uint32_t *dummy;
  56. int16_t (*motion_val8[3])[2];
  57. int16_t (*motion_val16[3])[2];
  58. int64_t rd_total;
  59. uint8_t *scratchbuf;
  60. } SVQ1Context;
  61. static void svq1_write_header(SVQ1Context *s, int frame_type)
  62. {
  63. int i;
  64. /* frame code */
  65. put_bits(&s->pb, 22, 0x20);
  66. /* temporal reference (sure hope this is a "don't care") */
  67. put_bits(&s->pb, 8, 0x00);
  68. /* frame type */
  69. put_bits(&s->pb, 2, frame_type - 1);
  70. if (frame_type == FF_I_TYPE) {
  71. /* no checksum since frame code is 0x20 */
  72. /* no embedded string either */
  73. /* output 5 unknown bits (2 + 2 + 1) */
  74. put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */
  75. i= ff_match_2uint16(ff_svq1_frame_size_table, FF_ARRAY_ELEMS(ff_svq1_frame_size_table), s->frame_width, s->frame_height);
  76. put_bits(&s->pb, 3, i);
  77. if (i == 7)
  78. {
  79. put_bits(&s->pb, 12, s->frame_width);
  80. put_bits(&s->pb, 12, s->frame_height);
  81. }
  82. }
  83. /* no checksum or extra data (next 2 bits get 0) */
  84. put_bits(&s->pb, 2, 0);
  85. }
  86. #define QUALITY_THRESHOLD 100
  87. #define THRESHOLD_MULTIPLIER 0.6
  88. #if HAVE_ALTIVEC
  89. #undef vector
  90. #endif
  91. static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){
  92. int count, y, x, i, j, split, best_mean, best_score, best_count;
  93. int best_vector[6];
  94. int block_sum[7]= {0, 0, 0, 0, 0, 0};
  95. int w= 2<<((level+2)>>1);
  96. int h= 2<<((level+1)>>1);
  97. int size=w*h;
  98. int16_t block[7][256];
  99. const int8_t *codebook_sum, *codebook;
  100. const uint16_t (*mean_vlc)[2];
  101. const uint8_t (*multistage_vlc)[2];
  102. best_score=0;
  103. //FIXME optimize, this doenst need to be done multiple times
  104. if(intra){
  105. codebook_sum= svq1_intra_codebook_sum[level];
  106. codebook= ff_svq1_intra_codebooks[level];
  107. mean_vlc= ff_svq1_intra_mean_vlc;
  108. multistage_vlc= ff_svq1_intra_multistage_vlc[level];
  109. for(y=0; y<h; y++){
  110. for(x=0; x<w; x++){
  111. int v= src[x + y*stride];
  112. block[0][x + w*y]= v;
  113. best_score += v*v;
  114. block_sum[0] += v;
  115. }
  116. }
  117. }else{
  118. codebook_sum= svq1_inter_codebook_sum[level];
  119. codebook= ff_svq1_inter_codebooks[level];
  120. mean_vlc= ff_svq1_inter_mean_vlc + 256;
  121. multistage_vlc= ff_svq1_inter_multistage_vlc[level];
  122. for(y=0; y<h; y++){
  123. for(x=0; x<w; x++){
  124. int v= src[x + y*stride] - ref[x + y*stride];
  125. block[0][x + w*y]= v;
  126. best_score += v*v;
  127. block_sum[0] += v;
  128. }
  129. }
  130. }
  131. best_count=0;
  132. best_score -= ((block_sum[0]*block_sum[0])>>(level+3));
  133. best_mean= (block_sum[0] + (size>>1)) >> (level+3);
  134. if(level<4){
  135. for(count=1; count<7; count++){
  136. int best_vector_score= INT_MAX;
  137. int best_vector_sum=-999, best_vector_mean=-999;
  138. const int stage= count-1;
  139. const int8_t *vector;
  140. for(i=0; i<16; i++){
  141. int sum= codebook_sum[stage*16 + i];
  142. int sqr, diff, score;
  143. vector = codebook + stage*size*16 + i*size;
  144. sqr = s->dsp.ssd_int8_vs_int16(vector, block[stage], size);
  145. diff= block_sum[stage] - sum;
  146. score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow
  147. if(score < best_vector_score){
  148. int mean= (diff + (size>>1)) >> (level+3);
  149. assert(mean >-300 && mean<300);
  150. mean= av_clip(mean, intra?0:-256, 255);
  151. best_vector_score= score;
  152. best_vector[stage]= i;
  153. best_vector_sum= sum;
  154. best_vector_mean= mean;
  155. }
  156. }
  157. assert(best_vector_mean != -999);
  158. vector= codebook + stage*size*16 + best_vector[stage]*size;
  159. for(j=0; j<size; j++){
  160. block[stage+1][j] = block[stage][j] - vector[j];
  161. }
  162. block_sum[stage+1]= block_sum[stage] - best_vector_sum;
  163. best_vector_score +=
  164. lambda*(+ 1 + 4*count
  165. + multistage_vlc[1+count][1]
  166. + mean_vlc[best_vector_mean][1]);
  167. if(best_vector_score < best_score){
  168. best_score= best_vector_score;
  169. best_count= count;
  170. best_mean= best_vector_mean;
  171. }
  172. }
  173. }
  174. split=0;
  175. if(best_score > threshold && level){
  176. int score=0;
  177. int offset= (level&1) ? stride*h/2 : w/2;
  178. PutBitContext backup[6];
  179. for(i=level-1; i>=0; i--){
  180. backup[i]= s->reorder_pb[i];
  181. }
  182. score += encode_block(s, src , ref , decoded , stride, level-1, threshold>>1, lambda, intra);
  183. score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra);
  184. score += lambda;
  185. if(score < best_score){
  186. best_score= score;
  187. split=1;
  188. }else{
  189. for(i=level-1; i>=0; i--){
  190. s->reorder_pb[i]= backup[i];
  191. }
  192. }
  193. }
  194. if (level > 0)
  195. put_bits(&s->reorder_pb[level], 1, split);
  196. if(!split){
  197. assert((best_mean >= 0 && best_mean<256) || !intra);
  198. assert(best_mean >= -256 && best_mean<256);
  199. assert(best_count >=0 && best_count<7);
  200. assert(level<4 || best_count==0);
  201. /* output the encoding */
  202. put_bits(&s->reorder_pb[level],
  203. multistage_vlc[1 + best_count][1],
  204. multistage_vlc[1 + best_count][0]);
  205. put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
  206. mean_vlc[best_mean][0]);
  207. for (i = 0; i < best_count; i++){
  208. assert(best_vector[i]>=0 && best_vector[i]<16);
  209. put_bits(&s->reorder_pb[level], 4, best_vector[i]);
  210. }
  211. for(y=0; y<h; y++){
  212. for(x=0; x<w; x++){
  213. decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean;
  214. }
  215. }
  216. }
  217. return best_score;
  218. }
  219. static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane,
  220. int width, int height, int src_stride, int stride)
  221. {
  222. int x, y;
  223. int i;
  224. int block_width, block_height;
  225. int level;
  226. int threshold[6];
  227. uint8_t *src = s->scratchbuf + stride * 16;
  228. const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT);
  229. /* figure out the acceptable level thresholds in advance */
  230. threshold[5] = QUALITY_THRESHOLD;
  231. for (level = 4; level >= 0; level--)
  232. threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
  233. block_width = (width + 15) / 16;
  234. block_height = (height + 15) / 16;
  235. if(s->picture.pict_type == FF_P_TYPE){
  236. s->m.avctx= s->avctx;
  237. s->m.current_picture_ptr= &s->m.current_picture;
  238. s->m.last_picture_ptr = &s->m.last_picture;
  239. s->m.last_picture.data[0]= ref_plane;
  240. s->m.linesize=
  241. s->m.last_picture.linesize[0]=
  242. s->m.new_picture.linesize[0]=
  243. s->m.current_picture.linesize[0]= stride;
  244. s->m.width= width;
  245. s->m.height= height;
  246. s->m.mb_width= block_width;
  247. s->m.mb_height= block_height;
  248. s->m.mb_stride= s->m.mb_width+1;
  249. s->m.b8_stride= 2*s->m.mb_width+1;
  250. s->m.f_code=1;
  251. s->m.pict_type= s->picture.pict_type;
  252. s->m.me_method= s->avctx->me_method;
  253. s->m.me.scene_change_score=0;
  254. s->m.flags= s->avctx->flags;
  255. // s->m.out_format = FMT_H263;
  256. // s->m.unrestricted_mv= 1;
  257. s->m.lambda= s->picture.quality;
  258. s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
  259. s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
  260. if(!s->motion_val8[plane]){
  261. s->motion_val8 [plane]= av_mallocz((s->m.b8_stride*block_height*2 + 2)*2*sizeof(int16_t));
  262. s->motion_val16[plane]= av_mallocz((s->m.mb_stride*(block_height + 2) + 1)*2*sizeof(int16_t));
  263. }
  264. s->m.mb_type= s->mb_type;
  265. //dummies, to avoid segfaults
  266. s->m.current_picture.mb_mean= (uint8_t *)s->dummy;
  267. s->m.current_picture.mb_var= (uint16_t*)s->dummy;
  268. s->m.current_picture.mc_mb_var= (uint16_t*)s->dummy;
  269. s->m.current_picture.mb_type= s->dummy;
  270. s->m.current_picture.motion_val[0]= s->motion_val8[plane] + 2;
  271. s->m.p_mv_table= s->motion_val16[plane] + s->m.mb_stride + 1;
  272. s->m.dsp= s->dsp; //move
  273. ff_init_me(&s->m);
  274. s->m.me.dia_size= s->avctx->dia_size;
  275. s->m.first_slice_line=1;
  276. for (y = 0; y < block_height; y++) {
  277. s->m.new_picture.data[0]= src - y*16*stride; //ugly
  278. s->m.mb_y= y;
  279. for(i=0; i<16 && i + 16*y<height; i++){
  280. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  281. for(x=width; x<16*block_width; x++)
  282. src[i*stride+x]= src[i*stride+x-1];
  283. }
  284. for(; i<16 && i + 16*y<16*block_height; i++)
  285. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  286. for (x = 0; x < block_width; x++) {
  287. s->m.mb_x= x;
  288. ff_init_block_index(&s->m);
  289. ff_update_block_index(&s->m);
  290. ff_estimate_p_frame_motion(&s->m, x, y);
  291. }
  292. s->m.first_slice_line=0;
  293. }
  294. ff_fix_long_p_mvs(&s->m);
  295. ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0);
  296. }
  297. s->m.first_slice_line=1;
  298. for (y = 0; y < block_height; y++) {
  299. for(i=0; i<16 && i + 16*y<height; i++){
  300. memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
  301. for(x=width; x<16*block_width; x++)
  302. src[i*stride+x]= src[i*stride+x-1];
  303. }
  304. for(; i<16 && i + 16*y<16*block_height; i++)
  305. memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
  306. s->m.mb_y= y;
  307. for (x = 0; x < block_width; x++) {
  308. uint8_t reorder_buffer[3][6][7*32];
  309. int count[3][6];
  310. int offset = y * 16 * stride + x * 16;
  311. uint8_t *decoded= decoded_plane + offset;
  312. uint8_t *ref= ref_plane + offset;
  313. int score[4]={0,0,0,0}, best;
  314. uint8_t *temp = s->scratchbuf;
  315. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3000){ //FIXME check size
  316. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  317. return -1;
  318. }
  319. s->m.mb_x= x;
  320. ff_init_block_index(&s->m);
  321. ff_update_block_index(&s->m);
  322. if(s->picture.pict_type == FF_I_TYPE || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){
  323. for(i=0; i<6; i++){
  324. init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32);
  325. }
  326. if(s->picture.pict_type == FF_P_TYPE){
  327. const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
  328. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  329. score[0]= vlc[1]*lambda;
  330. }
  331. score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1);
  332. for(i=0; i<6; i++){
  333. count[0][i]= put_bits_count(&s->reorder_pb[i]);
  334. flush_put_bits(&s->reorder_pb[i]);
  335. }
  336. }else
  337. score[0]= INT_MAX;
  338. best=0;
  339. if(s->picture.pict_type == FF_P_TYPE){
  340. const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER];
  341. int mx, my, pred_x, pred_y, dxy;
  342. int16_t *motion_ptr;
  343. motion_ptr= h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
  344. if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){
  345. for(i=0; i<6; i++)
  346. init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32);
  347. put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
  348. s->m.pb= s->reorder_pb[5];
  349. mx= motion_ptr[0];
  350. my= motion_ptr[1];
  351. assert(mx>=-32 && mx<=31);
  352. assert(my>=-32 && my<=31);
  353. assert(pred_x>=-32 && pred_x<=31);
  354. assert(pred_y>=-32 && pred_y<=31);
  355. ff_h263_encode_motion(&s->m, mx - pred_x, 1);
  356. ff_h263_encode_motion(&s->m, my - pred_y, 1);
  357. s->reorder_pb[5]= s->m.pb;
  358. score[1] += lambda*put_bits_count(&s->reorder_pb[5]);
  359. dxy= (mx&1) + 2*(my&1);
  360. s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16);
  361. score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0);
  362. best= score[1] <= score[0];
  363. vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
  364. score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16);
  365. score[2]+= vlc[1]*lambda;
  366. if(score[2] < score[best] && mx==0 && my==0){
  367. best=2;
  368. s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
  369. for(i=0; i<6; i++){
  370. count[2][i]=0;
  371. }
  372. put_bits(&s->pb, vlc[1], vlc[0]);
  373. }
  374. }
  375. if(best==1){
  376. for(i=0; i<6; i++){
  377. count[1][i]= put_bits_count(&s->reorder_pb[i]);
  378. flush_put_bits(&s->reorder_pb[i]);
  379. }
  380. }else{
  381. motion_ptr[0 ] = motion_ptr[1 ]=
  382. motion_ptr[2 ] = motion_ptr[3 ]=
  383. motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]=
  384. motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0;
  385. }
  386. }
  387. s->rd_total += score[best];
  388. for(i=5; i>=0; i--){
  389. ff_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]);
  390. }
  391. if(best==0){
  392. s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
  393. }
  394. }
  395. s->m.first_slice_line=0;
  396. }
  397. return 0;
  398. }
  399. static av_cold int svq1_encode_init(AVCodecContext *avctx)
  400. {
  401. SVQ1Context * const s = avctx->priv_data;
  402. dsputil_init(&s->dsp, avctx);
  403. avctx->coded_frame= (AVFrame*)&s->picture;
  404. s->frame_width = avctx->width;
  405. s->frame_height = avctx->height;
  406. s->y_block_width = (s->frame_width + 15) / 16;
  407. s->y_block_height = (s->frame_height + 15) / 16;
  408. s->c_block_width = (s->frame_width / 4 + 15) / 16;
  409. s->c_block_height = (s->frame_height / 4 + 15) / 16;
  410. s->avctx= avctx;
  411. s->m.avctx= avctx;
  412. s->m.me.temp =
  413. s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
  414. s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  415. s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
  416. s->mb_type = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t));
  417. s->dummy = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t));
  418. h263_encode_init(&s->m); //mv_penalty
  419. return 0;
  420. }
  421. static int svq1_encode_frame(AVCodecContext *avctx, unsigned char *buf,
  422. int buf_size, void *data)
  423. {
  424. SVQ1Context * const s = avctx->priv_data;
  425. AVFrame *pict = data;
  426. AVFrame * const p= (AVFrame*)&s->picture;
  427. AVFrame temp;
  428. int i;
  429. if(avctx->pix_fmt != PIX_FMT_YUV410P){
  430. av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
  431. return -1;
  432. }
  433. if(!s->current_picture.data[0]){
  434. avctx->get_buffer(avctx, &s->current_picture);
  435. avctx->get_buffer(avctx, &s->last_picture);
  436. s->scratchbuf = av_malloc(s->current_picture.linesize[0] * 16 * 2);
  437. }
  438. temp= s->current_picture;
  439. s->current_picture= s->last_picture;
  440. s->last_picture= temp;
  441. init_put_bits(&s->pb, buf, buf_size);
  442. *p = *pict;
  443. p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? FF_P_TYPE : FF_I_TYPE;
  444. p->key_frame = p->pict_type == FF_I_TYPE;
  445. svq1_write_header(s, p->pict_type);
  446. for(i=0; i<3; i++){
  447. if(svq1_encode_plane(s, i,
  448. s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i],
  449. s->frame_width / (i?4:1), s->frame_height / (i?4:1),
  450. s->picture.linesize[i], s->current_picture.linesize[i]) < 0)
  451. return -1;
  452. }
  453. // align_put_bits(&s->pb);
  454. while(put_bits_count(&s->pb) & 31)
  455. put_bits(&s->pb, 1, 0);
  456. flush_put_bits(&s->pb);
  457. return put_bits_count(&s->pb) / 8;
  458. }
  459. static av_cold int svq1_encode_end(AVCodecContext *avctx)
  460. {
  461. SVQ1Context * const s = avctx->priv_data;
  462. int i;
  463. av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number));
  464. av_freep(&s->m.me.scratchpad);
  465. av_freep(&s->m.me.map);
  466. av_freep(&s->m.me.score_map);
  467. av_freep(&s->mb_type);
  468. av_freep(&s->dummy);
  469. av_freep(&s->scratchbuf);
  470. for(i=0; i<3; i++){
  471. av_freep(&s->motion_val8[i]);
  472. av_freep(&s->motion_val16[i]);
  473. }
  474. return 0;
  475. }
  476. AVCodec svq1_encoder = {
  477. "svq1",
  478. AVMEDIA_TYPE_VIDEO,
  479. CODEC_ID_SVQ1,
  480. sizeof(SVQ1Context),
  481. svq1_encode_init,
  482. svq1_encode_frame,
  483. svq1_encode_end,
  484. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV410P, PIX_FMT_NONE},
  485. .long_name= NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
  486. };