You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

281 lines
9.0KB

  1. /*
  2. * SIPR decoder for the 16k mode
  3. *
  4. * Copyright (c) 2008 Vladimir Voroshilov
  5. * Copyright (c) 2009 Vitor Sessak
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <math.h>
  24. #include "sipr.h"
  25. #include "libavutil/mathematics.h"
  26. #include "lsp.h"
  27. #include "celp_math.h"
  28. #include "acelp_vectors.h"
  29. #include "acelp_pitch_delay.h"
  30. #include "acelp_filters.h"
  31. #include "celp_filters.h"
  32. #include "sipr16kdata.h"
  33. /**
  34. * Convert an lsf vector into an lsp vector.
  35. *
  36. * @param lsf input lsf vector
  37. * @param lsp output lsp vector
  38. */
  39. static void lsf2lsp(const float *lsf, double *lsp)
  40. {
  41. int i;
  42. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  43. lsp[i] = cosf(lsf[i]);
  44. }
  45. static void dequant(float *out, const int *idx, const float *cbs[])
  46. {
  47. int i;
  48. for (i = 0; i < 4; i++)
  49. memcpy(out + 3*i, cbs[i] + 3*idx[i], 3*sizeof(float));
  50. memcpy(out + 12, cbs[4] + 4*idx[4], 4*sizeof(float));
  51. }
  52. static void lsf_decode_fp_16k(float* lsf_history, float* isp_new,
  53. const int* parm, int ma_pred)
  54. {
  55. int i;
  56. float isp_q[LP_FILTER_ORDER_16k];
  57. dequant(isp_q, parm, lsf_codebooks_16k);
  58. for (i = 0; i < LP_FILTER_ORDER_16k; i++) {
  59. isp_new[i] = (1 - qu[ma_pred]) * isp_q[i]
  60. + qu[ma_pred] * lsf_history[i]
  61. + mean_lsf_16k[i];
  62. }
  63. memcpy(lsf_history, isp_q, LP_FILTER_ORDER_16k * sizeof(float));
  64. }
  65. static int dec_delay3_1st(int index)
  66. {
  67. if (index < 390) {
  68. return index + 88;
  69. } else
  70. return 3 * index - 690;
  71. }
  72. static int dec_delay3_2nd(int index, int pit_min, int pit_max,
  73. int pitch_lag_prev)
  74. {
  75. if (index < 62) {
  76. int pitch_delay_min = av_clip(pitch_lag_prev - 10,
  77. pit_min, pit_max - 19);
  78. return 3 * pitch_delay_min + index - 2;
  79. } else
  80. return 3 * pitch_lag_prev;
  81. }
  82. static void postfilter(float *out_data, float* synth, float* iir_mem,
  83. float* filt_mem[2], float* mem_preemph)
  84. {
  85. float buf[30 + LP_FILTER_ORDER_16k];
  86. float *tmpbuf = buf + LP_FILTER_ORDER_16k;
  87. float s;
  88. int i;
  89. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  90. filt_mem[0][i] = iir_mem[i] * ff_pow_0_5[i];
  91. memcpy(tmpbuf - LP_FILTER_ORDER_16k, mem_preemph,
  92. LP_FILTER_ORDER_16k*sizeof(*buf));
  93. ff_celp_lp_synthesis_filterf(tmpbuf, filt_mem[1], synth, 30,
  94. LP_FILTER_ORDER_16k);
  95. memcpy(synth - LP_FILTER_ORDER_16k, mem_preemph,
  96. LP_FILTER_ORDER_16k * sizeof(*synth));
  97. ff_celp_lp_synthesis_filterf(synth, filt_mem[0], synth, 30,
  98. LP_FILTER_ORDER_16k);
  99. memcpy(out_data + 30 - LP_FILTER_ORDER_16k,
  100. synth + 30 - LP_FILTER_ORDER_16k,
  101. LP_FILTER_ORDER_16k * sizeof(*synth));
  102. ff_celp_lp_synthesis_filterf(out_data + 30, filt_mem[0],
  103. synth + 30, 2 * L_SUBFR_16k - 30,
  104. LP_FILTER_ORDER_16k);
  105. memcpy(mem_preemph, out_data + 2*L_SUBFR_16k - LP_FILTER_ORDER_16k,
  106. LP_FILTER_ORDER_16k * sizeof(*synth));
  107. FFSWAP(float *, filt_mem[0], filt_mem[1]);
  108. for (i = 0, s = 0; i < 30; i++, s += 1.0/30)
  109. out_data[i] = tmpbuf[i] + s * (synth[i] - tmpbuf[i]);
  110. }
  111. /**
  112. * Floating point version of ff_acelp_lp_decode().
  113. */
  114. static void acelp_lp_decodef(float *lp_1st, float *lp_2nd,
  115. const double *lsp_2nd, const double *lsp_prev)
  116. {
  117. double lsp_1st[LP_FILTER_ORDER_16k];
  118. int i;
  119. /* LSP values for first subframe (3.2.5 of G.729, Equation 24) */
  120. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  121. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) * 0.5;
  122. ff_acelp_lspd2lpc(lsp_1st, lp_1st, LP_FILTER_ORDER_16k >> 1);
  123. /* LSP values for second subframe (3.2.5 of G.729) */
  124. ff_acelp_lspd2lpc(lsp_2nd, lp_2nd, LP_FILTER_ORDER_16k >> 1);
  125. }
  126. /**
  127. * Floating point version of ff_acelp_decode_gain_code().
  128. */
  129. static float acelp_decode_gain_codef(float gain_corr_factor, const float *fc_v,
  130. float mr_energy, const float *quant_energy,
  131. const float *ma_prediction_coeff,
  132. int subframe_size, int ma_pred_order)
  133. {
  134. mr_energy +=
  135. ff_dot_productf(quant_energy, ma_prediction_coeff, ma_pred_order);
  136. mr_energy = gain_corr_factor * exp(M_LN10 / 20. * mr_energy) /
  137. sqrt((0.01 + ff_dot_productf(fc_v, fc_v, subframe_size)));
  138. return mr_energy;
  139. }
  140. #define DIVIDE_BY_3(x) ((x) * 10923 >> 15)
  141. void ff_sipr_decode_frame_16k(SiprContext *ctx, SiprParameters *params,
  142. float *out_data)
  143. {
  144. int frame_size = SUBFRAME_COUNT_16k * L_SUBFR_16k;
  145. float *synth = ctx->synth_buf + LP_FILTER_ORDER_16k;
  146. float lsf_new[LP_FILTER_ORDER_16k];
  147. double lsp_new[LP_FILTER_ORDER_16k];
  148. float Az[2][LP_FILTER_ORDER_16k];
  149. float fixed_vector[L_SUBFR_16k];
  150. float pitch_fac, gain_code;
  151. int i;
  152. int pitch_delay_3x;
  153. float *excitation = ctx->excitation + 292;
  154. lsf_decode_fp_16k(ctx->lsf_history, lsf_new, params->vq_indexes,
  155. params->ma_pred_switch);
  156. ff_set_min_dist_lsf(lsf_new, LSFQ_DIFF_MIN / 2, LP_FILTER_ORDER_16k);
  157. lsf2lsp(lsf_new, lsp_new);
  158. acelp_lp_decodef(Az[0], Az[1], lsp_new, ctx->lsp_history_16k);
  159. memcpy(ctx->lsp_history_16k, lsp_new, LP_FILTER_ORDER_16k * sizeof(double));
  160. memcpy(synth - LP_FILTER_ORDER_16k, ctx->synth,
  161. LP_FILTER_ORDER_16k * sizeof(*synth));
  162. for (i = 0; i < SUBFRAME_COUNT_16k; i++) {
  163. int i_subfr = i * L_SUBFR_16k;
  164. AMRFixed f;
  165. float gain_corr_factor;
  166. int pitch_delay_int;
  167. int pitch_delay_frac;
  168. if (!i) {
  169. pitch_delay_3x = dec_delay3_1st(params->pitch_delay[i]);
  170. } else
  171. pitch_delay_3x = dec_delay3_2nd(params->pitch_delay[i],
  172. PITCH_MIN, PITCH_MAX,
  173. ctx->pitch_lag_prev);
  174. pitch_fac = gain_pitch_cb_16k[params->gp_index[i]];
  175. f.pitch_fac = FFMIN(pitch_fac, 1.0);
  176. f.pitch_lag = DIVIDE_BY_3(pitch_delay_3x+1);
  177. ctx->pitch_lag_prev = f.pitch_lag;
  178. pitch_delay_int = DIVIDE_BY_3(pitch_delay_3x + 2);
  179. pitch_delay_frac = pitch_delay_3x + 2 - 3*pitch_delay_int;
  180. ff_acelp_interpolatef(&excitation[i_subfr],
  181. &excitation[i_subfr] - pitch_delay_int + 1,
  182. sinc_win, 3, pitch_delay_frac + 1,
  183. LP_FILTER_ORDER, L_SUBFR_16k);
  184. memset(fixed_vector, 0, sizeof(fixed_vector));
  185. ff_decode_10_pulses_35bits(params->fc_indexes[i], &f,
  186. ff_fc_4pulses_8bits_tracks_13, 5, 4);
  187. ff_set_fixed_vector(fixed_vector, &f, 1.0, L_SUBFR_16k);
  188. gain_corr_factor = gain_cb_16k[params->gc_index[i]];
  189. gain_code = gain_corr_factor *
  190. acelp_decode_gain_codef(sqrt(L_SUBFR_16k), fixed_vector,
  191. 19.0 - 15.0/(0.05*M_LN10/M_LN2),
  192. pred_16k, ctx->energy_history,
  193. L_SUBFR_16k, 2);
  194. ctx->energy_history[1] = ctx->energy_history[0];
  195. ctx->energy_history[0] = 20.0 * log10f(gain_corr_factor);
  196. ff_weighted_vector_sumf(&excitation[i_subfr], &excitation[i_subfr],
  197. fixed_vector, pitch_fac,
  198. gain_code, L_SUBFR_16k);
  199. ff_celp_lp_synthesis_filterf(synth + i_subfr, Az[i],
  200. &excitation[i_subfr], L_SUBFR_16k,
  201. LP_FILTER_ORDER_16k);
  202. }
  203. memcpy(ctx->synth, synth + frame_size - LP_FILTER_ORDER_16k,
  204. LP_FILTER_ORDER_16k * sizeof(*synth));
  205. memmove(ctx->excitation, ctx->excitation + 2 * L_SUBFR_16k,
  206. (L_INTERPOL+PITCH_MAX) * sizeof(float));
  207. postfilter(out_data, synth, ctx->iir_mem, ctx->filt_mem, ctx->mem_preemph);
  208. memcpy(ctx->iir_mem, Az[1], LP_FILTER_ORDER_16k * sizeof(float));
  209. }
  210. void ff_sipr_init_16k(SiprContext *ctx)
  211. {
  212. int i;
  213. for (i = 0; i < LP_FILTER_ORDER_16k; i++)
  214. ctx->lsp_history_16k[i] = cos((i + 1) * M_PI/(LP_FILTER_ORDER_16k + 1));
  215. ctx->filt_mem[0] = ctx->filt_buf[0];
  216. ctx->filt_mem[1] = ctx->filt_buf[1];
  217. ctx->pitch_lag_prev = 180;
  218. }