You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

205 lines
7.1KB

  1. /*
  2. * FFT/IFFT transforms
  3. * AltiVec-enabled
  4. * Copyright (c) 2009 Loren Merritt
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavcodec/fft.h"
  23. #include "util_altivec.h"
  24. #include "types_altivec.h"
  25. #include "regs.h"
  26. /**
  27. * Do a complex FFT with the parameters defined in ff_fft_init(). The
  28. * input data must be permuted before with s->revtab table. No
  29. * 1.0/sqrt(n) normalization is done.
  30. * AltiVec-enabled
  31. * This code assumes that the 'z' pointer is 16 bytes-aligned
  32. * It also assumes all FFTComplex are 8 bytes-aligned pair of float
  33. */
  34. // Pointers to functions. Not using function pointer syntax, because
  35. // that involves an extra level of indirection on some PPC ABIs.
  36. extern void *ff_fft_dispatch_altivec[2][15];
  37. #if HAVE_GNU_AS
  38. // Convert from simd order to C order.
  39. static void swizzle(vec_f *z, int n)
  40. {
  41. int i;
  42. n >>= 1;
  43. for (i = 0; i < n; i += 2) {
  44. vec_f re = z[i];
  45. vec_f im = z[i+1];
  46. z[i] = vec_mergeh(re, im);
  47. z[i+1] = vec_mergel(re, im);
  48. }
  49. }
  50. static av_always_inline void fft_dispatch(FFTContext *s, FFTComplex *z, int do_swizzle)
  51. {
  52. register vec_f v14 __asm__("v14") = {0,0,0,0};
  53. register vec_f v15 __asm__("v15") = *(const vec_f*)ff_cos_16;
  54. register vec_f v16 __asm__("v16") = {0, 0.38268343, M_SQRT1_2, 0.92387953};
  55. register vec_f v17 __asm__("v17") = {-M_SQRT1_2, M_SQRT1_2, M_SQRT1_2,-M_SQRT1_2};
  56. register vec_f v18 __asm__("v18") = { M_SQRT1_2, M_SQRT1_2, M_SQRT1_2, M_SQRT1_2};
  57. register vec_u8 v19 __asm__("v19") = vcprm(s0,3,2,1);
  58. register vec_u8 v20 __asm__("v20") = vcprm(0,1,s2,s1);
  59. register vec_u8 v21 __asm__("v21") = vcprm(2,3,s0,s3);
  60. register vec_u8 v22 __asm__("v22") = vcprm(2,s3,3,s2);
  61. register vec_u8 v23 __asm__("v23") = vcprm(0,1,s0,s1);
  62. register vec_u8 v24 __asm__("v24") = vcprm(2,3,s2,s3);
  63. register vec_u8 v25 __asm__("v25") = vcprm(2,3,0,1);
  64. register vec_u8 v26 __asm__("v26") = vcprm(1,2,s3,s0);
  65. register vec_u8 v27 __asm__("v27") = vcprm(0,3,s2,s1);
  66. register vec_u8 v28 __asm__("v28") = vcprm(0,2,s1,s3);
  67. register vec_u8 v29 __asm__("v29") = vcprm(1,3,s0,s2);
  68. register FFTSample *const*cos_tabs __asm__("r12") = ff_cos_tabs;
  69. register FFTComplex *zarg __asm__("r3") = z;
  70. __asm__(
  71. "mtctr %0 \n"
  72. "li "r(9)", 16 \n"
  73. "subi "r(1)","r(1) ",%1 \n"
  74. "bctrl \n"
  75. "addi "r(1)","r(1) ",%1 \n"
  76. ::"r"(ff_fft_dispatch_altivec[do_swizzle][s->nbits-2]), "i"(12*sizeof(void*)),
  77. "r"(zarg), "r"(cos_tabs),
  78. "v"(v14),"v"(v15),"v"(v16),"v"(v17),"v"(v18),"v"(v19),"v"(v20),"v"(v21),
  79. "v"(v22),"v"(v23),"v"(v24),"v"(v25),"v"(v26),"v"(v27),"v"(v28),"v"(v29)
  80. : "lr","ctr","r0","r4","r5","r6","r7","r8","r9","r10","r11",
  81. "v0","v1","v2","v3","v4","v5","v6","v7","v8","v9","v10","v11","v12","v13"
  82. );
  83. if (do_swizzle && s->nbits <= 4)
  84. swizzle((vec_f*)z, 1<<s->nbits);
  85. }
  86. static void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z)
  87. {
  88. fft_dispatch(s, z, 1);
  89. }
  90. static void ff_imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  91. {
  92. int j, k;
  93. int n = 1 << s->mdct_bits;
  94. int n4 = n >> 2;
  95. int n8 = n >> 3;
  96. int n32 = n >> 5;
  97. const uint16_t *revtabj = s->revtab;
  98. const uint16_t *revtabk = s->revtab+n4;
  99. const vec_f *tcos = (const vec_f*)(s->tcos+n8);
  100. const vec_f *tsin = (const vec_f*)(s->tsin+n8);
  101. const vec_f *pin = (const vec_f*)(input+n4);
  102. vec_f *pout = (vec_f*)(output+n4);
  103. /* pre rotation */
  104. k = n32-1;
  105. do {
  106. vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
  107. #define CMULA(p,o0,o1,o2,o3)\
  108. a = pin[ k*2+p]; /* { z[k].re, z[k].im, z[k+1].re, z[k+1].im } */\
  109. b = pin[-k*2-p-1]; /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
  110. re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re, z[k+1].re, z[-k-2].re, z[-k-1].re } */\
  111. im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im, z[k].im } */\
  112. cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
  113. sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
  114. r##p = im*cos - re*sin;\
  115. i##p = re*cos + im*sin;
  116. #define STORE2(v,dst)\
  117. j = dst;\
  118. vec_ste(v, 0, output+j*2);\
  119. vec_ste(v, 4, output+j*2);
  120. #define STORE8(p)\
  121. a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
  122. b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
  123. c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
  124. d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
  125. STORE2(a, revtabk[ p*2-4]);\
  126. STORE2(b, revtabk[ p*2-3]);\
  127. STORE2(c, revtabj[-p*2+2]);\
  128. STORE2(d, revtabj[-p*2+3]);
  129. cos0 = tcos[k];
  130. sin0 = tsin[k];
  131. cos1 = tcos[-k-1];
  132. sin1 = tsin[-k-1];
  133. CMULA(0, 0,1,2,3);
  134. CMULA(1, 2,3,0,1);
  135. STORE8(0);
  136. STORE8(1);
  137. revtabj += 4;
  138. revtabk -= 4;
  139. k--;
  140. } while(k >= 0);
  141. fft_dispatch(s, (FFTComplex*)output, 0);
  142. /* post rotation + reordering */
  143. j = -n32;
  144. k = n32-1;
  145. do {
  146. vec_f cos,sin,re,im,a,b,c,d;
  147. #define CMULB(d0,d1,o)\
  148. re = pout[o*2];\
  149. im = pout[o*2+1];\
  150. cos = tcos[o];\
  151. sin = tsin[o];\
  152. d0 = im*sin - re*cos;\
  153. d1 = re*sin + im*cos;
  154. CMULB(a,b,j);
  155. CMULB(c,d,k);
  156. pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
  157. pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
  158. pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
  159. pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
  160. j++;
  161. k--;
  162. } while(k >= 0);
  163. }
  164. static void ff_imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
  165. {
  166. int k;
  167. int n = 1 << s->mdct_bits;
  168. int n4 = n >> 2;
  169. int n16 = n >> 4;
  170. vec_u32 sign = {1<<31,1<<31,1<<31,1<<31};
  171. vec_u32 *p0 = (vec_u32*)(output+n4);
  172. vec_u32 *p1 = (vec_u32*)(output+n4*3);
  173. ff_imdct_half_altivec(s, output+n4, input);
  174. for (k = 0; k < n16; k++) {
  175. vec_u32 a = p0[k] ^ sign;
  176. vec_u32 b = p1[-k-1];
  177. p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
  178. p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
  179. }
  180. }
  181. #endif /* HAVE_GNU_AS */
  182. av_cold void ff_fft_init_altivec(FFTContext *s)
  183. {
  184. if (HAVE_GNU_AS) {
  185. s->fft_calc = ff_fft_calc_altivec;
  186. s->imdct_calc = ff_imdct_calc_altivec;
  187. s->imdct_half = ff_imdct_half_altivec;
  188. }
  189. }