You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

175 lines
5.0KB

  1. /*
  2. * LSP routines for ACELP-based codecs
  3. *
  4. * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
  5. * Copyright (c) 2008 Vladimir Voroshilov
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. #include <inttypes.h>
  24. #include "avcodec.h"
  25. #define FRAC_BITS 14
  26. #include "mathops.h"
  27. #include "lsp.h"
  28. #include "celp_math.h"
  29. void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
  30. {
  31. int i, j;
  32. /* sort lsfq in ascending order. float bubble agorithm,
  33. O(n) if data already sorted, O(n^2) - otherwise */
  34. for(i=0; i<lp_order-1; i++)
  35. for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
  36. FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
  37. for(i=0; i<lp_order; i++)
  38. {
  39. lsfq[i] = FFMAX(lsfq[i], lsfq_min);
  40. lsfq_min = lsfq[i] + lsfq_min_distance;
  41. }
  42. lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
  43. }
  44. void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
  45. {
  46. int i;
  47. float prev = 0.0;
  48. for (i = 0; i < size; i++)
  49. prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
  50. }
  51. void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
  52. {
  53. int i;
  54. /* Convert LSF to LSP, lsp=cos(lsf) */
  55. for(i=0; i<lp_order; i++)
  56. // 20861 = 2.0 / PI in (0.15)
  57. lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
  58. }
  59. /**
  60. * \brief decodes polynomial coefficients from LSP
  61. * \param f [out] decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
  62. * \param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
  63. */
  64. static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
  65. {
  66. int i, j;
  67. f[0] = 0x400000; // 1.0 in (3.22)
  68. f[1] = -lsp[0] << 8; // *2 and (0.15) -> (3.22)
  69. for(i=2; i<=lp_half_order; i++)
  70. {
  71. f[i] = f[i-2];
  72. for(j=i; j>1; j--)
  73. f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
  74. f[1] -= lsp[2*i-2] << 8;
  75. }
  76. }
  77. void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
  78. {
  79. int i;
  80. int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
  81. int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
  82. lsp2poly(f1, lsp , lp_half_order);
  83. lsp2poly(f2, lsp+1, lp_half_order);
  84. /* 3.2.6 of G.729, Equations 25 and 26*/
  85. lp[0] = 4096;
  86. for(i=1; i<lp_half_order+1; i++)
  87. {
  88. int ff1 = f1[i] + f1[i-1]; // (3.22)
  89. int ff2 = f2[i] - f2[i-1]; // (3.22)
  90. ff1 += 1 << 10; // for rounding
  91. lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  92. lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
  93. }
  94. }
  95. void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
  96. {
  97. int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
  98. int i;
  99. /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
  100. for(i=0; i<lp_order; i++)
  101. #ifdef G729_BITEXACT
  102. lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
  103. #else
  104. lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
  105. #endif
  106. ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
  107. /* LSP values for second subframe (3.2.5 of G.729)*/
  108. ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
  109. }
  110. void ff_lsp2polyf(const double *lsp, double *f, int lp_half_order)
  111. {
  112. int i, j;
  113. f[0] = 1.0;
  114. f[1] = -2 * lsp[0];
  115. lsp -= 2;
  116. for(i=2; i<=lp_half_order; i++)
  117. {
  118. double val = -2 * lsp[2*i];
  119. f[i] = val * f[i-1] + 2*f[i-2];
  120. for(j=i-1; j>1; j--)
  121. f[j] += f[j-1] * val + f[j-2];
  122. f[1] += val;
  123. }
  124. }
  125. void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
  126. {
  127. double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
  128. float *lpc2 = lpc + (lp_half_order << 1) - 1;
  129. assert(lp_half_order <= MAX_LP_HALF_ORDER);
  130. ff_lsp2polyf(lsp, pa, lp_half_order);
  131. ff_lsp2polyf(lsp + 1, qa, lp_half_order);
  132. while (lp_half_order--) {
  133. double paf = pa[lp_half_order+1] + pa[lp_half_order];
  134. double qaf = qa[lp_half_order+1] - qa[lp_half_order];
  135. lpc [ lp_half_order] = 0.5*(paf+qaf);
  136. lpc2[-lp_half_order] = 0.5*(paf-qaf);
  137. }
  138. }
  139. void ff_sort_nearly_sorted_floats(float *vals, int len)
  140. {
  141. int i,j;
  142. for (i = 0; i < len - 1; i++)
  143. for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
  144. FFSWAP(float, vals[j], vals[j+1]);
  145. }