You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

468 lines
15KB

  1. /*
  2. * DSP functions for Indeo Video Interactive codecs (Indeo4 and Indeo5)
  3. *
  4. * Copyright (c) 2009 Maxim Poliakovski
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * DSP functions (inverse transforms, motion compensation, wavelet recompostions)
  25. * for Indeo Video Interactive codecs.
  26. */
  27. #include "avcodec.h"
  28. #include "dsputil.h"
  29. #include "dwt.h"
  30. #include "ivi_common.h"
  31. #include "ivi_dsp.h"
  32. void ff_ivi_recompose53(const IVIPlaneDesc *plane, uint8_t *dst,
  33. const int dst_pitch, const int num_bands)
  34. {
  35. int x, y, indx;
  36. int32_t p0, p1, p2, p3, tmp0, tmp1, tmp2;
  37. int32_t b0_1, b0_2, b1_1, b1_2, b1_3, b2_1, b2_2, b2_3, b2_4, b2_5, b2_6;
  38. int32_t b3_1, b3_2, b3_3, b3_4, b3_5, b3_6, b3_7, b3_8, b3_9;
  39. int32_t pitch, back_pitch;
  40. const IDWTELEM *b0_ptr, *b1_ptr, *b2_ptr, *b3_ptr;
  41. /* all bands should have the same pitch */
  42. pitch = plane->bands[0].pitch;
  43. /* pixels at the position "y-1" will be set to pixels at the "y" for the 1st iteration */
  44. back_pitch = 0;
  45. /* get pointers to the wavelet bands */
  46. b0_ptr = plane->bands[0].buf;
  47. b1_ptr = plane->bands[1].buf;
  48. b2_ptr = plane->bands[2].buf;
  49. b3_ptr = plane->bands[3].buf;
  50. for (y = 0; y < plane->height; y += 2) {
  51. /* load storage variables with values */
  52. if (num_bands > 0) {
  53. b0_1 = b0_ptr[0];
  54. b0_2 = b0_ptr[pitch];
  55. }
  56. if (num_bands > 1) {
  57. b1_1 = b1_ptr[back_pitch];
  58. b1_2 = b1_ptr[0];
  59. b1_3 = b1_1 - b1_2*6 + b1_ptr[pitch];
  60. }
  61. if (num_bands > 2) {
  62. b2_2 = b2_ptr[0]; // b2[x, y ]
  63. b2_3 = b2_2; // b2[x+1,y ] = b2[x,y]
  64. b2_5 = b2_ptr[pitch]; // b2[x ,y+1]
  65. b2_6 = b2_5; // b2[x+1,y+1] = b2[x,y+1]
  66. }
  67. if (num_bands > 3) {
  68. b3_2 = b3_ptr[back_pitch]; // b3[x ,y-1]
  69. b3_3 = b3_2; // b3[x+1,y-1] = b3[x ,y-1]
  70. b3_5 = b3_ptr[0]; // b3[x ,y ]
  71. b3_6 = b3_5; // b3[x+1,y ] = b3[x ,y ]
  72. b3_8 = b3_2 - b3_5*6 + b3_ptr[pitch];
  73. b3_9 = b3_8;
  74. }
  75. for (x = 0, indx = 0; x < plane->width; x+=2, indx++) {
  76. /* some values calculated in the previous iterations can */
  77. /* be reused in the next ones, so do appropriate copying */
  78. b2_1 = b2_2; // b2[x-1,y ] = b2[x, y ]
  79. b2_2 = b2_3; // b2[x ,y ] = b2[x+1,y ]
  80. b2_4 = b2_5; // b2[x-1,y+1] = b2[x ,y+1]
  81. b2_5 = b2_6; // b2[x ,y+1] = b2[x+1,y+1]
  82. b3_1 = b3_2; // b3[x-1,y-1] = b3[x ,y-1]
  83. b3_2 = b3_3; // b3[x ,y-1] = b3[x+1,y-1]
  84. b3_4 = b3_5; // b3[x-1,y ] = b3[x ,y ]
  85. b3_5 = b3_6; // b3[x ,y ] = b3[x+1,y ]
  86. b3_7 = b3_8; // vert_HPF(x-1)
  87. b3_8 = b3_9; // vert_HPF(x )
  88. p0 = p1 = p2 = p3 = 0;
  89. /* process the LL-band by applying LPF both vertically and horizontally */
  90. if (num_bands > 0) {
  91. tmp0 = b0_1;
  92. tmp2 = b0_2;
  93. b0_1 = b0_ptr[indx+1];
  94. b0_2 = b0_ptr[pitch+indx+1];
  95. tmp1 = tmp0 + b0_1;
  96. p0 = tmp0 << 4;
  97. p1 = tmp1 << 3;
  98. p2 = (tmp0 + tmp2) << 3;
  99. p3 = (tmp1 + tmp2 + b0_2) << 2;
  100. }
  101. /* process the HL-band by applying HPF vertically and LPF horizontally */
  102. if (num_bands > 1) {
  103. tmp0 = b1_2;
  104. tmp1 = b1_1;
  105. b1_2 = b1_ptr[indx+1];
  106. b1_1 = b1_ptr[back_pitch+indx+1];
  107. tmp2 = tmp1 - tmp0*6 + b1_3;
  108. b1_3 = b1_1 - b1_2*6 + b1_ptr[pitch+indx+1];
  109. p0 += (tmp0 + tmp1) << 3;
  110. p1 += (tmp0 + tmp1 + b1_1 + b1_2) << 2;
  111. p2 += tmp2 << 2;
  112. p3 += (tmp2 + b1_3) << 1;
  113. }
  114. /* process the LH-band by applying LPF vertically and HPF horizontally */
  115. if (num_bands > 2) {
  116. b2_3 = b2_ptr[indx+1];
  117. b2_6 = b2_ptr[pitch+indx+1];
  118. tmp0 = b2_1 + b2_2;
  119. tmp1 = b2_1 - b2_2*6 + b2_3;
  120. p0 += tmp0 << 3;
  121. p1 += tmp1 << 2;
  122. p2 += (tmp0 + b2_4 + b2_5) << 2;
  123. p3 += (tmp1 + b2_4 - b2_5*6 + b2_6) << 1;
  124. }
  125. /* process the HH-band by applying HPF both vertically and horizontally */
  126. if (num_bands > 3) {
  127. b3_6 = b3_ptr[indx+1]; // b3[x+1,y ]
  128. b3_3 = b3_ptr[back_pitch+indx+1]; // b3[x+1,y-1]
  129. tmp0 = b3_1 + b3_4;
  130. tmp1 = b3_2 + b3_5;
  131. tmp2 = b3_3 + b3_6;
  132. b3_9 = b3_3 - b3_6*6 + b3_ptr[pitch+indx+1];
  133. p0 += (tmp0 + tmp1) << 2;
  134. p1 += (tmp0 - tmp1*6 + tmp2) << 1;
  135. p2 += (b3_7 + b3_8) << 1;
  136. p3 += b3_7 - b3_8*6 + b3_9;
  137. }
  138. /* output four pixels */
  139. dst[x] = av_clip_uint8((p0 >> 6) + 128);
  140. dst[x+1] = av_clip_uint8((p1 >> 6) + 128);
  141. dst[dst_pitch+x] = av_clip_uint8((p2 >> 6) + 128);
  142. dst[dst_pitch+x+1] = av_clip_uint8((p3 >> 6) + 128);
  143. }// for x
  144. dst += dst_pitch << 1;
  145. back_pitch = -pitch;
  146. b0_ptr += pitch;
  147. b1_ptr += pitch;
  148. b2_ptr += pitch;
  149. b3_ptr += pitch;
  150. }
  151. }
  152. /** butterfly operation for the inverse slant transform */
  153. #define IVI_SLANT_BFLY(s1, s2, o1, o2, t) \
  154. t = s1 - s2;\
  155. o1 = s1 + s2;\
  156. o2 = t;\
  157. /** This is a reflection a,b = 1/2, 5/4 for the inverse slant transform */
  158. #define IVI_IREFLECT(s1, s2, o1, o2, t) \
  159. t = ((s1 + s2*2 + 2) >> 2) + s1;\
  160. o2 = ((s1*2 - s2 + 2) >> 2) - s2;\
  161. o1 = t;\
  162. /** This is a reflection a,b = 1/2, 7/8 for the inverse slant transform */
  163. #define IVI_SLANT_PART4(s1, s2, o1, o2, t) \
  164. t = s2 + ((s1*4 - s2 + 4) >> 3);\
  165. o2 = s1 + ((-s1 - s2*4 + 4) >> 3);\
  166. o1 = t;\
  167. /** inverse slant8 transform */
  168. #define IVI_INV_SLANT8(s1, s4, s8, s5, s2, s6, s3, s7,\
  169. d1, d2, d3, d4, d5, d6, d7, d8,\
  170. t0, t1, t2, t3, t4, t5, t6, t7, t8) {\
  171. IVI_SLANT_PART4(s4, s5, t4, t5, t0);\
  172. \
  173. IVI_SLANT_BFLY(s1, t5, t1, t5, t0); IVI_SLANT_BFLY(s2, s6, t2, t6, t0);\
  174. IVI_SLANT_BFLY(s7, s3, t7, t3, t0); IVI_SLANT_BFLY(t4, s8, t4, t8, t0);\
  175. \
  176. IVI_SLANT_BFLY(t1, t2, t1, t2, t0); IVI_IREFLECT (t4, t3, t4, t3, t0);\
  177. IVI_SLANT_BFLY(t5, t6, t5, t6, t0); IVI_IREFLECT (t8, t7, t8, t7, t0);\
  178. IVI_SLANT_BFLY(t1, t4, t1, t4, t0); IVI_SLANT_BFLY(t2, t3, t2, t3, t0);\
  179. IVI_SLANT_BFLY(t5, t8, t5, t8, t0); IVI_SLANT_BFLY(t6, t7, t6, t7, t0);\
  180. d1 = COMPENSATE(t1);\
  181. d2 = COMPENSATE(t2);\
  182. d3 = COMPENSATE(t3);\
  183. d4 = COMPENSATE(t4);\
  184. d5 = COMPENSATE(t5);\
  185. d6 = COMPENSATE(t6);\
  186. d7 = COMPENSATE(t7);\
  187. d8 = COMPENSATE(t8);}
  188. /** inverse slant4 transform */
  189. #define IVI_INV_SLANT4(s1, s4, s2, s3, d1, d2, d3, d4, t0, t1, t2, t3, t4) {\
  190. IVI_SLANT_BFLY(s1, s2, t1, t2, t0); IVI_IREFLECT (s4, s3, t4, t3, t0);\
  191. \
  192. IVI_SLANT_BFLY(t1, t4, t1, t4, t0); IVI_SLANT_BFLY(t2, t3, t2, t3, t0);\
  193. d1 = COMPENSATE(t1);\
  194. d2 = COMPENSATE(t2);\
  195. d3 = COMPENSATE(t3);\
  196. d4 = COMPENSATE(t4);}
  197. void ff_ivi_inverse_slant_8x8(const int32_t *in, int16_t *out, uint32_t pitch, const uint8_t *flags)
  198. {
  199. int i;
  200. const int32_t *src;
  201. int32_t *dst;
  202. int tmp[64];
  203. int t0, t1, t2, t3, t4, t5, t6, t7, t8;
  204. #define COMPENSATE(x) (x)
  205. src = in;
  206. dst = tmp;
  207. for (i = 0; i < 8; i++) {
  208. if (flags[i]) {
  209. IVI_INV_SLANT8(src[0], src[8], src[16], src[24], src[32], src[40], src[48], src[56],
  210. dst[0], dst[8], dst[16], dst[24], dst[32], dst[40], dst[48], dst[56],
  211. t0, t1, t2, t3, t4, t5, t6, t7, t8);
  212. } else
  213. dst[0] = dst[8] = dst[16] = dst[24] = dst[32] = dst[40] = dst[48] = dst[56] = 0;
  214. src++;
  215. dst++;
  216. }
  217. #undef COMPENSATE
  218. #define COMPENSATE(x) ((x + 1)>>1)
  219. src = tmp;
  220. for (i = 0; i < 8; i++) {
  221. if (!src[0] && !src[1] && !src[2] && !src[3] && !src[4] && !src[5] && !src[6] && !src[7]) {
  222. memset(out, 0, 8*sizeof(out[0]));
  223. } else {
  224. IVI_INV_SLANT8(src[0], src[1], src[2], src[3], src[4], src[5], src[6], src[7],
  225. out[0], out[1], out[2], out[3], out[4], out[5], out[6], out[7],
  226. t0, t1, t2, t3, t4, t5, t6, t7, t8);
  227. }
  228. src += 8;
  229. out += pitch;
  230. }
  231. #undef COMPENSATE
  232. }
  233. void ff_ivi_inverse_slant_4x4(const int32_t *in, int16_t *out, uint32_t pitch, const uint8_t *flags)
  234. {
  235. int i;
  236. const int32_t *src;
  237. int32_t *dst;
  238. int tmp[16];
  239. int t0, t1, t2, t3, t4;
  240. #define COMPENSATE(x) (x)
  241. src = in;
  242. dst = tmp;
  243. for (i = 0; i < 4; i++) {
  244. if (flags[i]) {
  245. IVI_INV_SLANT4(src[0], src[4], src[8], src[12],
  246. dst[0], dst[4], dst[8], dst[12],
  247. t0, t1, t2, t3, t4);
  248. } else
  249. dst[0] = dst[4] = dst[8] = dst[12] = 0;
  250. src++;
  251. dst++;
  252. }
  253. #undef COMPENSATE
  254. #define COMPENSATE(x) ((x + 1)>>1)
  255. src = tmp;
  256. for (i = 0; i < 4; i++) {
  257. if (!src[0] && !src[1] && !src[2] && !src[3]) {
  258. out[0] = out[1] = out[2] = out[3] = 0;
  259. } else {
  260. IVI_INV_SLANT4(src[0], src[1], src[2], src[3],
  261. out[0], out[1], out[2], out[3],
  262. t0, t1, t2, t3, t4);
  263. }
  264. src += 4;
  265. out += pitch;
  266. }
  267. #undef COMPENSATE
  268. }
  269. void ff_ivi_dc_slant_2d(const int32_t *in, int16_t *out, uint32_t pitch, int blk_size)
  270. {
  271. int x, y;
  272. int16_t dc_coeff;
  273. dc_coeff = (*in + 1) >> 1;
  274. for (y = 0; y < blk_size; out += pitch, y++) {
  275. for (x = 0; x < blk_size; x++)
  276. out[x] = dc_coeff;
  277. }
  278. }
  279. void ff_ivi_row_slant8(const int32_t *in, int16_t *out, uint32_t pitch, const uint8_t *flags)
  280. {
  281. int i;
  282. int t0, t1, t2, t3, t4, t5, t6, t7, t8;
  283. #define COMPENSATE(x) ((x + 1)>>1)
  284. for (i = 0; i < 8; i++) {
  285. if (!in[0] && !in[1] && !in[2] && !in[3] && !in[4] && !in[5] && !in[6] && !in[7]) {
  286. memset(out, 0, 8*sizeof(out[0]));
  287. } else {
  288. IVI_INV_SLANT8( in[0], in[1], in[2], in[3], in[4], in[5], in[6], in[7],
  289. out[0], out[1], out[2], out[3], out[4], out[5], out[6], out[7],
  290. t0, t1, t2, t3, t4, t5, t6, t7, t8);
  291. }
  292. in += 8;
  293. out += pitch;
  294. }
  295. #undef COMPENSATE
  296. }
  297. void ff_ivi_dc_row_slant(const int32_t *in, int16_t *out, uint32_t pitch, int blk_size)
  298. {
  299. int x, y;
  300. int16_t dc_coeff;
  301. dc_coeff = (*in + 1) >> 1;
  302. for (x = 0; x < blk_size; x++)
  303. out[x] = dc_coeff;
  304. out += pitch;
  305. for (y = 1; y < blk_size; out += pitch, y++) {
  306. for (x = 0; x < blk_size; x++)
  307. out[x] = 0;
  308. }
  309. }
  310. void ff_ivi_col_slant8(const int32_t *in, int16_t *out, uint32_t pitch, const uint8_t *flags)
  311. {
  312. int i, row2, row4, row8;
  313. int t0, t1, t2, t3, t4, t5, t6, t7, t8;
  314. row2 = pitch << 1;
  315. row4 = pitch << 2;
  316. row8 = pitch << 3;
  317. #define COMPENSATE(x) ((x + 1)>>1)
  318. for (i = 0; i < 8; i++) {
  319. if (flags[i]) {
  320. IVI_INV_SLANT8(in[0], in[8], in[16], in[24], in[32], in[40], in[48], in[56],
  321. out[0], out[pitch], out[row2], out[row2 + pitch], out[row4],
  322. out[row4 + pitch], out[row4 + row2], out[row8 - pitch],
  323. t0, t1, t2, t3, t4, t5, t6, t7, t8);
  324. } else {
  325. out[0] = out[pitch] = out[row2] = out[row2 + pitch] = out[row4] =
  326. out[row4 + pitch] = out[row4 + row2] = out[row8 - pitch] = 0;
  327. }
  328. in++;
  329. out++;
  330. }
  331. #undef COMPENSATE
  332. }
  333. void ff_ivi_dc_col_slant(const int32_t *in, int16_t *out, uint32_t pitch, int blk_size)
  334. {
  335. int x, y;
  336. int16_t dc_coeff;
  337. dc_coeff = (*in + 1) >> 1;
  338. for (y = 0; y < blk_size; out += pitch, y++) {
  339. out[0] = dc_coeff;
  340. for (x = 1; x < blk_size; x++)
  341. out[x] = 0;
  342. }
  343. }
  344. void ff_ivi_put_pixels_8x8(const int32_t *in, int16_t *out, uint32_t pitch,
  345. const uint8_t *flags)
  346. {
  347. int x, y;
  348. for (y = 0; y < 8; out += pitch, in += 8, y++)
  349. for (x = 0; x < 8; x++)
  350. out[x] = in[x];
  351. }
  352. void ff_ivi_put_dc_pixel_8x8(const int32_t *in, int16_t *out, uint32_t pitch,
  353. int blk_size)
  354. {
  355. int y;
  356. out[0] = in[0];
  357. memset(out + 1, 0, 7*sizeof(out[0]));
  358. out += pitch;
  359. for (y = 1; y < 8; out += pitch, y++)
  360. memset(out, 0, 8*sizeof(out[0]));
  361. }
  362. #define IVI_MC_TEMPLATE(size, suffix, OP) \
  363. void ff_ivi_mc_ ## size ##x## size ## suffix (int16_t *buf, const int16_t *ref_buf, \
  364. uint32_t pitch, int mc_type) \
  365. { \
  366. int i, j; \
  367. const int16_t *wptr; \
  368. \
  369. switch (mc_type) { \
  370. case 0: /* fullpel (no interpolation) */ \
  371. for (i = 0; i < size; i++, buf += pitch, ref_buf += pitch) { \
  372. for (j = 0; j < size; j++) {\
  373. OP(buf[j], ref_buf[j]); \
  374. } \
  375. } \
  376. break; \
  377. case 1: /* horizontal halfpel interpolation */ \
  378. for (i = 0; i < size; i++, buf += pitch, ref_buf += pitch) \
  379. for (j = 0; j < size; j++) \
  380. OP(buf[j], (ref_buf[j] + ref_buf[j+1]) >> 1); \
  381. break; \
  382. case 2: /* vertical halfpel interpolation */ \
  383. wptr = ref_buf + pitch; \
  384. for (i = 0; i < size; i++, buf += pitch, wptr += pitch, ref_buf += pitch) \
  385. for (j = 0; j < size; j++) \
  386. OP(buf[j], (ref_buf[j] + wptr[j]) >> 1); \
  387. break; \
  388. case 3: /* vertical and horizontal halfpel interpolation */ \
  389. wptr = ref_buf + pitch; \
  390. for (i = 0; i < size; i++, buf += pitch, wptr += pitch, ref_buf += pitch) \
  391. for (j = 0; j < size; j++) \
  392. OP(buf[j], (ref_buf[j] + ref_buf[j+1] + wptr[j] + wptr[j+1]) >> 2); \
  393. break; \
  394. } \
  395. } \
  396. #define OP_PUT(a, b) (a) = (b)
  397. #define OP_ADD(a, b) (a) += (b)
  398. IVI_MC_TEMPLATE(8, _no_delta, OP_PUT);
  399. IVI_MC_TEMPLATE(8, _delta, OP_ADD);
  400. IVI_MC_TEMPLATE(4, _no_delta, OP_PUT);
  401. IVI_MC_TEMPLATE(4, _delta, OP_ADD);