You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

297 lines
7.3KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * FFT/IFFT transforms.
  26. */
  27. #include <stdlib.h>
  28. #include <string.h>
  29. #include "libavutil/mathematics.h"
  30. #include "fft.h"
  31. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  32. #if !CONFIG_HARDCODED_TABLES
  33. COSTABLE(16);
  34. COSTABLE(32);
  35. COSTABLE(64);
  36. COSTABLE(128);
  37. COSTABLE(256);
  38. COSTABLE(512);
  39. COSTABLE(1024);
  40. COSTABLE(2048);
  41. COSTABLE(4096);
  42. COSTABLE(8192);
  43. COSTABLE(16384);
  44. COSTABLE(32768);
  45. COSTABLE(65536);
  46. #endif
  47. COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
  48. NULL, NULL, NULL, NULL,
  49. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  50. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  51. };
  52. static int split_radix_permutation(int i, int n, int inverse)
  53. {
  54. int m;
  55. if(n <= 2) return i&1;
  56. m = n >> 1;
  57. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  58. m >>= 1;
  59. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  60. else return split_radix_permutation(i, m, inverse)*4 - 1;
  61. }
  62. av_cold void ff_init_ff_cos_tabs(int index)
  63. {
  64. #if !CONFIG_HARDCODED_TABLES
  65. int i;
  66. int m = 1<<index;
  67. double freq = 2*M_PI/m;
  68. FFTSample *tab = ff_cos_tabs[index];
  69. for(i=0; i<=m/4; i++)
  70. tab[i] = cos(i*freq);
  71. for(i=1; i<m/4; i++)
  72. tab[m/2-i] = tab[i];
  73. #endif
  74. }
  75. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  76. {
  77. int i, j, n;
  78. if (nbits < 2 || nbits > 16)
  79. goto fail;
  80. s->nbits = nbits;
  81. n = 1 << nbits;
  82. s->revtab = av_malloc(n * sizeof(uint16_t));
  83. if (!s->revtab)
  84. goto fail;
  85. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  86. if (!s->tmp_buf)
  87. goto fail;
  88. s->inverse = inverse;
  89. s->fft_permute = ff_fft_permute_c;
  90. s->fft_calc = ff_fft_calc_c;
  91. #if CONFIG_MDCT
  92. s->imdct_calc = ff_imdct_calc_c;
  93. s->imdct_half = ff_imdct_half_c;
  94. s->mdct_calc = ff_mdct_calc_c;
  95. #endif
  96. if (ARCH_ARM) ff_fft_init_arm(s);
  97. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  98. if (HAVE_MMX) ff_fft_init_mmx(s);
  99. for(j=4; j<=nbits; j++) {
  100. ff_init_ff_cos_tabs(j);
  101. }
  102. for(i=0; i<n; i++)
  103. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
  104. return 0;
  105. fail:
  106. av_freep(&s->revtab);
  107. av_freep(&s->tmp_buf);
  108. return -1;
  109. }
  110. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  111. {
  112. int j, np;
  113. const uint16_t *revtab = s->revtab;
  114. np = 1 << s->nbits;
  115. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  116. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  117. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  118. }
  119. av_cold void ff_fft_end(FFTContext *s)
  120. {
  121. av_freep(&s->revtab);
  122. av_freep(&s->tmp_buf);
  123. }
  124. #define sqrthalf (float)M_SQRT1_2
  125. #define BF(x,y,a,b) {\
  126. x = a - b;\
  127. y = a + b;\
  128. }
  129. #define BUTTERFLIES(a0,a1,a2,a3) {\
  130. BF(t3, t5, t5, t1);\
  131. BF(a2.re, a0.re, a0.re, t5);\
  132. BF(a3.im, a1.im, a1.im, t3);\
  133. BF(t4, t6, t2, t6);\
  134. BF(a3.re, a1.re, a1.re, t4);\
  135. BF(a2.im, a0.im, a0.im, t6);\
  136. }
  137. // force loading all the inputs before storing any.
  138. // this is slightly slower for small data, but avoids store->load aliasing
  139. // for addresses separated by large powers of 2.
  140. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  141. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  142. BF(t3, t5, t5, t1);\
  143. BF(a2.re, a0.re, r0, t5);\
  144. BF(a3.im, a1.im, i1, t3);\
  145. BF(t4, t6, t2, t6);\
  146. BF(a3.re, a1.re, r1, t4);\
  147. BF(a2.im, a0.im, i0, t6);\
  148. }
  149. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  150. t1 = a2.re * wre + a2.im * wim;\
  151. t2 = a2.im * wre - a2.re * wim;\
  152. t5 = a3.re * wre - a3.im * wim;\
  153. t6 = a3.im * wre + a3.re * wim;\
  154. BUTTERFLIES(a0,a1,a2,a3)\
  155. }
  156. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  157. t1 = a2.re;\
  158. t2 = a2.im;\
  159. t5 = a3.re;\
  160. t6 = a3.im;\
  161. BUTTERFLIES(a0,a1,a2,a3)\
  162. }
  163. /* z[0...8n-1], w[1...2n-1] */
  164. #define PASS(name)\
  165. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  166. {\
  167. FFTSample t1, t2, t3, t4, t5, t6;\
  168. int o1 = 2*n;\
  169. int o2 = 4*n;\
  170. int o3 = 6*n;\
  171. const FFTSample *wim = wre+o1;\
  172. n--;\
  173. \
  174. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  175. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  176. do {\
  177. z += 2;\
  178. wre += 2;\
  179. wim -= 2;\
  180. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  181. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  182. } while(--n);\
  183. }
  184. PASS(pass)
  185. #undef BUTTERFLIES
  186. #define BUTTERFLIES BUTTERFLIES_BIG
  187. PASS(pass_big)
  188. #define DECL_FFT(n,n2,n4)\
  189. static void fft##n(FFTComplex *z)\
  190. {\
  191. fft##n2(z);\
  192. fft##n4(z+n4*2);\
  193. fft##n4(z+n4*3);\
  194. pass(z,ff_cos_##n,n4/2);\
  195. }
  196. static void fft4(FFTComplex *z)
  197. {
  198. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  199. BF(t3, t1, z[0].re, z[1].re);
  200. BF(t8, t6, z[3].re, z[2].re);
  201. BF(z[2].re, z[0].re, t1, t6);
  202. BF(t4, t2, z[0].im, z[1].im);
  203. BF(t7, t5, z[2].im, z[3].im);
  204. BF(z[3].im, z[1].im, t4, t8);
  205. BF(z[3].re, z[1].re, t3, t7);
  206. BF(z[2].im, z[0].im, t2, t5);
  207. }
  208. static void fft8(FFTComplex *z)
  209. {
  210. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  211. fft4(z);
  212. BF(t1, z[5].re, z[4].re, -z[5].re);
  213. BF(t2, z[5].im, z[4].im, -z[5].im);
  214. BF(t3, z[7].re, z[6].re, -z[7].re);
  215. BF(t4, z[7].im, z[6].im, -z[7].im);
  216. BF(t8, t1, t3, t1);
  217. BF(t7, t2, t2, t4);
  218. BF(z[4].re, z[0].re, z[0].re, t1);
  219. BF(z[4].im, z[0].im, z[0].im, t2);
  220. BF(z[6].re, z[2].re, z[2].re, t7);
  221. BF(z[6].im, z[2].im, z[2].im, t8);
  222. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  223. }
  224. #if !CONFIG_SMALL
  225. static void fft16(FFTComplex *z)
  226. {
  227. FFTSample t1, t2, t3, t4, t5, t6;
  228. fft8(z);
  229. fft4(z+8);
  230. fft4(z+12);
  231. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  232. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  233. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  234. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  235. }
  236. #else
  237. DECL_FFT(16,8,4)
  238. #endif
  239. DECL_FFT(32,16,8)
  240. DECL_FFT(64,32,16)
  241. DECL_FFT(128,64,32)
  242. DECL_FFT(256,128,64)
  243. DECL_FFT(512,256,128)
  244. #if !CONFIG_SMALL
  245. #define pass pass_big
  246. #endif
  247. DECL_FFT(1024,512,256)
  248. DECL_FFT(2048,1024,512)
  249. DECL_FFT(4096,2048,1024)
  250. DECL_FFT(8192,4096,2048)
  251. DECL_FFT(16384,8192,4096)
  252. DECL_FFT(32768,16384,8192)
  253. DECL_FFT(65536,32768,16384)
  254. static void (* const fft_dispatch[])(FFTComplex*) = {
  255. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  256. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  257. };
  258. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  259. {
  260. fft_dispatch[s->nbits-2](z);
  261. }