You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

447 lines
12KB

  1. /*
  2. * (c) 2002 Fabrice Bellard
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * FFT and MDCT tests.
  23. */
  24. #include "libavutil/mathematics.h"
  25. #include "libavutil/lfg.h"
  26. #include "libavutil/log.h"
  27. #include "fft.h"
  28. #include <math.h>
  29. #include <unistd.h>
  30. #include <sys/time.h>
  31. #include <stdlib.h>
  32. #include <string.h>
  33. #undef exit
  34. /* reference fft */
  35. #define MUL16(a,b) ((a) * (b))
  36. #define CMAC(pre, pim, are, aim, bre, bim) \
  37. {\
  38. pre += (MUL16(are, bre) - MUL16(aim, bim));\
  39. pim += (MUL16(are, bim) + MUL16(bre, aim));\
  40. }
  41. FFTComplex *exptab;
  42. static void fft_ref_init(int nbits, int inverse)
  43. {
  44. int n, i;
  45. double c1, s1, alpha;
  46. n = 1 << nbits;
  47. exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  48. for (i = 0; i < (n/2); i++) {
  49. alpha = 2 * M_PI * (float)i / (float)n;
  50. c1 = cos(alpha);
  51. s1 = sin(alpha);
  52. if (!inverse)
  53. s1 = -s1;
  54. exptab[i].re = c1;
  55. exptab[i].im = s1;
  56. }
  57. }
  58. static void fft_ref(FFTComplex *tabr, FFTComplex *tab, int nbits)
  59. {
  60. int n, i, j, k, n2;
  61. double tmp_re, tmp_im, s, c;
  62. FFTComplex *q;
  63. n = 1 << nbits;
  64. n2 = n >> 1;
  65. for (i = 0; i < n; i++) {
  66. tmp_re = 0;
  67. tmp_im = 0;
  68. q = tab;
  69. for (j = 0; j < n; j++) {
  70. k = (i * j) & (n - 1);
  71. if (k >= n2) {
  72. c = -exptab[k - n2].re;
  73. s = -exptab[k - n2].im;
  74. } else {
  75. c = exptab[k].re;
  76. s = exptab[k].im;
  77. }
  78. CMAC(tmp_re, tmp_im, c, s, q->re, q->im);
  79. q++;
  80. }
  81. tabr[i].re = tmp_re;
  82. tabr[i].im = tmp_im;
  83. }
  84. }
  85. static void imdct_ref(float *out, float *in, int nbits)
  86. {
  87. int n = 1<<nbits;
  88. int k, i, a;
  89. double sum, f;
  90. for (i = 0; i < n; i++) {
  91. sum = 0;
  92. for (k = 0; k < n/2; k++) {
  93. a = (2 * i + 1 + (n / 2)) * (2 * k + 1);
  94. f = cos(M_PI * a / (double)(2 * n));
  95. sum += f * in[k];
  96. }
  97. out[i] = -sum;
  98. }
  99. }
  100. /* NOTE: no normalisation by 1 / N is done */
  101. static void mdct_ref(float *output, float *input, int nbits)
  102. {
  103. int n = 1<<nbits;
  104. int k, i;
  105. double a, s;
  106. /* do it by hand */
  107. for (k = 0; k < n/2; k++) {
  108. s = 0;
  109. for (i = 0; i < n; i++) {
  110. a = (2*M_PI*(2*i+1+n/2)*(2*k+1) / (4 * n));
  111. s += input[i] * cos(a);
  112. }
  113. output[k] = s;
  114. }
  115. }
  116. static void idct_ref(float *output, float *input, int nbits)
  117. {
  118. int n = 1<<nbits;
  119. int k, i;
  120. double a, s;
  121. /* do it by hand */
  122. for (i = 0; i < n; i++) {
  123. s = 0.5 * input[0];
  124. for (k = 1; k < n; k++) {
  125. a = M_PI*k*(i+0.5) / n;
  126. s += input[k] * cos(a);
  127. }
  128. output[i] = 2 * s / n;
  129. }
  130. }
  131. static void dct_ref(float *output, float *input, int nbits)
  132. {
  133. int n = 1<<nbits;
  134. int k, i;
  135. double a, s;
  136. /* do it by hand */
  137. for (k = 0; k < n; k++) {
  138. s = 0;
  139. for (i = 0; i < n; i++) {
  140. a = M_PI*k*(i+0.5) / n;
  141. s += input[i] * cos(a);
  142. }
  143. output[k] = s;
  144. }
  145. }
  146. static float frandom(AVLFG *prng)
  147. {
  148. return (int16_t)av_lfg_get(prng) / 32768.0;
  149. }
  150. static int64_t gettime(void)
  151. {
  152. struct timeval tv;
  153. gettimeofday(&tv,NULL);
  154. return (int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
  155. }
  156. static void check_diff(float *tab1, float *tab2, int n, double scale)
  157. {
  158. int i;
  159. double max= 0;
  160. double error= 0;
  161. for (i = 0; i < n; i++) {
  162. double e= fabsf(tab1[i] - (tab2[i] / scale));
  163. if (e >= 1e-3) {
  164. av_log(NULL, AV_LOG_ERROR, "ERROR %d: %f %f\n",
  165. i, tab1[i], tab2[i]);
  166. }
  167. error+= e*e;
  168. if(e>max) max= e;
  169. }
  170. av_log(NULL, AV_LOG_INFO, "max:%f e:%g\n", max, sqrt(error)/n);
  171. }
  172. static void help(void)
  173. {
  174. av_log(NULL, AV_LOG_INFO,"usage: fft-test [-h] [-s] [-i] [-n b]\n"
  175. "-h print this help\n"
  176. "-s speed test\n"
  177. "-m (I)MDCT test\n"
  178. "-d (I)DCT test\n"
  179. "-r (I)RDFT test\n"
  180. "-i inverse transform test\n"
  181. "-n b set the transform size to 2^b\n"
  182. "-f x set scale factor for output data of (I)MDCT to x\n"
  183. );
  184. exit(1);
  185. }
  186. enum tf_transform {
  187. TRANSFORM_FFT,
  188. TRANSFORM_MDCT,
  189. TRANSFORM_RDFT,
  190. TRANSFORM_DCT,
  191. };
  192. int main(int argc, char **argv)
  193. {
  194. FFTComplex *tab, *tab1, *tab_ref;
  195. FFTSample *tab2;
  196. int it, i, c;
  197. int do_speed = 0;
  198. enum tf_transform transform = TRANSFORM_FFT;
  199. int do_inverse = 0;
  200. FFTContext s1, *s = &s1;
  201. FFTContext m1, *m = &m1;
  202. RDFTContext r1, *r = &r1;
  203. DCTContext d1, *d = &d1;
  204. int fft_nbits, fft_size, fft_size_2;
  205. double scale = 1.0;
  206. AVLFG prng;
  207. av_lfg_init(&prng, 1);
  208. fft_nbits = 9;
  209. for(;;) {
  210. c = getopt(argc, argv, "hsimrdn:f:");
  211. if (c == -1)
  212. break;
  213. switch(c) {
  214. case 'h':
  215. help();
  216. break;
  217. case 's':
  218. do_speed = 1;
  219. break;
  220. case 'i':
  221. do_inverse = 1;
  222. break;
  223. case 'm':
  224. transform = TRANSFORM_MDCT;
  225. break;
  226. case 'r':
  227. transform = TRANSFORM_RDFT;
  228. break;
  229. case 'd':
  230. transform = TRANSFORM_DCT;
  231. break;
  232. case 'n':
  233. fft_nbits = atoi(optarg);
  234. break;
  235. case 'f':
  236. scale = atof(optarg);
  237. break;
  238. }
  239. }
  240. fft_size = 1 << fft_nbits;
  241. fft_size_2 = fft_size >> 1;
  242. tab = av_malloc(fft_size * sizeof(FFTComplex));
  243. tab1 = av_malloc(fft_size * sizeof(FFTComplex));
  244. tab_ref = av_malloc(fft_size * sizeof(FFTComplex));
  245. tab2 = av_malloc(fft_size * sizeof(FFTSample));
  246. switch (transform) {
  247. case TRANSFORM_MDCT:
  248. av_log(NULL, AV_LOG_INFO,"Scale factor is set to %f\n", scale);
  249. if (do_inverse)
  250. av_log(NULL, AV_LOG_INFO,"IMDCT");
  251. else
  252. av_log(NULL, AV_LOG_INFO,"MDCT");
  253. ff_mdct_init(m, fft_nbits, do_inverse, scale);
  254. break;
  255. case TRANSFORM_FFT:
  256. if (do_inverse)
  257. av_log(NULL, AV_LOG_INFO,"IFFT");
  258. else
  259. av_log(NULL, AV_LOG_INFO,"FFT");
  260. ff_fft_init(s, fft_nbits, do_inverse);
  261. fft_ref_init(fft_nbits, do_inverse);
  262. break;
  263. case TRANSFORM_RDFT:
  264. if (do_inverse)
  265. av_log(NULL, AV_LOG_INFO,"IDFT_C2R");
  266. else
  267. av_log(NULL, AV_LOG_INFO,"DFT_R2C");
  268. ff_rdft_init(r, fft_nbits, do_inverse ? IDFT_C2R : DFT_R2C);
  269. fft_ref_init(fft_nbits, do_inverse);
  270. break;
  271. case TRANSFORM_DCT:
  272. if (do_inverse)
  273. av_log(NULL, AV_LOG_INFO,"DCT_III");
  274. else
  275. av_log(NULL, AV_LOG_INFO,"DCT_II");
  276. ff_dct_init(d, fft_nbits, do_inverse ? DCT_III : DCT_II);
  277. break;
  278. }
  279. av_log(NULL, AV_LOG_INFO," %d test\n", fft_size);
  280. /* generate random data */
  281. for (i = 0; i < fft_size; i++) {
  282. tab1[i].re = frandom(&prng);
  283. tab1[i].im = frandom(&prng);
  284. }
  285. /* checking result */
  286. av_log(NULL, AV_LOG_INFO,"Checking...\n");
  287. switch (transform) {
  288. case TRANSFORM_MDCT:
  289. if (do_inverse) {
  290. imdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
  291. ff_imdct_calc(m, tab2, (float *)tab1);
  292. check_diff((float *)tab_ref, tab2, fft_size, scale);
  293. } else {
  294. mdct_ref((float *)tab_ref, (float *)tab1, fft_nbits);
  295. ff_mdct_calc(m, tab2, (float *)tab1);
  296. check_diff((float *)tab_ref, tab2, fft_size / 2, scale);
  297. }
  298. break;
  299. case TRANSFORM_FFT:
  300. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  301. ff_fft_permute(s, tab);
  302. ff_fft_calc(s, tab);
  303. fft_ref(tab_ref, tab1, fft_nbits);
  304. check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 1.0);
  305. break;
  306. case TRANSFORM_RDFT:
  307. if (do_inverse) {
  308. tab1[ 0].im = 0;
  309. tab1[fft_size_2].im = 0;
  310. for (i = 1; i < fft_size_2; i++) {
  311. tab1[fft_size_2+i].re = tab1[fft_size_2-i].re;
  312. tab1[fft_size_2+i].im = -tab1[fft_size_2-i].im;
  313. }
  314. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  315. tab2[1] = tab1[fft_size_2].re;
  316. ff_rdft_calc(r, tab2);
  317. fft_ref(tab_ref, tab1, fft_nbits);
  318. for (i = 0; i < fft_size; i++) {
  319. tab[i].re = tab2[i];
  320. tab[i].im = 0;
  321. }
  322. check_diff((float *)tab_ref, (float *)tab, fft_size * 2, 0.5);
  323. } else {
  324. for (i = 0; i < fft_size; i++) {
  325. tab2[i] = tab1[i].re;
  326. tab1[i].im = 0;
  327. }
  328. ff_rdft_calc(r, tab2);
  329. fft_ref(tab_ref, tab1, fft_nbits);
  330. tab_ref[0].im = tab_ref[fft_size_2].re;
  331. check_diff((float *)tab_ref, (float *)tab2, fft_size, 1.0);
  332. }
  333. break;
  334. case TRANSFORM_DCT:
  335. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  336. ff_dct_calc(d, tab);
  337. if (do_inverse) {
  338. idct_ref(tab_ref, tab1, fft_nbits);
  339. } else {
  340. dct_ref(tab_ref, tab1, fft_nbits);
  341. }
  342. check_diff((float *)tab_ref, (float *)tab, fft_size, 1.0);
  343. break;
  344. }
  345. /* do a speed test */
  346. if (do_speed) {
  347. int64_t time_start, duration;
  348. int nb_its;
  349. av_log(NULL, AV_LOG_INFO,"Speed test...\n");
  350. /* we measure during about 1 seconds */
  351. nb_its = 1;
  352. for(;;) {
  353. time_start = gettime();
  354. for (it = 0; it < nb_its; it++) {
  355. switch (transform) {
  356. case TRANSFORM_MDCT:
  357. if (do_inverse) {
  358. ff_imdct_calc(m, (float *)tab, (float *)tab1);
  359. } else {
  360. ff_mdct_calc(m, (float *)tab, (float *)tab1);
  361. }
  362. break;
  363. case TRANSFORM_FFT:
  364. memcpy(tab, tab1, fft_size * sizeof(FFTComplex));
  365. ff_fft_calc(s, tab);
  366. break;
  367. case TRANSFORM_RDFT:
  368. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  369. ff_rdft_calc(r, tab2);
  370. break;
  371. case TRANSFORM_DCT:
  372. memcpy(tab2, tab1, fft_size * sizeof(FFTSample));
  373. ff_dct_calc(d, tab2);
  374. break;
  375. }
  376. }
  377. duration = gettime() - time_start;
  378. if (duration >= 1000000)
  379. break;
  380. nb_its *= 2;
  381. }
  382. av_log(NULL, AV_LOG_INFO,"time: %0.1f us/transform [total time=%0.2f s its=%d]\n",
  383. (double)duration / nb_its,
  384. (double)duration / 1000000.0,
  385. nb_its);
  386. }
  387. switch (transform) {
  388. case TRANSFORM_MDCT:
  389. ff_mdct_end(m);
  390. break;
  391. case TRANSFORM_FFT:
  392. ff_fft_end(s);
  393. break;
  394. case TRANSFORM_RDFT:
  395. ff_rdft_end(r);
  396. break;
  397. case TRANSFORM_DCT:
  398. ff_dct_end(d);
  399. break;
  400. }
  401. return 0;
  402. }