You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4151 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MB_INTRA_VLC_BITS 9
  39. #define DC_VLC_BITS 9
  40. #define AC_VLC_BITS 9
  41. static const uint16_t table_mb_intra[64][2];
  42. /**
  43. * Init VC-1 specific tables and VC1Context members
  44. * @param v The VC1Context to initialize
  45. * @return Status
  46. */
  47. static int vc1_init_common(VC1Context *v)
  48. {
  49. static int done = 0;
  50. int i = 0;
  51. v->hrd_rate = v->hrd_buffer = NULL;
  52. /* VLC tables */
  53. if(!done)
  54. {
  55. done = 1;
  56. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  57. ff_vc1_bfraction_bits, 1, 1,
  58. ff_vc1_bfraction_codes, 1, 1, 1);
  59. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  60. ff_vc1_norm2_bits, 1, 1,
  61. ff_vc1_norm2_codes, 1, 1, 1);
  62. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  63. ff_vc1_norm6_bits, 1, 1,
  64. ff_vc1_norm6_codes, 2, 2, 1);
  65. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  66. ff_vc1_imode_bits, 1, 1,
  67. ff_vc1_imode_codes, 1, 1, 1);
  68. for (i=0; i<3; i++)
  69. {
  70. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  71. ff_vc1_ttmb_bits[i], 1, 1,
  72. ff_vc1_ttmb_codes[i], 2, 2, 1);
  73. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  74. ff_vc1_ttblk_bits[i], 1, 1,
  75. ff_vc1_ttblk_codes[i], 1, 1, 1);
  76. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  77. ff_vc1_subblkpat_bits[i], 1, 1,
  78. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  79. }
  80. for(i=0; i<4; i++)
  81. {
  82. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  83. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  84. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  85. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  86. ff_vc1_cbpcy_p_bits[i], 1, 1,
  87. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  88. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  89. ff_vc1_mv_diff_bits[i], 1, 1,
  90. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  91. }
  92. for(i=0; i<8; i++)
  93. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  94. &vc1_ac_tables[i][0][1], 8, 4,
  95. &vc1_ac_tables[i][0][0], 8, 4, 1);
  96. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  97. &ff_msmp4_mb_i_table[0][1], 4, 2,
  98. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  99. }
  100. /* Other defaults */
  101. v->pq = -1;
  102. v->mvrange = 0; /* 7.1.1.18, p80 */
  103. return 0;
  104. }
  105. /***********************************************************************/
  106. /**
  107. * @defgroup bitplane VC9 Bitplane decoding
  108. * @see 8.7, p56
  109. * @{
  110. */
  111. /** @addtogroup bitplane
  112. * Imode types
  113. * @{
  114. */
  115. enum Imode {
  116. IMODE_RAW,
  117. IMODE_NORM2,
  118. IMODE_DIFF2,
  119. IMODE_NORM6,
  120. IMODE_DIFF6,
  121. IMODE_ROWSKIP,
  122. IMODE_COLSKIP
  123. };
  124. /** @} */ //imode defines
  125. /** Decode rows by checking if they are skipped
  126. * @param plane Buffer to store decoded bits
  127. * @param[in] width Width of this buffer
  128. * @param[in] height Height of this buffer
  129. * @param[in] stride of this buffer
  130. */
  131. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  132. int x, y;
  133. for (y=0; y<height; y++){
  134. if (!get_bits1(gb)) //rowskip
  135. memset(plane, 0, width);
  136. else
  137. for (x=0; x<width; x++)
  138. plane[x] = get_bits1(gb);
  139. plane += stride;
  140. }
  141. }
  142. /** Decode columns by checking if they are skipped
  143. * @param plane Buffer to store decoded bits
  144. * @param[in] width Width of this buffer
  145. * @param[in] height Height of this buffer
  146. * @param[in] stride of this buffer
  147. * @todo FIXME: Optimize
  148. */
  149. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  150. int x, y;
  151. for (x=0; x<width; x++){
  152. if (!get_bits1(gb)) //colskip
  153. for (y=0; y<height; y++)
  154. plane[y*stride] = 0;
  155. else
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = get_bits1(gb);
  158. plane ++;
  159. }
  160. }
  161. /** Decode a bitplane's bits
  162. * @param bp Bitplane where to store the decode bits
  163. * @param v VC-1 context for bit reading and logging
  164. * @return Status
  165. * @todo FIXME: Optimize
  166. */
  167. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  168. {
  169. GetBitContext *gb = &v->s.gb;
  170. int imode, x, y, code, offset;
  171. uint8_t invert, *planep = data;
  172. int width, height, stride;
  173. width = v->s.mb_width;
  174. height = v->s.mb_height;
  175. stride = v->s.mb_stride;
  176. invert = get_bits1(gb);
  177. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  178. *raw_flag = 0;
  179. switch (imode)
  180. {
  181. case IMODE_RAW:
  182. //Data is actually read in the MB layer (same for all tests == "raw")
  183. *raw_flag = 1; //invert ignored
  184. return invert;
  185. case IMODE_DIFF2:
  186. case IMODE_NORM2:
  187. if ((height * width) & 1)
  188. {
  189. *planep++ = get_bits1(gb);
  190. offset = 1;
  191. }
  192. else offset = 0;
  193. // decode bitplane as one long line
  194. for (y = offset; y < height * width; y += 2) {
  195. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  196. *planep++ = code & 1;
  197. offset++;
  198. if(offset == width) {
  199. offset = 0;
  200. planep += stride - width;
  201. }
  202. *planep++ = code >> 1;
  203. offset++;
  204. if(offset == width) {
  205. offset = 0;
  206. planep += stride - width;
  207. }
  208. }
  209. break;
  210. case IMODE_DIFF6:
  211. case IMODE_NORM6:
  212. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  213. for(y = 0; y < height; y+= 3) {
  214. for(x = width & 1; x < width; x += 2) {
  215. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  216. if(code < 0){
  217. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  218. return -1;
  219. }
  220. planep[x + 0] = (code >> 0) & 1;
  221. planep[x + 1] = (code >> 1) & 1;
  222. planep[x + 0 + stride] = (code >> 2) & 1;
  223. planep[x + 1 + stride] = (code >> 3) & 1;
  224. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  225. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  226. }
  227. planep += stride * 3;
  228. }
  229. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  230. } else { // 3x2
  231. planep += (height & 1) * stride;
  232. for(y = height & 1; y < height; y += 2) {
  233. for(x = width % 3; x < width; x += 3) {
  234. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  235. if(code < 0){
  236. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  237. return -1;
  238. }
  239. planep[x + 0] = (code >> 0) & 1;
  240. planep[x + 1] = (code >> 1) & 1;
  241. planep[x + 2] = (code >> 2) & 1;
  242. planep[x + 0 + stride] = (code >> 3) & 1;
  243. planep[x + 1 + stride] = (code >> 4) & 1;
  244. planep[x + 2 + stride] = (code >> 5) & 1;
  245. }
  246. planep += stride * 2;
  247. }
  248. x = width % 3;
  249. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  250. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  251. }
  252. break;
  253. case IMODE_ROWSKIP:
  254. decode_rowskip(data, width, height, stride, &v->s.gb);
  255. break;
  256. case IMODE_COLSKIP:
  257. decode_colskip(data, width, height, stride, &v->s.gb);
  258. break;
  259. default: break;
  260. }
  261. /* Applying diff operator */
  262. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  263. {
  264. planep = data;
  265. planep[0] ^= invert;
  266. for (x=1; x<width; x++)
  267. planep[x] ^= planep[x-1];
  268. for (y=1; y<height; y++)
  269. {
  270. planep += stride;
  271. planep[0] ^= planep[-stride];
  272. for (x=1; x<width; x++)
  273. {
  274. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  275. else planep[x] ^= planep[x-1];
  276. }
  277. }
  278. }
  279. else if (invert)
  280. {
  281. planep = data;
  282. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  283. }
  284. return (imode<<1) + invert;
  285. }
  286. /** @} */ //Bitplane group
  287. /***********************************************************************/
  288. /** VOP Dquant decoding
  289. * @param v VC-1 Context
  290. */
  291. static int vop_dquant_decoding(VC1Context *v)
  292. {
  293. GetBitContext *gb = &v->s.gb;
  294. int pqdiff;
  295. //variable size
  296. if (v->dquant == 2)
  297. {
  298. pqdiff = get_bits(gb, 3);
  299. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  300. else v->altpq = v->pq + pqdiff + 1;
  301. }
  302. else
  303. {
  304. v->dquantfrm = get_bits1(gb);
  305. if ( v->dquantfrm )
  306. {
  307. v->dqprofile = get_bits(gb, 2);
  308. switch (v->dqprofile)
  309. {
  310. case DQPROFILE_SINGLE_EDGE:
  311. case DQPROFILE_DOUBLE_EDGES:
  312. v->dqsbedge = get_bits(gb, 2);
  313. break;
  314. case DQPROFILE_ALL_MBS:
  315. v->dqbilevel = get_bits1(gb);
  316. if(!v->dqbilevel)
  317. v->halfpq = 0;
  318. default: break; //Forbidden ?
  319. }
  320. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  321. {
  322. pqdiff = get_bits(gb, 3);
  323. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  324. else v->altpq = v->pq + pqdiff + 1;
  325. }
  326. }
  327. }
  328. return 0;
  329. }
  330. /** Put block onto picture
  331. */
  332. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  333. {
  334. uint8_t *Y;
  335. int ys, us, vs;
  336. DSPContext *dsp = &v->s.dsp;
  337. if(v->rangeredfrm) {
  338. int i, j, k;
  339. for(k = 0; k < 6; k++)
  340. for(j = 0; j < 8; j++)
  341. for(i = 0; i < 8; i++)
  342. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  343. }
  344. ys = v->s.current_picture.linesize[0];
  345. us = v->s.current_picture.linesize[1];
  346. vs = v->s.current_picture.linesize[2];
  347. Y = v->s.dest[0];
  348. dsp->put_pixels_clamped(block[0], Y, ys);
  349. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  350. Y += ys * 8;
  351. dsp->put_pixels_clamped(block[2], Y, ys);
  352. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  353. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  354. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  355. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  356. }
  357. }
  358. /** Do motion compensation over 1 macroblock
  359. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  360. */
  361. static void vc1_mc_1mv(VC1Context *v, int dir)
  362. {
  363. MpegEncContext *s = &v->s;
  364. DSPContext *dsp = &v->s.dsp;
  365. uint8_t *srcY, *srcU, *srcV;
  366. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  367. if(!v->s.last_picture.data[0])return;
  368. mx = s->mv[dir][0][0];
  369. my = s->mv[dir][0][1];
  370. // store motion vectors for further use in B frames
  371. if(s->pict_type == P_TYPE) {
  372. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  373. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  374. }
  375. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  376. uvmy = (my + ((my & 3) == 3)) >> 1;
  377. if(v->fastuvmc) {
  378. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  379. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  380. }
  381. if(!dir) {
  382. srcY = s->last_picture.data[0];
  383. srcU = s->last_picture.data[1];
  384. srcV = s->last_picture.data[2];
  385. } else {
  386. srcY = s->next_picture.data[0];
  387. srcU = s->next_picture.data[1];
  388. srcV = s->next_picture.data[2];
  389. }
  390. src_x = s->mb_x * 16 + (mx >> 2);
  391. src_y = s->mb_y * 16 + (my >> 2);
  392. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  393. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  394. if(v->profile != PROFILE_ADVANCED){
  395. src_x = av_clip( src_x, -16, s->mb_width * 16);
  396. src_y = av_clip( src_y, -16, s->mb_height * 16);
  397. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  398. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  399. }else{
  400. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  401. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  402. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  403. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  404. }
  405. srcY += src_y * s->linesize + src_x;
  406. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  407. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  408. /* for grayscale we should not try to read from unknown area */
  409. if(s->flags & CODEC_FLAG_GRAY) {
  410. srcU = s->edge_emu_buffer + 18 * s->linesize;
  411. srcV = s->edge_emu_buffer + 18 * s->linesize;
  412. }
  413. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  414. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  415. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  416. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  417. srcY -= s->mspel * (1 + s->linesize);
  418. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  419. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  420. srcY = s->edge_emu_buffer;
  421. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  422. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  423. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  424. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  425. srcU = uvbuf;
  426. srcV = uvbuf + 16;
  427. /* if we deal with range reduction we need to scale source blocks */
  428. if(v->rangeredfrm) {
  429. int i, j;
  430. uint8_t *src, *src2;
  431. src = srcY;
  432. for(j = 0; j < 17 + s->mspel*2; j++) {
  433. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  434. src += s->linesize;
  435. }
  436. src = srcU; src2 = srcV;
  437. for(j = 0; j < 9; j++) {
  438. for(i = 0; i < 9; i++) {
  439. src[i] = ((src[i] - 128) >> 1) + 128;
  440. src2[i] = ((src2[i] - 128) >> 1) + 128;
  441. }
  442. src += s->uvlinesize;
  443. src2 += s->uvlinesize;
  444. }
  445. }
  446. /* if we deal with intensity compensation we need to scale source blocks */
  447. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  448. int i, j;
  449. uint8_t *src, *src2;
  450. src = srcY;
  451. for(j = 0; j < 17 + s->mspel*2; j++) {
  452. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  453. src += s->linesize;
  454. }
  455. src = srcU; src2 = srcV;
  456. for(j = 0; j < 9; j++) {
  457. for(i = 0; i < 9; i++) {
  458. src[i] = v->lutuv[src[i]];
  459. src2[i] = v->lutuv[src2[i]];
  460. }
  461. src += s->uvlinesize;
  462. src2 += s->uvlinesize;
  463. }
  464. }
  465. srcY += s->mspel * (1 + s->linesize);
  466. }
  467. if(s->mspel) {
  468. dxy = ((my & 3) << 2) | (mx & 3);
  469. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  470. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  471. srcY += s->linesize * 8;
  472. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  473. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  474. } else { // hpel mc - always used for luma
  475. dxy = (my & 2) | ((mx & 2) >> 1);
  476. if(!v->rnd)
  477. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  478. else
  479. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  480. }
  481. if(s->flags & CODEC_FLAG_GRAY) return;
  482. /* Chroma MC always uses qpel bilinear */
  483. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  484. uvmx = (uvmx&3)<<1;
  485. uvmy = (uvmy&3)<<1;
  486. if(!v->rnd){
  487. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  488. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  489. }else{
  490. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  491. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  492. }
  493. }
  494. /** Do motion compensation for 4-MV macroblock - luminance block
  495. */
  496. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  497. {
  498. MpegEncContext *s = &v->s;
  499. DSPContext *dsp = &v->s.dsp;
  500. uint8_t *srcY;
  501. int dxy, mx, my, src_x, src_y;
  502. int off;
  503. if(!v->s.last_picture.data[0])return;
  504. mx = s->mv[0][n][0];
  505. my = s->mv[0][n][1];
  506. srcY = s->last_picture.data[0];
  507. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  508. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  509. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  510. if(v->profile != PROFILE_ADVANCED){
  511. src_x = av_clip( src_x, -16, s->mb_width * 16);
  512. src_y = av_clip( src_y, -16, s->mb_height * 16);
  513. }else{
  514. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  515. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  516. }
  517. srcY += src_y * s->linesize + src_x;
  518. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  519. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  520. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  521. srcY -= s->mspel * (1 + s->linesize);
  522. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  523. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  524. srcY = s->edge_emu_buffer;
  525. /* if we deal with range reduction we need to scale source blocks */
  526. if(v->rangeredfrm) {
  527. int i, j;
  528. uint8_t *src;
  529. src = srcY;
  530. for(j = 0; j < 9 + s->mspel*2; j++) {
  531. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  532. src += s->linesize;
  533. }
  534. }
  535. /* if we deal with intensity compensation we need to scale source blocks */
  536. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  537. int i, j;
  538. uint8_t *src;
  539. src = srcY;
  540. for(j = 0; j < 9 + s->mspel*2; j++) {
  541. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  542. src += s->linesize;
  543. }
  544. }
  545. srcY += s->mspel * (1 + s->linesize);
  546. }
  547. if(s->mspel) {
  548. dxy = ((my & 3) << 2) | (mx & 3);
  549. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  550. } else { // hpel mc - always used for luma
  551. dxy = (my & 2) | ((mx & 2) >> 1);
  552. if(!v->rnd)
  553. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  554. else
  555. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  556. }
  557. }
  558. static inline int median4(int a, int b, int c, int d)
  559. {
  560. if(a < b) {
  561. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  562. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  563. } else {
  564. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  565. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  566. }
  567. }
  568. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  569. */
  570. static void vc1_mc_4mv_chroma(VC1Context *v)
  571. {
  572. MpegEncContext *s = &v->s;
  573. DSPContext *dsp = &v->s.dsp;
  574. uint8_t *srcU, *srcV;
  575. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  576. int i, idx, tx = 0, ty = 0;
  577. int mvx[4], mvy[4], intra[4];
  578. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  579. if(!v->s.last_picture.data[0])return;
  580. if(s->flags & CODEC_FLAG_GRAY) return;
  581. for(i = 0; i < 4; i++) {
  582. mvx[i] = s->mv[0][i][0];
  583. mvy[i] = s->mv[0][i][1];
  584. intra[i] = v->mb_type[0][s->block_index[i]];
  585. }
  586. /* calculate chroma MV vector from four luma MVs */
  587. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  588. if(!idx) { // all blocks are inter
  589. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  590. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  591. } else if(count[idx] == 1) { // 3 inter blocks
  592. switch(idx) {
  593. case 0x1:
  594. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  595. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  596. break;
  597. case 0x2:
  598. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  599. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  600. break;
  601. case 0x4:
  602. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  603. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  604. break;
  605. case 0x8:
  606. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  607. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  608. break;
  609. }
  610. } else if(count[idx] == 2) {
  611. int t1 = 0, t2 = 0;
  612. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  613. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  614. tx = (mvx[t1] + mvx[t2]) / 2;
  615. ty = (mvy[t1] + mvy[t2]) / 2;
  616. } else {
  617. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  618. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  619. return; //no need to do MC for inter blocks
  620. }
  621. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  622. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  623. uvmx = (tx + ((tx&3) == 3)) >> 1;
  624. uvmy = (ty + ((ty&3) == 3)) >> 1;
  625. if(v->fastuvmc) {
  626. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  627. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  628. }
  629. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  630. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  631. if(v->profile != PROFILE_ADVANCED){
  632. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  633. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  634. }else{
  635. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  636. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  637. }
  638. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  639. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  640. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  641. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  642. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  643. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  644. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  645. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  646. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  647. srcU = s->edge_emu_buffer;
  648. srcV = s->edge_emu_buffer + 16;
  649. /* if we deal with range reduction we need to scale source blocks */
  650. if(v->rangeredfrm) {
  651. int i, j;
  652. uint8_t *src, *src2;
  653. src = srcU; src2 = srcV;
  654. for(j = 0; j < 9; j++) {
  655. for(i = 0; i < 9; i++) {
  656. src[i] = ((src[i] - 128) >> 1) + 128;
  657. src2[i] = ((src2[i] - 128) >> 1) + 128;
  658. }
  659. src += s->uvlinesize;
  660. src2 += s->uvlinesize;
  661. }
  662. }
  663. /* if we deal with intensity compensation we need to scale source blocks */
  664. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  665. int i, j;
  666. uint8_t *src, *src2;
  667. src = srcU; src2 = srcV;
  668. for(j = 0; j < 9; j++) {
  669. for(i = 0; i < 9; i++) {
  670. src[i] = v->lutuv[src[i]];
  671. src2[i] = v->lutuv[src2[i]];
  672. }
  673. src += s->uvlinesize;
  674. src2 += s->uvlinesize;
  675. }
  676. }
  677. }
  678. /* Chroma MC always uses qpel bilinear */
  679. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  680. uvmx = (uvmx&3)<<1;
  681. uvmy = (uvmy&3)<<1;
  682. if(!v->rnd){
  683. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  684. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  685. }else{
  686. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  687. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  688. }
  689. }
  690. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  691. /**
  692. * Decode Simple/Main Profiles sequence header
  693. * @see Figure 7-8, p16-17
  694. * @param avctx Codec context
  695. * @param gb GetBit context initialized from Codec context extra_data
  696. * @return Status
  697. */
  698. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  699. {
  700. VC1Context *v = avctx->priv_data;
  701. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  702. v->profile = get_bits(gb, 2);
  703. if (v->profile == PROFILE_COMPLEX)
  704. {
  705. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  706. }
  707. if (v->profile == PROFILE_ADVANCED)
  708. {
  709. return decode_sequence_header_adv(v, gb);
  710. }
  711. else
  712. {
  713. v->res_sm = get_bits(gb, 2); //reserved
  714. if (v->res_sm)
  715. {
  716. av_log(avctx, AV_LOG_ERROR,
  717. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  718. return -1;
  719. }
  720. }
  721. // (fps-2)/4 (->30)
  722. v->frmrtq_postproc = get_bits(gb, 3); //common
  723. // (bitrate-32kbps)/64kbps
  724. v->bitrtq_postproc = get_bits(gb, 5); //common
  725. v->s.loop_filter = get_bits1(gb); //common
  726. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  727. {
  728. av_log(avctx, AV_LOG_ERROR,
  729. "LOOPFILTER shell not be enabled in simple profile\n");
  730. }
  731. v->res_x8 = get_bits1(gb); //reserved
  732. v->multires = get_bits1(gb);
  733. v->res_fasttx = get_bits1(gb);
  734. if (!v->res_fasttx)
  735. {
  736. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  737. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  738. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  739. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  740. }
  741. v->fastuvmc = get_bits1(gb); //common
  742. if (!v->profile && !v->fastuvmc)
  743. {
  744. av_log(avctx, AV_LOG_ERROR,
  745. "FASTUVMC unavailable in Simple Profile\n");
  746. return -1;
  747. }
  748. v->extended_mv = get_bits1(gb); //common
  749. if (!v->profile && v->extended_mv)
  750. {
  751. av_log(avctx, AV_LOG_ERROR,
  752. "Extended MVs unavailable in Simple Profile\n");
  753. return -1;
  754. }
  755. v->dquant = get_bits(gb, 2); //common
  756. v->vstransform = get_bits1(gb); //common
  757. v->res_transtab = get_bits1(gb);
  758. if (v->res_transtab)
  759. {
  760. av_log(avctx, AV_LOG_ERROR,
  761. "1 for reserved RES_TRANSTAB is forbidden\n");
  762. return -1;
  763. }
  764. v->overlap = get_bits1(gb); //common
  765. v->s.resync_marker = get_bits1(gb);
  766. v->rangered = get_bits1(gb);
  767. if (v->rangered && v->profile == PROFILE_SIMPLE)
  768. {
  769. av_log(avctx, AV_LOG_INFO,
  770. "RANGERED should be set to 0 in simple profile\n");
  771. }
  772. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  773. v->quantizer_mode = get_bits(gb, 2); //common
  774. v->finterpflag = get_bits1(gb); //common
  775. v->res_rtm_flag = get_bits1(gb); //reserved
  776. if (!v->res_rtm_flag)
  777. {
  778. // av_log(avctx, AV_LOG_ERROR,
  779. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  780. av_log(avctx, AV_LOG_ERROR,
  781. "Old WMV3 version detected, only I-frames will be decoded\n");
  782. //return -1;
  783. }
  784. //TODO: figure out what they mean (always 0x402F)
  785. if(!v->res_fasttx) skip_bits(gb, 16);
  786. av_log(avctx, AV_LOG_DEBUG,
  787. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  788. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  789. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  790. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  791. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  792. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  793. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  794. v->dquant, v->quantizer_mode, avctx->max_b_frames
  795. );
  796. return 0;
  797. }
  798. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  799. {
  800. v->res_rtm_flag = 1;
  801. v->level = get_bits(gb, 3);
  802. if(v->level >= 5)
  803. {
  804. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  805. }
  806. v->chromaformat = get_bits(gb, 2);
  807. if (v->chromaformat != 1)
  808. {
  809. av_log(v->s.avctx, AV_LOG_ERROR,
  810. "Only 4:2:0 chroma format supported\n");
  811. return -1;
  812. }
  813. // (fps-2)/4 (->30)
  814. v->frmrtq_postproc = get_bits(gb, 3); //common
  815. // (bitrate-32kbps)/64kbps
  816. v->bitrtq_postproc = get_bits(gb, 5); //common
  817. v->postprocflag = get_bits1(gb); //common
  818. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  819. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  820. v->s.avctx->width = v->s.avctx->coded_width;
  821. v->s.avctx->height = v->s.avctx->coded_height;
  822. v->broadcast = get_bits1(gb);
  823. v->interlace = get_bits1(gb);
  824. v->tfcntrflag = get_bits1(gb);
  825. v->finterpflag = get_bits1(gb);
  826. skip_bits1(gb); // reserved
  827. v->s.h_edge_pos = v->s.avctx->coded_width;
  828. v->s.v_edge_pos = v->s.avctx->coded_height;
  829. av_log(v->s.avctx, AV_LOG_DEBUG,
  830. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  831. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  832. "TFCTRflag=%i, FINTERPflag=%i\n",
  833. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  834. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  835. v->tfcntrflag, v->finterpflag
  836. );
  837. v->psf = get_bits1(gb);
  838. if(v->psf) { //PsF, 6.1.13
  839. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  840. return -1;
  841. }
  842. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  843. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  844. int w, h, ar = 0;
  845. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  846. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  847. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  848. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  849. if(get_bits1(gb))
  850. ar = get_bits(gb, 4);
  851. if(ar && ar < 14){
  852. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  853. }else if(ar == 15){
  854. w = get_bits(gb, 8);
  855. h = get_bits(gb, 8);
  856. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  857. }
  858. if(get_bits1(gb)){ //framerate stuff
  859. if(get_bits1(gb)) {
  860. v->s.avctx->time_base.num = 32;
  861. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  862. } else {
  863. int nr, dr;
  864. nr = get_bits(gb, 8);
  865. dr = get_bits(gb, 4);
  866. if(nr && nr < 8 && dr && dr < 3){
  867. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  868. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  869. }
  870. }
  871. }
  872. if(get_bits1(gb)){
  873. v->color_prim = get_bits(gb, 8);
  874. v->transfer_char = get_bits(gb, 8);
  875. v->matrix_coef = get_bits(gb, 8);
  876. }
  877. }
  878. v->hrd_param_flag = get_bits1(gb);
  879. if(v->hrd_param_flag) {
  880. int i;
  881. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  882. skip_bits(gb, 4); //bitrate exponent
  883. skip_bits(gb, 4); //buffer size exponent
  884. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  885. skip_bits(gb, 16); //hrd_rate[n]
  886. skip_bits(gb, 16); //hrd_buffer[n]
  887. }
  888. }
  889. return 0;
  890. }
  891. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  892. {
  893. VC1Context *v = avctx->priv_data;
  894. int i, blink, clentry, refdist;
  895. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  896. blink = get_bits1(gb); // broken link
  897. clentry = get_bits1(gb); // closed entry
  898. v->panscanflag = get_bits1(gb);
  899. refdist = get_bits1(gb); // refdist flag
  900. v->s.loop_filter = get_bits1(gb);
  901. v->fastuvmc = get_bits1(gb);
  902. v->extended_mv = get_bits1(gb);
  903. v->dquant = get_bits(gb, 2);
  904. v->vstransform = get_bits1(gb);
  905. v->overlap = get_bits1(gb);
  906. v->quantizer_mode = get_bits(gb, 2);
  907. if(v->hrd_param_flag){
  908. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  909. skip_bits(gb, 8); //hrd_full[n]
  910. }
  911. }
  912. if(get_bits1(gb)){
  913. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  914. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  915. }
  916. if(v->extended_mv)
  917. v->extended_dmv = get_bits1(gb);
  918. if(get_bits1(gb)) {
  919. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  920. skip_bits(gb, 3); // Y range, ignored for now
  921. }
  922. if(get_bits1(gb)) {
  923. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  924. skip_bits(gb, 3); // UV range, ignored for now
  925. }
  926. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  927. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  928. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  929. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  930. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  931. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  932. return 0;
  933. }
  934. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  935. {
  936. int pqindex, lowquant, status;
  937. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  938. skip_bits(gb, 2); //framecnt unused
  939. v->rangeredfrm = 0;
  940. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  941. v->s.pict_type = get_bits1(gb);
  942. if (v->s.avctx->max_b_frames) {
  943. if (!v->s.pict_type) {
  944. if (get_bits1(gb)) v->s.pict_type = I_TYPE;
  945. else v->s.pict_type = B_TYPE;
  946. } else v->s.pict_type = P_TYPE;
  947. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  948. v->bi_type = 0;
  949. if(v->s.pict_type == B_TYPE) {
  950. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  951. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  952. if(v->bfraction == 0) {
  953. v->s.pict_type = BI_TYPE;
  954. }
  955. }
  956. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  957. skip_bits(gb, 7); // skip buffer fullness
  958. /* calculate RND */
  959. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  960. v->rnd = 1;
  961. if(v->s.pict_type == P_TYPE)
  962. v->rnd ^= 1;
  963. /* Quantizer stuff */
  964. pqindex = get_bits(gb, 5);
  965. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  966. v->pq = ff_vc1_pquant_table[0][pqindex];
  967. else
  968. v->pq = ff_vc1_pquant_table[1][pqindex];
  969. v->pquantizer = 1;
  970. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  971. v->pquantizer = pqindex < 9;
  972. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  973. v->pquantizer = 0;
  974. v->pqindex = pqindex;
  975. if (pqindex < 9) v->halfpq = get_bits1(gb);
  976. else v->halfpq = 0;
  977. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  978. v->pquantizer = get_bits1(gb);
  979. v->dquantfrm = 0;
  980. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  981. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  982. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  983. v->range_x = 1 << (v->k_x - 1);
  984. v->range_y = 1 << (v->k_y - 1);
  985. if (v->profile == PROFILE_ADVANCED)
  986. {
  987. if (v->postprocflag) v->postproc = get_bits1(gb);
  988. }
  989. else
  990. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  991. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  992. v->x8_type = get_bits1(gb);
  993. }else v->x8_type = 0;
  994. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  995. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  996. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  997. switch(v->s.pict_type) {
  998. case P_TYPE:
  999. if (v->pq < 5) v->tt_index = 0;
  1000. else if(v->pq < 13) v->tt_index = 1;
  1001. else v->tt_index = 2;
  1002. lowquant = (v->pq > 12) ? 0 : 1;
  1003. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1004. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1005. {
  1006. int scale, shift, i;
  1007. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1008. v->lumscale = get_bits(gb, 6);
  1009. v->lumshift = get_bits(gb, 6);
  1010. v->use_ic = 1;
  1011. /* fill lookup tables for intensity compensation */
  1012. if(!v->lumscale) {
  1013. scale = -64;
  1014. shift = (255 - v->lumshift * 2) << 6;
  1015. if(v->lumshift > 31)
  1016. shift += 128 << 6;
  1017. } else {
  1018. scale = v->lumscale + 32;
  1019. if(v->lumshift > 31)
  1020. shift = (v->lumshift - 64) << 6;
  1021. else
  1022. shift = v->lumshift << 6;
  1023. }
  1024. for(i = 0; i < 256; i++) {
  1025. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1026. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1027. }
  1028. }
  1029. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1030. v->s.quarter_sample = 0;
  1031. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1032. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1033. v->s.quarter_sample = 0;
  1034. else
  1035. v->s.quarter_sample = 1;
  1036. } else
  1037. v->s.quarter_sample = 1;
  1038. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1039. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1040. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1041. || v->mv_mode == MV_PMODE_MIXED_MV)
  1042. {
  1043. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1044. if (status < 0) return -1;
  1045. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1046. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1047. } else {
  1048. v->mv_type_is_raw = 0;
  1049. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1050. }
  1051. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1052. if (status < 0) return -1;
  1053. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1054. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1055. /* Hopefully this is correct for P frames */
  1056. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1057. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1058. if (v->dquant)
  1059. {
  1060. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1061. vop_dquant_decoding(v);
  1062. }
  1063. v->ttfrm = 0; //FIXME Is that so ?
  1064. if (v->vstransform)
  1065. {
  1066. v->ttmbf = get_bits1(gb);
  1067. if (v->ttmbf)
  1068. {
  1069. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1070. }
  1071. } else {
  1072. v->ttmbf = 1;
  1073. v->ttfrm = TT_8X8;
  1074. }
  1075. break;
  1076. case B_TYPE:
  1077. if (v->pq < 5) v->tt_index = 0;
  1078. else if(v->pq < 13) v->tt_index = 1;
  1079. else v->tt_index = 2;
  1080. lowquant = (v->pq > 12) ? 0 : 1;
  1081. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1082. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1083. v->s.mspel = v->s.quarter_sample;
  1084. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1085. if (status < 0) return -1;
  1086. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1087. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1088. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1089. if (status < 0) return -1;
  1090. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1091. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1092. v->s.mv_table_index = get_bits(gb, 2);
  1093. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1094. if (v->dquant)
  1095. {
  1096. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1097. vop_dquant_decoding(v);
  1098. }
  1099. v->ttfrm = 0;
  1100. if (v->vstransform)
  1101. {
  1102. v->ttmbf = get_bits1(gb);
  1103. if (v->ttmbf)
  1104. {
  1105. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1106. }
  1107. } else {
  1108. v->ttmbf = 1;
  1109. v->ttfrm = TT_8X8;
  1110. }
  1111. break;
  1112. }
  1113. if(!v->x8_type)
  1114. {
  1115. /* AC Syntax */
  1116. v->c_ac_table_index = decode012(gb);
  1117. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1118. {
  1119. v->y_ac_table_index = decode012(gb);
  1120. }
  1121. /* DC Syntax */
  1122. v->s.dc_table_index = get_bits1(gb);
  1123. }
  1124. if(v->s.pict_type == BI_TYPE) {
  1125. v->s.pict_type = B_TYPE;
  1126. v->bi_type = 1;
  1127. }
  1128. return 0;
  1129. }
  1130. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1131. {
  1132. int pqindex, lowquant;
  1133. int status;
  1134. v->p_frame_skipped = 0;
  1135. if(v->interlace){
  1136. v->fcm = decode012(gb);
  1137. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1138. }
  1139. switch(get_unary(gb, 0, 4)) {
  1140. case 0:
  1141. v->s.pict_type = P_TYPE;
  1142. break;
  1143. case 1:
  1144. v->s.pict_type = B_TYPE;
  1145. break;
  1146. case 2:
  1147. v->s.pict_type = I_TYPE;
  1148. break;
  1149. case 3:
  1150. v->s.pict_type = BI_TYPE;
  1151. break;
  1152. case 4:
  1153. v->s.pict_type = P_TYPE; // skipped pic
  1154. v->p_frame_skipped = 1;
  1155. return 0;
  1156. }
  1157. if(v->tfcntrflag)
  1158. skip_bits(gb, 8);
  1159. if(v->broadcast) {
  1160. if(!v->interlace || v->psf) {
  1161. v->rptfrm = get_bits(gb, 2);
  1162. } else {
  1163. v->tff = get_bits1(gb);
  1164. v->rptfrm = get_bits1(gb);
  1165. }
  1166. }
  1167. if(v->panscanflag) {
  1168. //...
  1169. }
  1170. v->rnd = get_bits1(gb);
  1171. if(v->interlace)
  1172. v->uvsamp = get_bits1(gb);
  1173. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1174. if(v->s.pict_type == B_TYPE) {
  1175. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1176. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1177. if(v->bfraction == 0) {
  1178. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1179. }
  1180. }
  1181. pqindex = get_bits(gb, 5);
  1182. v->pqindex = pqindex;
  1183. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1184. v->pq = ff_vc1_pquant_table[0][pqindex];
  1185. else
  1186. v->pq = ff_vc1_pquant_table[1][pqindex];
  1187. v->pquantizer = 1;
  1188. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1189. v->pquantizer = pqindex < 9;
  1190. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1191. v->pquantizer = 0;
  1192. v->pqindex = pqindex;
  1193. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1194. else v->halfpq = 0;
  1195. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1196. v->pquantizer = get_bits1(gb);
  1197. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1198. switch(v->s.pict_type) {
  1199. case I_TYPE:
  1200. case BI_TYPE:
  1201. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1202. if (status < 0) return -1;
  1203. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1204. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1205. v->condover = CONDOVER_NONE;
  1206. if(v->overlap && v->pq <= 8) {
  1207. v->condover = decode012(gb);
  1208. if(v->condover == CONDOVER_SELECT) {
  1209. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1210. if (status < 0) return -1;
  1211. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1212. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1213. }
  1214. }
  1215. break;
  1216. case P_TYPE:
  1217. if(v->postprocflag)
  1218. v->postproc = get_bits1(gb);
  1219. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1220. else v->mvrange = 0;
  1221. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1222. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1223. v->range_x = 1 << (v->k_x - 1);
  1224. v->range_y = 1 << (v->k_y - 1);
  1225. if (v->pq < 5) v->tt_index = 0;
  1226. else if(v->pq < 13) v->tt_index = 1;
  1227. else v->tt_index = 2;
  1228. lowquant = (v->pq > 12) ? 0 : 1;
  1229. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1230. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1231. {
  1232. int scale, shift, i;
  1233. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1234. v->lumscale = get_bits(gb, 6);
  1235. v->lumshift = get_bits(gb, 6);
  1236. /* fill lookup tables for intensity compensation */
  1237. if(!v->lumscale) {
  1238. scale = -64;
  1239. shift = (255 - v->lumshift * 2) << 6;
  1240. if(v->lumshift > 31)
  1241. shift += 128 << 6;
  1242. } else {
  1243. scale = v->lumscale + 32;
  1244. if(v->lumshift > 31)
  1245. shift = (v->lumshift - 64) << 6;
  1246. else
  1247. shift = v->lumshift << 6;
  1248. }
  1249. for(i = 0; i < 256; i++) {
  1250. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1251. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1252. }
  1253. v->use_ic = 1;
  1254. }
  1255. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1256. v->s.quarter_sample = 0;
  1257. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1258. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1259. v->s.quarter_sample = 0;
  1260. else
  1261. v->s.quarter_sample = 1;
  1262. } else
  1263. v->s.quarter_sample = 1;
  1264. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1265. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1266. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1267. || v->mv_mode == MV_PMODE_MIXED_MV)
  1268. {
  1269. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1270. if (status < 0) return -1;
  1271. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1272. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1273. } else {
  1274. v->mv_type_is_raw = 0;
  1275. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1276. }
  1277. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1278. if (status < 0) return -1;
  1279. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1280. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1281. /* Hopefully this is correct for P frames */
  1282. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1283. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1284. if (v->dquant)
  1285. {
  1286. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1287. vop_dquant_decoding(v);
  1288. }
  1289. v->ttfrm = 0; //FIXME Is that so ?
  1290. if (v->vstransform)
  1291. {
  1292. v->ttmbf = get_bits1(gb);
  1293. if (v->ttmbf)
  1294. {
  1295. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1296. }
  1297. } else {
  1298. v->ttmbf = 1;
  1299. v->ttfrm = TT_8X8;
  1300. }
  1301. break;
  1302. case B_TYPE:
  1303. if(v->postprocflag)
  1304. v->postproc = get_bits1(gb);
  1305. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1306. else v->mvrange = 0;
  1307. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1308. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1309. v->range_x = 1 << (v->k_x - 1);
  1310. v->range_y = 1 << (v->k_y - 1);
  1311. if (v->pq < 5) v->tt_index = 0;
  1312. else if(v->pq < 13) v->tt_index = 1;
  1313. else v->tt_index = 2;
  1314. lowquant = (v->pq > 12) ? 0 : 1;
  1315. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1316. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1317. v->s.mspel = v->s.quarter_sample;
  1318. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1319. if (status < 0) return -1;
  1320. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1321. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1322. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1323. if (status < 0) return -1;
  1324. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1325. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1326. v->s.mv_table_index = get_bits(gb, 2);
  1327. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1328. if (v->dquant)
  1329. {
  1330. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1331. vop_dquant_decoding(v);
  1332. }
  1333. v->ttfrm = 0;
  1334. if (v->vstransform)
  1335. {
  1336. v->ttmbf = get_bits1(gb);
  1337. if (v->ttmbf)
  1338. {
  1339. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1340. }
  1341. } else {
  1342. v->ttmbf = 1;
  1343. v->ttfrm = TT_8X8;
  1344. }
  1345. break;
  1346. }
  1347. /* AC Syntax */
  1348. v->c_ac_table_index = decode012(gb);
  1349. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1350. {
  1351. v->y_ac_table_index = decode012(gb);
  1352. }
  1353. /* DC Syntax */
  1354. v->s.dc_table_index = get_bits1(gb);
  1355. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1356. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1357. vop_dquant_decoding(v);
  1358. }
  1359. v->bi_type = 0;
  1360. if(v->s.pict_type == BI_TYPE) {
  1361. v->s.pict_type = B_TYPE;
  1362. v->bi_type = 1;
  1363. }
  1364. return 0;
  1365. }
  1366. /***********************************************************************/
  1367. /**
  1368. * @defgroup block VC-1 Block-level functions
  1369. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1370. * @{
  1371. */
  1372. /**
  1373. * @def GET_MQUANT
  1374. * @brief Get macroblock-level quantizer scale
  1375. */
  1376. #define GET_MQUANT() \
  1377. if (v->dquantfrm) \
  1378. { \
  1379. int edges = 0; \
  1380. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1381. { \
  1382. if (v->dqbilevel) \
  1383. { \
  1384. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1385. } \
  1386. else \
  1387. { \
  1388. mqdiff = get_bits(gb, 3); \
  1389. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1390. else mquant = get_bits(gb, 5); \
  1391. } \
  1392. } \
  1393. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1394. edges = 1 << v->dqsbedge; \
  1395. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1396. edges = (3 << v->dqsbedge) % 15; \
  1397. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1398. edges = 15; \
  1399. if((edges&1) && !s->mb_x) \
  1400. mquant = v->altpq; \
  1401. if((edges&2) && s->first_slice_line) \
  1402. mquant = v->altpq; \
  1403. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1404. mquant = v->altpq; \
  1405. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1406. mquant = v->altpq; \
  1407. }
  1408. /**
  1409. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1410. * @brief Get MV differentials
  1411. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1412. * @param _dmv_x Horizontal differential for decoded MV
  1413. * @param _dmv_y Vertical differential for decoded MV
  1414. */
  1415. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1416. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1417. VC1_MV_DIFF_VLC_BITS, 2); \
  1418. if (index > 36) \
  1419. { \
  1420. mb_has_coeffs = 1; \
  1421. index -= 37; \
  1422. } \
  1423. else mb_has_coeffs = 0; \
  1424. s->mb_intra = 0; \
  1425. if (!index) { _dmv_x = _dmv_y = 0; } \
  1426. else if (index == 35) \
  1427. { \
  1428. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1429. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1430. } \
  1431. else if (index == 36) \
  1432. { \
  1433. _dmv_x = 0; \
  1434. _dmv_y = 0; \
  1435. s->mb_intra = 1; \
  1436. } \
  1437. else \
  1438. { \
  1439. index1 = index%6; \
  1440. if (!s->quarter_sample && index1 == 5) val = 1; \
  1441. else val = 0; \
  1442. if(size_table[index1] - val > 0) \
  1443. val = get_bits(gb, size_table[index1] - val); \
  1444. else val = 0; \
  1445. sign = 0 - (val&1); \
  1446. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1447. \
  1448. index1 = index/6; \
  1449. if (!s->quarter_sample && index1 == 5) val = 1; \
  1450. else val = 0; \
  1451. if(size_table[index1] - val > 0) \
  1452. val = get_bits(gb, size_table[index1] - val); \
  1453. else val = 0; \
  1454. sign = 0 - (val&1); \
  1455. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1456. }
  1457. /** Predict and set motion vector
  1458. */
  1459. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1460. {
  1461. int xy, wrap, off = 0;
  1462. int16_t *A, *B, *C;
  1463. int px, py;
  1464. int sum;
  1465. /* scale MV difference to be quad-pel */
  1466. dmv_x <<= 1 - s->quarter_sample;
  1467. dmv_y <<= 1 - s->quarter_sample;
  1468. wrap = s->b8_stride;
  1469. xy = s->block_index[n];
  1470. if(s->mb_intra){
  1471. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1472. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1473. s->current_picture.motion_val[1][xy][0] = 0;
  1474. s->current_picture.motion_val[1][xy][1] = 0;
  1475. if(mv1) { /* duplicate motion data for 1-MV block */
  1476. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1477. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1478. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1479. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1480. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1481. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1482. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1483. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1484. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1485. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1486. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1487. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1488. }
  1489. return;
  1490. }
  1491. C = s->current_picture.motion_val[0][xy - 1];
  1492. A = s->current_picture.motion_val[0][xy - wrap];
  1493. if(mv1)
  1494. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1495. else {
  1496. //in 4-MV mode different blocks have different B predictor position
  1497. switch(n){
  1498. case 0:
  1499. off = (s->mb_x > 0) ? -1 : 1;
  1500. break;
  1501. case 1:
  1502. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1503. break;
  1504. case 2:
  1505. off = 1;
  1506. break;
  1507. case 3:
  1508. off = -1;
  1509. }
  1510. }
  1511. B = s->current_picture.motion_val[0][xy - wrap + off];
  1512. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1513. if(s->mb_width == 1) {
  1514. px = A[0];
  1515. py = A[1];
  1516. } else {
  1517. px = mid_pred(A[0], B[0], C[0]);
  1518. py = mid_pred(A[1], B[1], C[1]);
  1519. }
  1520. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1521. px = C[0];
  1522. py = C[1];
  1523. } else {
  1524. px = py = 0;
  1525. }
  1526. /* Pullback MV as specified in 8.3.5.3.4 */
  1527. {
  1528. int qx, qy, X, Y;
  1529. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1530. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1531. X = (s->mb_width << 6) - 4;
  1532. Y = (s->mb_height << 6) - 4;
  1533. if(mv1) {
  1534. if(qx + px < -60) px = -60 - qx;
  1535. if(qy + py < -60) py = -60 - qy;
  1536. } else {
  1537. if(qx + px < -28) px = -28 - qx;
  1538. if(qy + py < -28) py = -28 - qy;
  1539. }
  1540. if(qx + px > X) px = X - qx;
  1541. if(qy + py > Y) py = Y - qy;
  1542. }
  1543. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1544. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1545. if(is_intra[xy - wrap])
  1546. sum = FFABS(px) + FFABS(py);
  1547. else
  1548. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1549. if(sum > 32) {
  1550. if(get_bits1(&s->gb)) {
  1551. px = A[0];
  1552. py = A[1];
  1553. } else {
  1554. px = C[0];
  1555. py = C[1];
  1556. }
  1557. } else {
  1558. if(is_intra[xy - 1])
  1559. sum = FFABS(px) + FFABS(py);
  1560. else
  1561. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1562. if(sum > 32) {
  1563. if(get_bits1(&s->gb)) {
  1564. px = A[0];
  1565. py = A[1];
  1566. } else {
  1567. px = C[0];
  1568. py = C[1];
  1569. }
  1570. }
  1571. }
  1572. }
  1573. /* store MV using signed modulus of MV range defined in 4.11 */
  1574. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1575. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1576. if(mv1) { /* duplicate motion data for 1-MV block */
  1577. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1578. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1579. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1580. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1581. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1582. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1583. }
  1584. }
  1585. /** Motion compensation for direct or interpolated blocks in B-frames
  1586. */
  1587. static void vc1_interp_mc(VC1Context *v)
  1588. {
  1589. MpegEncContext *s = &v->s;
  1590. DSPContext *dsp = &v->s.dsp;
  1591. uint8_t *srcY, *srcU, *srcV;
  1592. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1593. if(!v->s.next_picture.data[0])return;
  1594. mx = s->mv[1][0][0];
  1595. my = s->mv[1][0][1];
  1596. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1597. uvmy = (my + ((my & 3) == 3)) >> 1;
  1598. if(v->fastuvmc) {
  1599. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1600. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1601. }
  1602. srcY = s->next_picture.data[0];
  1603. srcU = s->next_picture.data[1];
  1604. srcV = s->next_picture.data[2];
  1605. src_x = s->mb_x * 16 + (mx >> 2);
  1606. src_y = s->mb_y * 16 + (my >> 2);
  1607. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1608. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1609. if(v->profile != PROFILE_ADVANCED){
  1610. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1611. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1612. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1613. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1614. }else{
  1615. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1616. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1617. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1618. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1619. }
  1620. srcY += src_y * s->linesize + src_x;
  1621. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1622. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1623. /* for grayscale we should not try to read from unknown area */
  1624. if(s->flags & CODEC_FLAG_GRAY) {
  1625. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1626. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1627. }
  1628. if(v->rangeredfrm
  1629. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1630. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1631. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1632. srcY -= s->mspel * (1 + s->linesize);
  1633. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1634. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1635. srcY = s->edge_emu_buffer;
  1636. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1637. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1638. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1639. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1640. srcU = uvbuf;
  1641. srcV = uvbuf + 16;
  1642. /* if we deal with range reduction we need to scale source blocks */
  1643. if(v->rangeredfrm) {
  1644. int i, j;
  1645. uint8_t *src, *src2;
  1646. src = srcY;
  1647. for(j = 0; j < 17 + s->mspel*2; j++) {
  1648. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1649. src += s->linesize;
  1650. }
  1651. src = srcU; src2 = srcV;
  1652. for(j = 0; j < 9; j++) {
  1653. for(i = 0; i < 9; i++) {
  1654. src[i] = ((src[i] - 128) >> 1) + 128;
  1655. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1656. }
  1657. src += s->uvlinesize;
  1658. src2 += s->uvlinesize;
  1659. }
  1660. }
  1661. srcY += s->mspel * (1 + s->linesize);
  1662. }
  1663. mx >>= 1;
  1664. my >>= 1;
  1665. dxy = ((my & 1) << 1) | (mx & 1);
  1666. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1667. if(s->flags & CODEC_FLAG_GRAY) return;
  1668. /* Chroma MC always uses qpel blilinear */
  1669. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1670. uvmx = (uvmx&3)<<1;
  1671. uvmy = (uvmy&3)<<1;
  1672. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1673. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1674. }
  1675. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1676. {
  1677. int n = bfrac;
  1678. #if B_FRACTION_DEN==256
  1679. if(inv)
  1680. n -= 256;
  1681. if(!qs)
  1682. return 2 * ((value * n + 255) >> 9);
  1683. return (value * n + 128) >> 8;
  1684. #else
  1685. if(inv)
  1686. n -= B_FRACTION_DEN;
  1687. if(!qs)
  1688. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1689. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1690. #endif
  1691. }
  1692. /** Reconstruct motion vector for B-frame and do motion compensation
  1693. */
  1694. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1695. {
  1696. if(v->use_ic) {
  1697. v->mv_mode2 = v->mv_mode;
  1698. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1699. }
  1700. if(direct) {
  1701. vc1_mc_1mv(v, 0);
  1702. vc1_interp_mc(v);
  1703. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1704. return;
  1705. }
  1706. if(mode == BMV_TYPE_INTERPOLATED) {
  1707. vc1_mc_1mv(v, 0);
  1708. vc1_interp_mc(v);
  1709. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1710. return;
  1711. }
  1712. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1713. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1714. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1715. }
  1716. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1717. {
  1718. MpegEncContext *s = &v->s;
  1719. int xy, wrap, off = 0;
  1720. int16_t *A, *B, *C;
  1721. int px, py;
  1722. int sum;
  1723. int r_x, r_y;
  1724. const uint8_t *is_intra = v->mb_type[0];
  1725. r_x = v->range_x;
  1726. r_y = v->range_y;
  1727. /* scale MV difference to be quad-pel */
  1728. dmv_x[0] <<= 1 - s->quarter_sample;
  1729. dmv_y[0] <<= 1 - s->quarter_sample;
  1730. dmv_x[1] <<= 1 - s->quarter_sample;
  1731. dmv_y[1] <<= 1 - s->quarter_sample;
  1732. wrap = s->b8_stride;
  1733. xy = s->block_index[0];
  1734. if(s->mb_intra) {
  1735. s->current_picture.motion_val[0][xy][0] =
  1736. s->current_picture.motion_val[0][xy][1] =
  1737. s->current_picture.motion_val[1][xy][0] =
  1738. s->current_picture.motion_val[1][xy][1] = 0;
  1739. return;
  1740. }
  1741. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1742. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1743. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1744. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1745. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1746. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1747. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1748. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1749. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1750. if(direct) {
  1751. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1752. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1753. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1754. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1755. return;
  1756. }
  1757. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1758. C = s->current_picture.motion_val[0][xy - 2];
  1759. A = s->current_picture.motion_val[0][xy - wrap*2];
  1760. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1761. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1762. if(!s->mb_x) C[0] = C[1] = 0;
  1763. if(!s->first_slice_line) { // predictor A is not out of bounds
  1764. if(s->mb_width == 1) {
  1765. px = A[0];
  1766. py = A[1];
  1767. } else {
  1768. px = mid_pred(A[0], B[0], C[0]);
  1769. py = mid_pred(A[1], B[1], C[1]);
  1770. }
  1771. } else if(s->mb_x) { // predictor C is not out of bounds
  1772. px = C[0];
  1773. py = C[1];
  1774. } else {
  1775. px = py = 0;
  1776. }
  1777. /* Pullback MV as specified in 8.3.5.3.4 */
  1778. {
  1779. int qx, qy, X, Y;
  1780. if(v->profile < PROFILE_ADVANCED) {
  1781. qx = (s->mb_x << 5);
  1782. qy = (s->mb_y << 5);
  1783. X = (s->mb_width << 5) - 4;
  1784. Y = (s->mb_height << 5) - 4;
  1785. if(qx + px < -28) px = -28 - qx;
  1786. if(qy + py < -28) py = -28 - qy;
  1787. if(qx + px > X) px = X - qx;
  1788. if(qy + py > Y) py = Y - qy;
  1789. } else {
  1790. qx = (s->mb_x << 6);
  1791. qy = (s->mb_y << 6);
  1792. X = (s->mb_width << 6) - 4;
  1793. Y = (s->mb_height << 6) - 4;
  1794. if(qx + px < -60) px = -60 - qx;
  1795. if(qy + py < -60) py = -60 - qy;
  1796. if(qx + px > X) px = X - qx;
  1797. if(qy + py > Y) py = Y - qy;
  1798. }
  1799. }
  1800. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1801. if(0 && !s->first_slice_line && s->mb_x) {
  1802. if(is_intra[xy - wrap])
  1803. sum = FFABS(px) + FFABS(py);
  1804. else
  1805. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1806. if(sum > 32) {
  1807. if(get_bits1(&s->gb)) {
  1808. px = A[0];
  1809. py = A[1];
  1810. } else {
  1811. px = C[0];
  1812. py = C[1];
  1813. }
  1814. } else {
  1815. if(is_intra[xy - 2])
  1816. sum = FFABS(px) + FFABS(py);
  1817. else
  1818. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1819. if(sum > 32) {
  1820. if(get_bits1(&s->gb)) {
  1821. px = A[0];
  1822. py = A[1];
  1823. } else {
  1824. px = C[0];
  1825. py = C[1];
  1826. }
  1827. }
  1828. }
  1829. }
  1830. /* store MV using signed modulus of MV range defined in 4.11 */
  1831. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1832. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1833. }
  1834. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1835. C = s->current_picture.motion_val[1][xy - 2];
  1836. A = s->current_picture.motion_val[1][xy - wrap*2];
  1837. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1838. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1839. if(!s->mb_x) C[0] = C[1] = 0;
  1840. if(!s->first_slice_line) { // predictor A is not out of bounds
  1841. if(s->mb_width == 1) {
  1842. px = A[0];
  1843. py = A[1];
  1844. } else {
  1845. px = mid_pred(A[0], B[0], C[0]);
  1846. py = mid_pred(A[1], B[1], C[1]);
  1847. }
  1848. } else if(s->mb_x) { // predictor C is not out of bounds
  1849. px = C[0];
  1850. py = C[1];
  1851. } else {
  1852. px = py = 0;
  1853. }
  1854. /* Pullback MV as specified in 8.3.5.3.4 */
  1855. {
  1856. int qx, qy, X, Y;
  1857. if(v->profile < PROFILE_ADVANCED) {
  1858. qx = (s->mb_x << 5);
  1859. qy = (s->mb_y << 5);
  1860. X = (s->mb_width << 5) - 4;
  1861. Y = (s->mb_height << 5) - 4;
  1862. if(qx + px < -28) px = -28 - qx;
  1863. if(qy + py < -28) py = -28 - qy;
  1864. if(qx + px > X) px = X - qx;
  1865. if(qy + py > Y) py = Y - qy;
  1866. } else {
  1867. qx = (s->mb_x << 6);
  1868. qy = (s->mb_y << 6);
  1869. X = (s->mb_width << 6) - 4;
  1870. Y = (s->mb_height << 6) - 4;
  1871. if(qx + px < -60) px = -60 - qx;
  1872. if(qy + py < -60) py = -60 - qy;
  1873. if(qx + px > X) px = X - qx;
  1874. if(qy + py > Y) py = Y - qy;
  1875. }
  1876. }
  1877. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1878. if(0 && !s->first_slice_line && s->mb_x) {
  1879. if(is_intra[xy - wrap])
  1880. sum = FFABS(px) + FFABS(py);
  1881. else
  1882. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1883. if(sum > 32) {
  1884. if(get_bits1(&s->gb)) {
  1885. px = A[0];
  1886. py = A[1];
  1887. } else {
  1888. px = C[0];
  1889. py = C[1];
  1890. }
  1891. } else {
  1892. if(is_intra[xy - 2])
  1893. sum = FFABS(px) + FFABS(py);
  1894. else
  1895. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1896. if(sum > 32) {
  1897. if(get_bits1(&s->gb)) {
  1898. px = A[0];
  1899. py = A[1];
  1900. } else {
  1901. px = C[0];
  1902. py = C[1];
  1903. }
  1904. }
  1905. }
  1906. }
  1907. /* store MV using signed modulus of MV range defined in 4.11 */
  1908. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1909. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1910. }
  1911. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1912. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1913. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1914. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1915. }
  1916. /** Get predicted DC value for I-frames only
  1917. * prediction dir: left=0, top=1
  1918. * @param s MpegEncContext
  1919. * @param[in] n block index in the current MB
  1920. * @param dc_val_ptr Pointer to DC predictor
  1921. * @param dir_ptr Prediction direction for use in AC prediction
  1922. */
  1923. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1924. int16_t **dc_val_ptr, int *dir_ptr)
  1925. {
  1926. int a, b, c, wrap, pred, scale;
  1927. int16_t *dc_val;
  1928. static const uint16_t dcpred[32] = {
  1929. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1930. 114, 102, 93, 85, 79, 73, 68, 64,
  1931. 60, 57, 54, 51, 49, 47, 45, 43,
  1932. 41, 39, 38, 37, 35, 34, 33
  1933. };
  1934. /* find prediction - wmv3_dc_scale always used here in fact */
  1935. if (n < 4) scale = s->y_dc_scale;
  1936. else scale = s->c_dc_scale;
  1937. wrap = s->block_wrap[n];
  1938. dc_val= s->dc_val[0] + s->block_index[n];
  1939. /* B A
  1940. * C X
  1941. */
  1942. c = dc_val[ - 1];
  1943. b = dc_val[ - 1 - wrap];
  1944. a = dc_val[ - wrap];
  1945. if (pq < 9 || !overlap)
  1946. {
  1947. /* Set outer values */
  1948. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1949. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1950. }
  1951. else
  1952. {
  1953. /* Set outer values */
  1954. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1955. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1956. }
  1957. if (abs(a - b) <= abs(b - c)) {
  1958. pred = c;
  1959. *dir_ptr = 1;//left
  1960. } else {
  1961. pred = a;
  1962. *dir_ptr = 0;//top
  1963. }
  1964. /* update predictor */
  1965. *dc_val_ptr = &dc_val[0];
  1966. return pred;
  1967. }
  1968. /** Get predicted DC value
  1969. * prediction dir: left=0, top=1
  1970. * @param s MpegEncContext
  1971. * @param[in] n block index in the current MB
  1972. * @param dc_val_ptr Pointer to DC predictor
  1973. * @param dir_ptr Prediction direction for use in AC prediction
  1974. */
  1975. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1976. int a_avail, int c_avail,
  1977. int16_t **dc_val_ptr, int *dir_ptr)
  1978. {
  1979. int a, b, c, wrap, pred, scale;
  1980. int16_t *dc_val;
  1981. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1982. int q1, q2 = 0;
  1983. /* find prediction - wmv3_dc_scale always used here in fact */
  1984. if (n < 4) scale = s->y_dc_scale;
  1985. else scale = s->c_dc_scale;
  1986. wrap = s->block_wrap[n];
  1987. dc_val= s->dc_val[0] + s->block_index[n];
  1988. /* B A
  1989. * C X
  1990. */
  1991. c = dc_val[ - 1];
  1992. b = dc_val[ - 1 - wrap];
  1993. a = dc_val[ - wrap];
  1994. /* scale predictors if needed */
  1995. q1 = s->current_picture.qscale_table[mb_pos];
  1996. if(c_avail && (n!= 1 && n!=3)) {
  1997. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1998. if(q2 && q2 != q1)
  1999. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2000. }
  2001. if(a_avail && (n!= 2 && n!=3)) {
  2002. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2003. if(q2 && q2 != q1)
  2004. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2005. }
  2006. if(a_avail && c_avail && (n!=3)) {
  2007. int off = mb_pos;
  2008. if(n != 1) off--;
  2009. if(n != 2) off -= s->mb_stride;
  2010. q2 = s->current_picture.qscale_table[off];
  2011. if(q2 && q2 != q1)
  2012. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2013. }
  2014. if(a_avail && c_avail) {
  2015. if(abs(a - b) <= abs(b - c)) {
  2016. pred = c;
  2017. *dir_ptr = 1;//left
  2018. } else {
  2019. pred = a;
  2020. *dir_ptr = 0;//top
  2021. }
  2022. } else if(a_avail) {
  2023. pred = a;
  2024. *dir_ptr = 0;//top
  2025. } else if(c_avail) {
  2026. pred = c;
  2027. *dir_ptr = 1;//left
  2028. } else {
  2029. pred = 0;
  2030. *dir_ptr = 1;//left
  2031. }
  2032. /* update predictor */
  2033. *dc_val_ptr = &dc_val[0];
  2034. return pred;
  2035. }
  2036. /**
  2037. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2038. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2039. * @{
  2040. */
  2041. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2042. {
  2043. int xy, wrap, pred, a, b, c;
  2044. xy = s->block_index[n];
  2045. wrap = s->b8_stride;
  2046. /* B C
  2047. * A X
  2048. */
  2049. a = s->coded_block[xy - 1 ];
  2050. b = s->coded_block[xy - 1 - wrap];
  2051. c = s->coded_block[xy - wrap];
  2052. if (b == c) {
  2053. pred = a;
  2054. } else {
  2055. pred = c;
  2056. }
  2057. /* store value */
  2058. *coded_block_ptr = &s->coded_block[xy];
  2059. return pred;
  2060. }
  2061. /**
  2062. * Decode one AC coefficient
  2063. * @param v The VC1 context
  2064. * @param last Last coefficient
  2065. * @param skip How much zero coefficients to skip
  2066. * @param value Decoded AC coefficient value
  2067. * @see 8.1.3.4
  2068. */
  2069. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2070. {
  2071. GetBitContext *gb = &v->s.gb;
  2072. int index, escape, run = 0, level = 0, lst = 0;
  2073. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2074. if (index != vc1_ac_sizes[codingset] - 1) {
  2075. run = vc1_index_decode_table[codingset][index][0];
  2076. level = vc1_index_decode_table[codingset][index][1];
  2077. lst = index >= vc1_last_decode_table[codingset];
  2078. if(get_bits1(gb))
  2079. level = -level;
  2080. } else {
  2081. escape = decode210(gb);
  2082. if (escape != 2) {
  2083. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2084. run = vc1_index_decode_table[codingset][index][0];
  2085. level = vc1_index_decode_table[codingset][index][1];
  2086. lst = index >= vc1_last_decode_table[codingset];
  2087. if(escape == 0) {
  2088. if(lst)
  2089. level += vc1_last_delta_level_table[codingset][run];
  2090. else
  2091. level += vc1_delta_level_table[codingset][run];
  2092. } else {
  2093. if(lst)
  2094. run += vc1_last_delta_run_table[codingset][level] + 1;
  2095. else
  2096. run += vc1_delta_run_table[codingset][level] + 1;
  2097. }
  2098. if(get_bits1(gb))
  2099. level = -level;
  2100. } else {
  2101. int sign;
  2102. lst = get_bits1(gb);
  2103. if(v->s.esc3_level_length == 0) {
  2104. if(v->pq < 8 || v->dquantfrm) { // table 59
  2105. v->s.esc3_level_length = get_bits(gb, 3);
  2106. if(!v->s.esc3_level_length)
  2107. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2108. } else { //table 60
  2109. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2110. }
  2111. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2112. }
  2113. run = get_bits(gb, v->s.esc3_run_length);
  2114. sign = get_bits1(gb);
  2115. level = get_bits(gb, v->s.esc3_level_length);
  2116. if(sign)
  2117. level = -level;
  2118. }
  2119. }
  2120. *last = lst;
  2121. *skip = run;
  2122. *value = level;
  2123. }
  2124. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2125. * @param v VC1Context
  2126. * @param block block to decode
  2127. * @param coded are AC coeffs present or not
  2128. * @param codingset set of VLC to decode data
  2129. */
  2130. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2131. {
  2132. GetBitContext *gb = &v->s.gb;
  2133. MpegEncContext *s = &v->s;
  2134. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2135. int run_diff, i;
  2136. int16_t *dc_val;
  2137. int16_t *ac_val, *ac_val2;
  2138. int dcdiff;
  2139. /* Get DC differential */
  2140. if (n < 4) {
  2141. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2142. } else {
  2143. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2144. }
  2145. if (dcdiff < 0){
  2146. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2147. return -1;
  2148. }
  2149. if (dcdiff)
  2150. {
  2151. if (dcdiff == 119 /* ESC index value */)
  2152. {
  2153. /* TODO: Optimize */
  2154. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2155. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2156. else dcdiff = get_bits(gb, 8);
  2157. }
  2158. else
  2159. {
  2160. if (v->pq == 1)
  2161. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2162. else if (v->pq == 2)
  2163. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2164. }
  2165. if (get_bits1(gb))
  2166. dcdiff = -dcdiff;
  2167. }
  2168. /* Prediction */
  2169. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2170. *dc_val = dcdiff;
  2171. /* Store the quantized DC coeff, used for prediction */
  2172. if (n < 4) {
  2173. block[0] = dcdiff * s->y_dc_scale;
  2174. } else {
  2175. block[0] = dcdiff * s->c_dc_scale;
  2176. }
  2177. /* Skip ? */
  2178. run_diff = 0;
  2179. i = 0;
  2180. if (!coded) {
  2181. goto not_coded;
  2182. }
  2183. //AC Decoding
  2184. i = 1;
  2185. {
  2186. int last = 0, skip, value;
  2187. const int8_t *zz_table;
  2188. int scale;
  2189. int k;
  2190. scale = v->pq * 2 + v->halfpq;
  2191. if(v->s.ac_pred) {
  2192. if(!dc_pred_dir)
  2193. zz_table = ff_vc1_horizontal_zz;
  2194. else
  2195. zz_table = ff_vc1_vertical_zz;
  2196. } else
  2197. zz_table = ff_vc1_normal_zz;
  2198. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2199. ac_val2 = ac_val;
  2200. if(dc_pred_dir) //left
  2201. ac_val -= 16;
  2202. else //top
  2203. ac_val -= 16 * s->block_wrap[n];
  2204. while (!last) {
  2205. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2206. i += skip;
  2207. if(i > 63)
  2208. break;
  2209. block[zz_table[i++]] = value;
  2210. }
  2211. /* apply AC prediction if needed */
  2212. if(s->ac_pred) {
  2213. if(dc_pred_dir) { //left
  2214. for(k = 1; k < 8; k++)
  2215. block[k << 3] += ac_val[k];
  2216. } else { //top
  2217. for(k = 1; k < 8; k++)
  2218. block[k] += ac_val[k + 8];
  2219. }
  2220. }
  2221. /* save AC coeffs for further prediction */
  2222. for(k = 1; k < 8; k++) {
  2223. ac_val2[k] = block[k << 3];
  2224. ac_val2[k + 8] = block[k];
  2225. }
  2226. /* scale AC coeffs */
  2227. for(k = 1; k < 64; k++)
  2228. if(block[k]) {
  2229. block[k] *= scale;
  2230. if(!v->pquantizer)
  2231. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2232. }
  2233. if(s->ac_pred) i = 63;
  2234. }
  2235. not_coded:
  2236. if(!coded) {
  2237. int k, scale;
  2238. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2239. ac_val2 = ac_val;
  2240. scale = v->pq * 2 + v->halfpq;
  2241. memset(ac_val2, 0, 16 * 2);
  2242. if(dc_pred_dir) {//left
  2243. ac_val -= 16;
  2244. if(s->ac_pred)
  2245. memcpy(ac_val2, ac_val, 8 * 2);
  2246. } else {//top
  2247. ac_val -= 16 * s->block_wrap[n];
  2248. if(s->ac_pred)
  2249. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2250. }
  2251. /* apply AC prediction if needed */
  2252. if(s->ac_pred) {
  2253. if(dc_pred_dir) { //left
  2254. for(k = 1; k < 8; k++) {
  2255. block[k << 3] = ac_val[k] * scale;
  2256. if(!v->pquantizer && block[k << 3])
  2257. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2258. }
  2259. } else { //top
  2260. for(k = 1; k < 8; k++) {
  2261. block[k] = ac_val[k + 8] * scale;
  2262. if(!v->pquantizer && block[k])
  2263. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2264. }
  2265. }
  2266. i = 63;
  2267. }
  2268. }
  2269. s->block_last_index[n] = i;
  2270. return 0;
  2271. }
  2272. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2273. * @param v VC1Context
  2274. * @param block block to decode
  2275. * @param coded are AC coeffs present or not
  2276. * @param codingset set of VLC to decode data
  2277. */
  2278. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2279. {
  2280. GetBitContext *gb = &v->s.gb;
  2281. MpegEncContext *s = &v->s;
  2282. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2283. int run_diff, i;
  2284. int16_t *dc_val;
  2285. int16_t *ac_val, *ac_val2;
  2286. int dcdiff;
  2287. int a_avail = v->a_avail, c_avail = v->c_avail;
  2288. int use_pred = s->ac_pred;
  2289. int scale;
  2290. int q1, q2 = 0;
  2291. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2292. /* Get DC differential */
  2293. if (n < 4) {
  2294. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2295. } else {
  2296. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2297. }
  2298. if (dcdiff < 0){
  2299. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2300. return -1;
  2301. }
  2302. if (dcdiff)
  2303. {
  2304. if (dcdiff == 119 /* ESC index value */)
  2305. {
  2306. /* TODO: Optimize */
  2307. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2308. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2309. else dcdiff = get_bits(gb, 8);
  2310. }
  2311. else
  2312. {
  2313. if (mquant == 1)
  2314. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2315. else if (mquant == 2)
  2316. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2317. }
  2318. if (get_bits1(gb))
  2319. dcdiff = -dcdiff;
  2320. }
  2321. /* Prediction */
  2322. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2323. *dc_val = dcdiff;
  2324. /* Store the quantized DC coeff, used for prediction */
  2325. if (n < 4) {
  2326. block[0] = dcdiff * s->y_dc_scale;
  2327. } else {
  2328. block[0] = dcdiff * s->c_dc_scale;
  2329. }
  2330. /* Skip ? */
  2331. run_diff = 0;
  2332. i = 0;
  2333. //AC Decoding
  2334. i = 1;
  2335. /* check if AC is needed at all */
  2336. if(!a_avail && !c_avail) use_pred = 0;
  2337. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2338. ac_val2 = ac_val;
  2339. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2340. if(dc_pred_dir) //left
  2341. ac_val -= 16;
  2342. else //top
  2343. ac_val -= 16 * s->block_wrap[n];
  2344. q1 = s->current_picture.qscale_table[mb_pos];
  2345. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2346. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2347. if(dc_pred_dir && n==1) q2 = q1;
  2348. if(!dc_pred_dir && n==2) q2 = q1;
  2349. if(n==3) q2 = q1;
  2350. if(coded) {
  2351. int last = 0, skip, value;
  2352. const int8_t *zz_table;
  2353. int k;
  2354. if(v->s.ac_pred) {
  2355. if(!dc_pred_dir)
  2356. zz_table = ff_vc1_horizontal_zz;
  2357. else
  2358. zz_table = ff_vc1_vertical_zz;
  2359. } else
  2360. zz_table = ff_vc1_normal_zz;
  2361. while (!last) {
  2362. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2363. i += skip;
  2364. if(i > 63)
  2365. break;
  2366. block[zz_table[i++]] = value;
  2367. }
  2368. /* apply AC prediction if needed */
  2369. if(use_pred) {
  2370. /* scale predictors if needed*/
  2371. if(q2 && q1!=q2) {
  2372. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2373. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2374. if(dc_pred_dir) { //left
  2375. for(k = 1; k < 8; k++)
  2376. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2377. } else { //top
  2378. for(k = 1; k < 8; k++)
  2379. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2380. }
  2381. } else {
  2382. if(dc_pred_dir) { //left
  2383. for(k = 1; k < 8; k++)
  2384. block[k << 3] += ac_val[k];
  2385. } else { //top
  2386. for(k = 1; k < 8; k++)
  2387. block[k] += ac_val[k + 8];
  2388. }
  2389. }
  2390. }
  2391. /* save AC coeffs for further prediction */
  2392. for(k = 1; k < 8; k++) {
  2393. ac_val2[k] = block[k << 3];
  2394. ac_val2[k + 8] = block[k];
  2395. }
  2396. /* scale AC coeffs */
  2397. for(k = 1; k < 64; k++)
  2398. if(block[k]) {
  2399. block[k] *= scale;
  2400. if(!v->pquantizer)
  2401. block[k] += (block[k] < 0) ? -mquant : mquant;
  2402. }
  2403. if(use_pred) i = 63;
  2404. } else { // no AC coeffs
  2405. int k;
  2406. memset(ac_val2, 0, 16 * 2);
  2407. if(dc_pred_dir) {//left
  2408. if(use_pred) {
  2409. memcpy(ac_val2, ac_val, 8 * 2);
  2410. if(q2 && q1!=q2) {
  2411. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2412. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2413. for(k = 1; k < 8; k++)
  2414. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2415. }
  2416. }
  2417. } else {//top
  2418. if(use_pred) {
  2419. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2420. if(q2 && q1!=q2) {
  2421. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2422. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2423. for(k = 1; k < 8; k++)
  2424. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2425. }
  2426. }
  2427. }
  2428. /* apply AC prediction if needed */
  2429. if(use_pred) {
  2430. if(dc_pred_dir) { //left
  2431. for(k = 1; k < 8; k++) {
  2432. block[k << 3] = ac_val2[k] * scale;
  2433. if(!v->pquantizer && block[k << 3])
  2434. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2435. }
  2436. } else { //top
  2437. for(k = 1; k < 8; k++) {
  2438. block[k] = ac_val2[k + 8] * scale;
  2439. if(!v->pquantizer && block[k])
  2440. block[k] += (block[k] < 0) ? -mquant : mquant;
  2441. }
  2442. }
  2443. i = 63;
  2444. }
  2445. }
  2446. s->block_last_index[n] = i;
  2447. return 0;
  2448. }
  2449. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2450. * @param v VC1Context
  2451. * @param block block to decode
  2452. * @param coded are AC coeffs present or not
  2453. * @param mquant block quantizer
  2454. * @param codingset set of VLC to decode data
  2455. */
  2456. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2457. {
  2458. GetBitContext *gb = &v->s.gb;
  2459. MpegEncContext *s = &v->s;
  2460. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2461. int run_diff, i;
  2462. int16_t *dc_val;
  2463. int16_t *ac_val, *ac_val2;
  2464. int dcdiff;
  2465. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2466. int a_avail = v->a_avail, c_avail = v->c_avail;
  2467. int use_pred = s->ac_pred;
  2468. int scale;
  2469. int q1, q2 = 0;
  2470. /* XXX: Guard against dumb values of mquant */
  2471. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2472. /* Set DC scale - y and c use the same */
  2473. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2474. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2475. /* Get DC differential */
  2476. if (n < 4) {
  2477. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2478. } else {
  2479. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2480. }
  2481. if (dcdiff < 0){
  2482. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2483. return -1;
  2484. }
  2485. if (dcdiff)
  2486. {
  2487. if (dcdiff == 119 /* ESC index value */)
  2488. {
  2489. /* TODO: Optimize */
  2490. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2491. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2492. else dcdiff = get_bits(gb, 8);
  2493. }
  2494. else
  2495. {
  2496. if (mquant == 1)
  2497. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2498. else if (mquant == 2)
  2499. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2500. }
  2501. if (get_bits1(gb))
  2502. dcdiff = -dcdiff;
  2503. }
  2504. /* Prediction */
  2505. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2506. *dc_val = dcdiff;
  2507. /* Store the quantized DC coeff, used for prediction */
  2508. if (n < 4) {
  2509. block[0] = dcdiff * s->y_dc_scale;
  2510. } else {
  2511. block[0] = dcdiff * s->c_dc_scale;
  2512. }
  2513. /* Skip ? */
  2514. run_diff = 0;
  2515. i = 0;
  2516. //AC Decoding
  2517. i = 1;
  2518. /* check if AC is needed at all and adjust direction if needed */
  2519. if(!a_avail) dc_pred_dir = 1;
  2520. if(!c_avail) dc_pred_dir = 0;
  2521. if(!a_avail && !c_avail) use_pred = 0;
  2522. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2523. ac_val2 = ac_val;
  2524. scale = mquant * 2 + v->halfpq;
  2525. if(dc_pred_dir) //left
  2526. ac_val -= 16;
  2527. else //top
  2528. ac_val -= 16 * s->block_wrap[n];
  2529. q1 = s->current_picture.qscale_table[mb_pos];
  2530. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2531. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2532. if(dc_pred_dir && n==1) q2 = q1;
  2533. if(!dc_pred_dir && n==2) q2 = q1;
  2534. if(n==3) q2 = q1;
  2535. if(coded) {
  2536. int last = 0, skip, value;
  2537. const int8_t *zz_table;
  2538. int k;
  2539. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2540. while (!last) {
  2541. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2542. i += skip;
  2543. if(i > 63)
  2544. break;
  2545. block[zz_table[i++]] = value;
  2546. }
  2547. /* apply AC prediction if needed */
  2548. if(use_pred) {
  2549. /* scale predictors if needed*/
  2550. if(q2 && q1!=q2) {
  2551. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2552. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2553. if(dc_pred_dir) { //left
  2554. for(k = 1; k < 8; k++)
  2555. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2556. } else { //top
  2557. for(k = 1; k < 8; k++)
  2558. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2559. }
  2560. } else {
  2561. if(dc_pred_dir) { //left
  2562. for(k = 1; k < 8; k++)
  2563. block[k << 3] += ac_val[k];
  2564. } else { //top
  2565. for(k = 1; k < 8; k++)
  2566. block[k] += ac_val[k + 8];
  2567. }
  2568. }
  2569. }
  2570. /* save AC coeffs for further prediction */
  2571. for(k = 1; k < 8; k++) {
  2572. ac_val2[k] = block[k << 3];
  2573. ac_val2[k + 8] = block[k];
  2574. }
  2575. /* scale AC coeffs */
  2576. for(k = 1; k < 64; k++)
  2577. if(block[k]) {
  2578. block[k] *= scale;
  2579. if(!v->pquantizer)
  2580. block[k] += (block[k] < 0) ? -mquant : mquant;
  2581. }
  2582. if(use_pred) i = 63;
  2583. } else { // no AC coeffs
  2584. int k;
  2585. memset(ac_val2, 0, 16 * 2);
  2586. if(dc_pred_dir) {//left
  2587. if(use_pred) {
  2588. memcpy(ac_val2, ac_val, 8 * 2);
  2589. if(q2 && q1!=q2) {
  2590. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2591. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2592. for(k = 1; k < 8; k++)
  2593. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2594. }
  2595. }
  2596. } else {//top
  2597. if(use_pred) {
  2598. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2599. if(q2 && q1!=q2) {
  2600. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2601. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2602. for(k = 1; k < 8; k++)
  2603. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2604. }
  2605. }
  2606. }
  2607. /* apply AC prediction if needed */
  2608. if(use_pred) {
  2609. if(dc_pred_dir) { //left
  2610. for(k = 1; k < 8; k++) {
  2611. block[k << 3] = ac_val2[k] * scale;
  2612. if(!v->pquantizer && block[k << 3])
  2613. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2614. }
  2615. } else { //top
  2616. for(k = 1; k < 8; k++) {
  2617. block[k] = ac_val2[k + 8] * scale;
  2618. if(!v->pquantizer && block[k])
  2619. block[k] += (block[k] < 0) ? -mquant : mquant;
  2620. }
  2621. }
  2622. i = 63;
  2623. }
  2624. }
  2625. s->block_last_index[n] = i;
  2626. return 0;
  2627. }
  2628. /** Decode P block
  2629. */
  2630. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2631. uint8_t *dst, int linesize, int skip_block)
  2632. {
  2633. MpegEncContext *s = &v->s;
  2634. GetBitContext *gb = &s->gb;
  2635. int i, j;
  2636. int subblkpat = 0;
  2637. int scale, off, idx, last, skip, value;
  2638. int ttblk = ttmb & 7;
  2639. if(ttmb == -1) {
  2640. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2641. }
  2642. if(ttblk == TT_4X4) {
  2643. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2644. }
  2645. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2646. subblkpat = decode012(gb);
  2647. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2648. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2649. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2650. }
  2651. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2652. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2653. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2654. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2655. ttblk = TT_8X4;
  2656. }
  2657. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2658. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2659. ttblk = TT_4X8;
  2660. }
  2661. switch(ttblk) {
  2662. case TT_8X8:
  2663. i = 0;
  2664. last = 0;
  2665. while (!last) {
  2666. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2667. i += skip;
  2668. if(i > 63)
  2669. break;
  2670. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2671. block[idx] = value * scale;
  2672. if(!v->pquantizer)
  2673. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2674. }
  2675. if(!skip_block){
  2676. s->dsp.vc1_inv_trans_8x8(block);
  2677. s->dsp.add_pixels_clamped(block, dst, linesize);
  2678. }
  2679. break;
  2680. case TT_4X4:
  2681. for(j = 0; j < 4; j++) {
  2682. last = subblkpat & (1 << (3 - j));
  2683. i = 0;
  2684. off = (j & 1) * 4 + (j & 2) * 16;
  2685. while (!last) {
  2686. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2687. i += skip;
  2688. if(i > 15)
  2689. break;
  2690. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2691. block[idx + off] = value * scale;
  2692. if(!v->pquantizer)
  2693. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2694. }
  2695. if(!(subblkpat & (1 << (3 - j))) && !skip_block)
  2696. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2697. }
  2698. break;
  2699. case TT_8X4:
  2700. for(j = 0; j < 2; j++) {
  2701. last = subblkpat & (1 << (1 - j));
  2702. i = 0;
  2703. off = j * 32;
  2704. while (!last) {
  2705. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2706. i += skip;
  2707. if(i > 31)
  2708. break;
  2709. if(v->profile < PROFILE_ADVANCED)
  2710. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2711. else
  2712. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2713. block[idx + off] = value * scale;
  2714. if(!v->pquantizer)
  2715. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2716. }
  2717. if(!(subblkpat & (1 << (1 - j))) && !skip_block)
  2718. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2719. }
  2720. break;
  2721. case TT_4X8:
  2722. for(j = 0; j < 2; j++) {
  2723. last = subblkpat & (1 << (1 - j));
  2724. i = 0;
  2725. off = j * 4;
  2726. while (!last) {
  2727. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2728. i += skip;
  2729. if(i > 31)
  2730. break;
  2731. if(v->profile < PROFILE_ADVANCED)
  2732. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2733. else
  2734. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2735. block[idx + off] = value * scale;
  2736. if(!v->pquantizer)
  2737. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2738. }
  2739. if(!(subblkpat & (1 << (1 - j))) && !skip_block)
  2740. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2741. }
  2742. break;
  2743. }
  2744. return 0;
  2745. }
  2746. /** Decode one P-frame MB (in Simple/Main profile)
  2747. */
  2748. static int vc1_decode_p_mb(VC1Context *v)
  2749. {
  2750. MpegEncContext *s = &v->s;
  2751. GetBitContext *gb = &s->gb;
  2752. int i, j;
  2753. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2754. int cbp; /* cbp decoding stuff */
  2755. int mqdiff, mquant; /* MB quantization */
  2756. int ttmb = v->ttfrm; /* MB Transform type */
  2757. int status;
  2758. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2759. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2760. int mb_has_coeffs = 1; /* last_flag */
  2761. int dmv_x, dmv_y; /* Differential MV components */
  2762. int index, index1; /* LUT indices */
  2763. int val, sign; /* temp values */
  2764. int first_block = 1;
  2765. int dst_idx, off;
  2766. int skipped, fourmv;
  2767. mquant = v->pq; /* Loosy initialization */
  2768. if (v->mv_type_is_raw)
  2769. fourmv = get_bits1(gb);
  2770. else
  2771. fourmv = v->mv_type_mb_plane[mb_pos];
  2772. if (v->skip_is_raw)
  2773. skipped = get_bits1(gb);
  2774. else
  2775. skipped = v->s.mbskip_table[mb_pos];
  2776. s->dsp.clear_blocks(s->block[0]);
  2777. if (!fourmv) /* 1MV mode */
  2778. {
  2779. if (!skipped)
  2780. {
  2781. GET_MVDATA(dmv_x, dmv_y);
  2782. if (s->mb_intra) {
  2783. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2784. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2785. }
  2786. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2787. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2788. /* FIXME Set DC val for inter block ? */
  2789. if (s->mb_intra && !mb_has_coeffs)
  2790. {
  2791. GET_MQUANT();
  2792. s->ac_pred = get_bits1(gb);
  2793. cbp = 0;
  2794. }
  2795. else if (mb_has_coeffs)
  2796. {
  2797. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2798. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2799. GET_MQUANT();
  2800. }
  2801. else
  2802. {
  2803. mquant = v->pq;
  2804. cbp = 0;
  2805. }
  2806. s->current_picture.qscale_table[mb_pos] = mquant;
  2807. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2808. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2809. VC1_TTMB_VLC_BITS, 2);
  2810. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2811. dst_idx = 0;
  2812. for (i=0; i<6; i++)
  2813. {
  2814. s->dc_val[0][s->block_index[i]] = 0;
  2815. dst_idx += i >> 2;
  2816. val = ((cbp >> (5 - i)) & 1);
  2817. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2818. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2819. if(s->mb_intra) {
  2820. /* check if prediction blocks A and C are available */
  2821. v->a_avail = v->c_avail = 0;
  2822. if(i == 2 || i == 3 || !s->first_slice_line)
  2823. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2824. if(i == 1 || i == 3 || s->mb_x)
  2825. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2826. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2827. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2828. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2829. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2830. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2831. if(v->pq >= 9 && v->overlap) {
  2832. if(v->c_avail)
  2833. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2834. if(v->a_avail)
  2835. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2836. }
  2837. } else if(val) {
  2838. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
  2839. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2840. first_block = 0;
  2841. }
  2842. }
  2843. }
  2844. else //Skipped
  2845. {
  2846. s->mb_intra = 0;
  2847. for(i = 0; i < 6; i++) {
  2848. v->mb_type[0][s->block_index[i]] = 0;
  2849. s->dc_val[0][s->block_index[i]] = 0;
  2850. }
  2851. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2852. s->current_picture.qscale_table[mb_pos] = 0;
  2853. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2854. vc1_mc_1mv(v, 0);
  2855. return 0;
  2856. }
  2857. } //1MV mode
  2858. else //4MV mode
  2859. {
  2860. if (!skipped /* unskipped MB */)
  2861. {
  2862. int intra_count = 0, coded_inter = 0;
  2863. int is_intra[6], is_coded[6];
  2864. /* Get CBPCY */
  2865. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2866. for (i=0; i<6; i++)
  2867. {
  2868. val = ((cbp >> (5 - i)) & 1);
  2869. s->dc_val[0][s->block_index[i]] = 0;
  2870. s->mb_intra = 0;
  2871. if(i < 4) {
  2872. dmv_x = dmv_y = 0;
  2873. s->mb_intra = 0;
  2874. mb_has_coeffs = 0;
  2875. if(val) {
  2876. GET_MVDATA(dmv_x, dmv_y);
  2877. }
  2878. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2879. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2880. intra_count += s->mb_intra;
  2881. is_intra[i] = s->mb_intra;
  2882. is_coded[i] = mb_has_coeffs;
  2883. }
  2884. if(i&4){
  2885. is_intra[i] = (intra_count >= 3);
  2886. is_coded[i] = val;
  2887. }
  2888. if(i == 4) vc1_mc_4mv_chroma(v);
  2889. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2890. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2891. }
  2892. // if there are no coded blocks then don't do anything more
  2893. if(!intra_count && !coded_inter) return 0;
  2894. dst_idx = 0;
  2895. GET_MQUANT();
  2896. s->current_picture.qscale_table[mb_pos] = mquant;
  2897. /* test if block is intra and has pred */
  2898. {
  2899. int intrapred = 0;
  2900. for(i=0; i<6; i++)
  2901. if(is_intra[i]) {
  2902. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2903. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2904. intrapred = 1;
  2905. break;
  2906. }
  2907. }
  2908. if(intrapred)s->ac_pred = get_bits1(gb);
  2909. else s->ac_pred = 0;
  2910. }
  2911. if (!v->ttmbf && coded_inter)
  2912. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2913. for (i=0; i<6; i++)
  2914. {
  2915. dst_idx += i >> 2;
  2916. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2917. s->mb_intra = is_intra[i];
  2918. if (is_intra[i]) {
  2919. /* check if prediction blocks A and C are available */
  2920. v->a_avail = v->c_avail = 0;
  2921. if(i == 2 || i == 3 || !s->first_slice_line)
  2922. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2923. if(i == 1 || i == 3 || s->mb_x)
  2924. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2925. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2926. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2927. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2928. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2929. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2930. if(v->pq >= 9 && v->overlap) {
  2931. if(v->c_avail)
  2932. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2933. if(v->a_avail)
  2934. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2935. }
  2936. } else if(is_coded[i]) {
  2937. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
  2938. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2939. first_block = 0;
  2940. }
  2941. }
  2942. return status;
  2943. }
  2944. else //Skipped MB
  2945. {
  2946. s->mb_intra = 0;
  2947. s->current_picture.qscale_table[mb_pos] = 0;
  2948. for (i=0; i<6; i++) {
  2949. v->mb_type[0][s->block_index[i]] = 0;
  2950. s->dc_val[0][s->block_index[i]] = 0;
  2951. }
  2952. for (i=0; i<4; i++)
  2953. {
  2954. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2955. vc1_mc_4mv_luma(v, i);
  2956. }
  2957. vc1_mc_4mv_chroma(v);
  2958. s->current_picture.qscale_table[mb_pos] = 0;
  2959. return 0;
  2960. }
  2961. }
  2962. /* Should never happen */
  2963. return -1;
  2964. }
  2965. /** Decode one B-frame MB (in Main profile)
  2966. */
  2967. static void vc1_decode_b_mb(VC1Context *v)
  2968. {
  2969. MpegEncContext *s = &v->s;
  2970. GetBitContext *gb = &s->gb;
  2971. int i, j;
  2972. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2973. int cbp = 0; /* cbp decoding stuff */
  2974. int mqdiff, mquant; /* MB quantization */
  2975. int ttmb = v->ttfrm; /* MB Transform type */
  2976. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2977. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2978. int mb_has_coeffs = 0; /* last_flag */
  2979. int index, index1; /* LUT indices */
  2980. int val, sign; /* temp values */
  2981. int first_block = 1;
  2982. int dst_idx, off;
  2983. int skipped, direct;
  2984. int dmv_x[2], dmv_y[2];
  2985. int bmvtype = BMV_TYPE_BACKWARD;
  2986. mquant = v->pq; /* Loosy initialization */
  2987. s->mb_intra = 0;
  2988. if (v->dmb_is_raw)
  2989. direct = get_bits1(gb);
  2990. else
  2991. direct = v->direct_mb_plane[mb_pos];
  2992. if (v->skip_is_raw)
  2993. skipped = get_bits1(gb);
  2994. else
  2995. skipped = v->s.mbskip_table[mb_pos];
  2996. s->dsp.clear_blocks(s->block[0]);
  2997. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2998. for(i = 0; i < 6; i++) {
  2999. v->mb_type[0][s->block_index[i]] = 0;
  3000. s->dc_val[0][s->block_index[i]] = 0;
  3001. }
  3002. s->current_picture.qscale_table[mb_pos] = 0;
  3003. if (!direct) {
  3004. if (!skipped) {
  3005. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3006. dmv_x[1] = dmv_x[0];
  3007. dmv_y[1] = dmv_y[0];
  3008. }
  3009. if(skipped || !s->mb_intra) {
  3010. bmvtype = decode012(gb);
  3011. switch(bmvtype) {
  3012. case 0:
  3013. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3014. break;
  3015. case 1:
  3016. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3017. break;
  3018. case 2:
  3019. bmvtype = BMV_TYPE_INTERPOLATED;
  3020. dmv_x[0] = dmv_y[0] = 0;
  3021. }
  3022. }
  3023. }
  3024. for(i = 0; i < 6; i++)
  3025. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3026. if (skipped) {
  3027. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3028. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3029. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3030. return;
  3031. }
  3032. if (direct) {
  3033. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3034. GET_MQUANT();
  3035. s->mb_intra = 0;
  3036. mb_has_coeffs = 0;
  3037. s->current_picture.qscale_table[mb_pos] = mquant;
  3038. if(!v->ttmbf)
  3039. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3040. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3041. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3042. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3043. } else {
  3044. if(!mb_has_coeffs && !s->mb_intra) {
  3045. /* no coded blocks - effectively skipped */
  3046. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3047. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3048. return;
  3049. }
  3050. if(s->mb_intra && !mb_has_coeffs) {
  3051. GET_MQUANT();
  3052. s->current_picture.qscale_table[mb_pos] = mquant;
  3053. s->ac_pred = get_bits1(gb);
  3054. cbp = 0;
  3055. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3056. } else {
  3057. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3058. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3059. if(!mb_has_coeffs) {
  3060. /* interpolated skipped block */
  3061. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3062. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3063. return;
  3064. }
  3065. }
  3066. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3067. if(!s->mb_intra) {
  3068. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3069. }
  3070. if(s->mb_intra)
  3071. s->ac_pred = get_bits1(gb);
  3072. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3073. GET_MQUANT();
  3074. s->current_picture.qscale_table[mb_pos] = mquant;
  3075. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3076. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3077. }
  3078. }
  3079. dst_idx = 0;
  3080. for (i=0; i<6; i++)
  3081. {
  3082. s->dc_val[0][s->block_index[i]] = 0;
  3083. dst_idx += i >> 2;
  3084. val = ((cbp >> (5 - i)) & 1);
  3085. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3086. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3087. if(s->mb_intra) {
  3088. /* check if prediction blocks A and C are available */
  3089. v->a_avail = v->c_avail = 0;
  3090. if(i == 2 || i == 3 || !s->first_slice_line)
  3091. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3092. if(i == 1 || i == 3 || s->mb_x)
  3093. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3094. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3095. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3096. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3097. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3098. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3099. } else if(val) {
  3100. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY));
  3101. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3102. first_block = 0;
  3103. }
  3104. }
  3105. }
  3106. /** Decode blocks of I-frame
  3107. */
  3108. static void vc1_decode_i_blocks(VC1Context *v)
  3109. {
  3110. int k, j;
  3111. MpegEncContext *s = &v->s;
  3112. int cbp, val;
  3113. uint8_t *coded_val;
  3114. int mb_pos;
  3115. /* select codingmode used for VLC tables selection */
  3116. switch(v->y_ac_table_index){
  3117. case 0:
  3118. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3119. break;
  3120. case 1:
  3121. v->codingset = CS_HIGH_MOT_INTRA;
  3122. break;
  3123. case 2:
  3124. v->codingset = CS_MID_RATE_INTRA;
  3125. break;
  3126. }
  3127. switch(v->c_ac_table_index){
  3128. case 0:
  3129. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3130. break;
  3131. case 1:
  3132. v->codingset2 = CS_HIGH_MOT_INTER;
  3133. break;
  3134. case 2:
  3135. v->codingset2 = CS_MID_RATE_INTER;
  3136. break;
  3137. }
  3138. /* Set DC scale - y and c use the same */
  3139. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3140. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3141. //do frame decode
  3142. s->mb_x = s->mb_y = 0;
  3143. s->mb_intra = 1;
  3144. s->first_slice_line = 1;
  3145. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3146. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3147. ff_init_block_index(s);
  3148. ff_update_block_index(s);
  3149. s->dsp.clear_blocks(s->block[0]);
  3150. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3151. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3152. s->current_picture.qscale_table[mb_pos] = v->pq;
  3153. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3154. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3155. // do actual MB decoding and displaying
  3156. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3157. v->s.ac_pred = get_bits1(&v->s.gb);
  3158. for(k = 0; k < 6; k++) {
  3159. val = ((cbp >> (5 - k)) & 1);
  3160. if (k < 4) {
  3161. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3162. val = val ^ pred;
  3163. *coded_val = val;
  3164. }
  3165. cbp |= val << (5 - k);
  3166. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3167. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3168. if(v->pq >= 9 && v->overlap) {
  3169. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3170. }
  3171. }
  3172. vc1_put_block(v, s->block);
  3173. if(v->pq >= 9 && v->overlap) {
  3174. if(s->mb_x) {
  3175. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3176. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3177. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3178. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3179. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3180. }
  3181. }
  3182. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3183. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3184. if(!s->first_slice_line) {
  3185. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3186. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3187. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3188. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3189. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3190. }
  3191. }
  3192. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3193. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3194. }
  3195. if(get_bits_count(&s->gb) > v->bits) {
  3196. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3197. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3198. return;
  3199. }
  3200. }
  3201. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3202. s->first_slice_line = 0;
  3203. }
  3204. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3205. }
  3206. /** Decode blocks of I-frame for advanced profile
  3207. */
  3208. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3209. {
  3210. int k, j;
  3211. MpegEncContext *s = &v->s;
  3212. int cbp, val;
  3213. uint8_t *coded_val;
  3214. int mb_pos;
  3215. int mquant = v->pq;
  3216. int mqdiff;
  3217. int overlap;
  3218. GetBitContext *gb = &s->gb;
  3219. /* select codingmode used for VLC tables selection */
  3220. switch(v->y_ac_table_index){
  3221. case 0:
  3222. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3223. break;
  3224. case 1:
  3225. v->codingset = CS_HIGH_MOT_INTRA;
  3226. break;
  3227. case 2:
  3228. v->codingset = CS_MID_RATE_INTRA;
  3229. break;
  3230. }
  3231. switch(v->c_ac_table_index){
  3232. case 0:
  3233. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3234. break;
  3235. case 1:
  3236. v->codingset2 = CS_HIGH_MOT_INTER;
  3237. break;
  3238. case 2:
  3239. v->codingset2 = CS_MID_RATE_INTER;
  3240. break;
  3241. }
  3242. //do frame decode
  3243. s->mb_x = s->mb_y = 0;
  3244. s->mb_intra = 1;
  3245. s->first_slice_line = 1;
  3246. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3247. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3248. ff_init_block_index(s);
  3249. ff_update_block_index(s);
  3250. s->dsp.clear_blocks(s->block[0]);
  3251. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3252. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3253. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3254. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3255. // do actual MB decoding and displaying
  3256. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3257. if(v->acpred_is_raw)
  3258. v->s.ac_pred = get_bits1(&v->s.gb);
  3259. else
  3260. v->s.ac_pred = v->acpred_plane[mb_pos];
  3261. if(v->condover == CONDOVER_SELECT) {
  3262. if(v->overflg_is_raw)
  3263. overlap = get_bits1(&v->s.gb);
  3264. else
  3265. overlap = v->over_flags_plane[mb_pos];
  3266. } else
  3267. overlap = (v->condover == CONDOVER_ALL);
  3268. GET_MQUANT();
  3269. s->current_picture.qscale_table[mb_pos] = mquant;
  3270. /* Set DC scale - y and c use the same */
  3271. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3272. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3273. for(k = 0; k < 6; k++) {
  3274. val = ((cbp >> (5 - k)) & 1);
  3275. if (k < 4) {
  3276. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3277. val = val ^ pred;
  3278. *coded_val = val;
  3279. }
  3280. cbp |= val << (5 - k);
  3281. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3282. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3283. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3284. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3285. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3286. }
  3287. vc1_put_block(v, s->block);
  3288. if(overlap) {
  3289. if(s->mb_x) {
  3290. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3291. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3292. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3293. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3294. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3295. }
  3296. }
  3297. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3298. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3299. if(!s->first_slice_line) {
  3300. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3301. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3302. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3303. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3304. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3305. }
  3306. }
  3307. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3308. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3309. }
  3310. if(get_bits_count(&s->gb) > v->bits) {
  3311. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3312. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3313. return;
  3314. }
  3315. }
  3316. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3317. s->first_slice_line = 0;
  3318. }
  3319. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3320. }
  3321. static void vc1_decode_p_blocks(VC1Context *v)
  3322. {
  3323. MpegEncContext *s = &v->s;
  3324. /* select codingmode used for VLC tables selection */
  3325. switch(v->c_ac_table_index){
  3326. case 0:
  3327. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3328. break;
  3329. case 1:
  3330. v->codingset = CS_HIGH_MOT_INTRA;
  3331. break;
  3332. case 2:
  3333. v->codingset = CS_MID_RATE_INTRA;
  3334. break;
  3335. }
  3336. switch(v->c_ac_table_index){
  3337. case 0:
  3338. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3339. break;
  3340. case 1:
  3341. v->codingset2 = CS_HIGH_MOT_INTER;
  3342. break;
  3343. case 2:
  3344. v->codingset2 = CS_MID_RATE_INTER;
  3345. break;
  3346. }
  3347. s->first_slice_line = 1;
  3348. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3349. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3350. ff_init_block_index(s);
  3351. ff_update_block_index(s);
  3352. s->dsp.clear_blocks(s->block[0]);
  3353. vc1_decode_p_mb(v);
  3354. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3355. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3356. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3357. return;
  3358. }
  3359. }
  3360. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3361. s->first_slice_line = 0;
  3362. }
  3363. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3364. }
  3365. static void vc1_decode_b_blocks(VC1Context *v)
  3366. {
  3367. MpegEncContext *s = &v->s;
  3368. /* select codingmode used for VLC tables selection */
  3369. switch(v->c_ac_table_index){
  3370. case 0:
  3371. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3372. break;
  3373. case 1:
  3374. v->codingset = CS_HIGH_MOT_INTRA;
  3375. break;
  3376. case 2:
  3377. v->codingset = CS_MID_RATE_INTRA;
  3378. break;
  3379. }
  3380. switch(v->c_ac_table_index){
  3381. case 0:
  3382. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3383. break;
  3384. case 1:
  3385. v->codingset2 = CS_HIGH_MOT_INTER;
  3386. break;
  3387. case 2:
  3388. v->codingset2 = CS_MID_RATE_INTER;
  3389. break;
  3390. }
  3391. s->first_slice_line = 1;
  3392. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3393. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3394. ff_init_block_index(s);
  3395. ff_update_block_index(s);
  3396. s->dsp.clear_blocks(s->block[0]);
  3397. vc1_decode_b_mb(v);
  3398. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3399. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3400. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3401. return;
  3402. }
  3403. }
  3404. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3405. s->first_slice_line = 0;
  3406. }
  3407. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3408. }
  3409. static void vc1_decode_skip_blocks(VC1Context *v)
  3410. {
  3411. MpegEncContext *s = &v->s;
  3412. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3413. s->first_slice_line = 1;
  3414. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3415. s->mb_x = 0;
  3416. ff_init_block_index(s);
  3417. ff_update_block_index(s);
  3418. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3419. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3420. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3421. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3422. s->first_slice_line = 0;
  3423. }
  3424. s->pict_type = P_TYPE;
  3425. }
  3426. static void vc1_decode_blocks(VC1Context *v)
  3427. {
  3428. v->s.esc3_level_length = 0;
  3429. if(v->x8_type){
  3430. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3431. }else{
  3432. switch(v->s.pict_type) {
  3433. case I_TYPE:
  3434. if(v->profile == PROFILE_ADVANCED)
  3435. vc1_decode_i_blocks_adv(v);
  3436. else
  3437. vc1_decode_i_blocks(v);
  3438. break;
  3439. case P_TYPE:
  3440. if(v->p_frame_skipped)
  3441. vc1_decode_skip_blocks(v);
  3442. else
  3443. vc1_decode_p_blocks(v);
  3444. break;
  3445. case B_TYPE:
  3446. if(v->bi_type){
  3447. if(v->profile == PROFILE_ADVANCED)
  3448. vc1_decode_i_blocks_adv(v);
  3449. else
  3450. vc1_decode_i_blocks(v);
  3451. }else
  3452. vc1_decode_b_blocks(v);
  3453. break;
  3454. }
  3455. }
  3456. }
  3457. /** Find VC-1 marker in buffer
  3458. * @return position where next marker starts or end of buffer if no marker found
  3459. */
  3460. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3461. {
  3462. uint32_t mrk = 0xFFFFFFFF;
  3463. if(end-src < 4) return end;
  3464. while(src < end){
  3465. mrk = (mrk << 8) | *src++;
  3466. if(IS_MARKER(mrk))
  3467. return src-4;
  3468. }
  3469. return end;
  3470. }
  3471. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3472. {
  3473. int dsize = 0, i;
  3474. if(size < 4){
  3475. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3476. return size;
  3477. }
  3478. for(i = 0; i < size; i++, src++) {
  3479. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3480. dst[dsize++] = src[1];
  3481. src++;
  3482. i++;
  3483. } else
  3484. dst[dsize++] = *src;
  3485. }
  3486. return dsize;
  3487. }
  3488. /** Initialize a VC1/WMV3 decoder
  3489. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3490. * @todo TODO: Decypher remaining bits in extra_data
  3491. */
  3492. static int vc1_decode_init(AVCodecContext *avctx)
  3493. {
  3494. VC1Context *v = avctx->priv_data;
  3495. MpegEncContext *s = &v->s;
  3496. GetBitContext gb;
  3497. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3498. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3499. avctx->pix_fmt = PIX_FMT_YUV420P;
  3500. else
  3501. avctx->pix_fmt = PIX_FMT_GRAY8;
  3502. v->s.avctx = avctx;
  3503. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3504. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3505. if(avctx->idct_algo==FF_IDCT_AUTO){
  3506. avctx->idct_algo=FF_IDCT_WMV2;
  3507. }
  3508. if(ff_h263_decode_init(avctx) < 0)
  3509. return -1;
  3510. if (vc1_init_common(v) < 0) return -1;
  3511. avctx->coded_width = avctx->width;
  3512. avctx->coded_height = avctx->height;
  3513. if (avctx->codec_id == CODEC_ID_WMV3)
  3514. {
  3515. int count = 0;
  3516. // looks like WMV3 has a sequence header stored in the extradata
  3517. // advanced sequence header may be before the first frame
  3518. // the last byte of the extradata is a version number, 1 for the
  3519. // samples we can decode
  3520. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3521. if (decode_sequence_header(avctx, &gb) < 0)
  3522. return -1;
  3523. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3524. if (count>0)
  3525. {
  3526. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3527. count, get_bits(&gb, count));
  3528. }
  3529. else if (count < 0)
  3530. {
  3531. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3532. }
  3533. } else { // VC1/WVC1
  3534. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3535. uint8_t *next; int size, buf2_size;
  3536. uint8_t *buf2 = NULL;
  3537. int seq_inited = 0, ep_inited = 0;
  3538. if(avctx->extradata_size < 16) {
  3539. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3540. return -1;
  3541. }
  3542. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3543. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3544. next = start;
  3545. for(; next < end; start = next){
  3546. next = find_next_marker(start + 4, end);
  3547. size = next - start - 4;
  3548. if(size <= 0) continue;
  3549. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3550. init_get_bits(&gb, buf2, buf2_size * 8);
  3551. switch(AV_RB32(start)){
  3552. case VC1_CODE_SEQHDR:
  3553. if(decode_sequence_header(avctx, &gb) < 0){
  3554. av_free(buf2);
  3555. return -1;
  3556. }
  3557. seq_inited = 1;
  3558. break;
  3559. case VC1_CODE_ENTRYPOINT:
  3560. if(decode_entry_point(avctx, &gb) < 0){
  3561. av_free(buf2);
  3562. return -1;
  3563. }
  3564. ep_inited = 1;
  3565. break;
  3566. }
  3567. }
  3568. av_free(buf2);
  3569. if(!seq_inited || !ep_inited){
  3570. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3571. return -1;
  3572. }
  3573. }
  3574. avctx->has_b_frames= !!(avctx->max_b_frames);
  3575. s->low_delay = !avctx->has_b_frames;
  3576. s->mb_width = (avctx->coded_width+15)>>4;
  3577. s->mb_height = (avctx->coded_height+15)>>4;
  3578. /* Allocate mb bitplanes */
  3579. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3580. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3581. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3582. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3583. /* allocate block type info in that way so it could be used with s->block_index[] */
  3584. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3585. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3586. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3587. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3588. /* Init coded blocks info */
  3589. if (v->profile == PROFILE_ADVANCED)
  3590. {
  3591. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3592. // return -1;
  3593. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3594. // return -1;
  3595. }
  3596. ff_intrax8_common_init(&v->x8,s);
  3597. return 0;
  3598. }
  3599. /** Decode a VC1/WMV3 frame
  3600. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3601. */
  3602. static int vc1_decode_frame(AVCodecContext *avctx,
  3603. void *data, int *data_size,
  3604. uint8_t *buf, int buf_size)
  3605. {
  3606. VC1Context *v = avctx->priv_data;
  3607. MpegEncContext *s = &v->s;
  3608. AVFrame *pict = data;
  3609. uint8_t *buf2 = NULL;
  3610. /* no supplementary picture */
  3611. if (buf_size == 0) {
  3612. /* special case for last picture */
  3613. if (s->low_delay==0 && s->next_picture_ptr) {
  3614. *pict= *(AVFrame*)s->next_picture_ptr;
  3615. s->next_picture_ptr= NULL;
  3616. *data_size = sizeof(AVFrame);
  3617. }
  3618. return 0;
  3619. }
  3620. /* We need to set current_picture_ptr before reading the header,
  3621. * otherwise we cannot store anything in there. */
  3622. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3623. int i= ff_find_unused_picture(s, 0);
  3624. s->current_picture_ptr= &s->picture[i];
  3625. }
  3626. //for advanced profile we may need to parse and unescape data
  3627. if (avctx->codec_id == CODEC_ID_VC1) {
  3628. int buf_size2 = 0;
  3629. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3630. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3631. uint8_t *start, *end, *next;
  3632. int size;
  3633. next = buf;
  3634. for(start = buf, end = buf + buf_size; next < end; start = next){
  3635. next = find_next_marker(start + 4, end);
  3636. size = next - start - 4;
  3637. if(size <= 0) continue;
  3638. switch(AV_RB32(start)){
  3639. case VC1_CODE_FRAME:
  3640. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3641. break;
  3642. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3643. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3644. init_get_bits(&s->gb, buf2, buf_size2*8);
  3645. decode_entry_point(avctx, &s->gb);
  3646. break;
  3647. case VC1_CODE_SLICE:
  3648. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3649. av_free(buf2);
  3650. return -1;
  3651. }
  3652. }
  3653. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3654. uint8_t *divider;
  3655. divider = find_next_marker(buf, buf + buf_size);
  3656. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3657. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3658. return -1;
  3659. }
  3660. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3661. // TODO
  3662. av_free(buf2);return -1;
  3663. }else{
  3664. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3665. }
  3666. init_get_bits(&s->gb, buf2, buf_size2*8);
  3667. } else
  3668. init_get_bits(&s->gb, buf, buf_size*8);
  3669. // do parse frame header
  3670. if(v->profile < PROFILE_ADVANCED) {
  3671. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3672. av_free(buf2);
  3673. return -1;
  3674. }
  3675. } else {
  3676. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3677. av_free(buf2);
  3678. return -1;
  3679. }
  3680. }
  3681. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3682. av_free(buf2);
  3683. return -1;
  3684. }
  3685. // for hurry_up==5
  3686. s->current_picture.pict_type= s->pict_type;
  3687. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3688. /* skip B-frames if we don't have reference frames */
  3689. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3690. av_free(buf2);
  3691. return -1;//buf_size;
  3692. }
  3693. /* skip b frames if we are in a hurry */
  3694. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3695. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3696. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3697. || avctx->skip_frame >= AVDISCARD_ALL) {
  3698. av_free(buf2);
  3699. return buf_size;
  3700. }
  3701. /* skip everything if we are in a hurry>=5 */
  3702. if(avctx->hurry_up>=5) {
  3703. av_free(buf2);
  3704. return -1;//buf_size;
  3705. }
  3706. if(s->next_p_frame_damaged){
  3707. if(s->pict_type==B_TYPE)
  3708. return buf_size;
  3709. else
  3710. s->next_p_frame_damaged=0;
  3711. }
  3712. if(MPV_frame_start(s, avctx) < 0) {
  3713. av_free(buf2);
  3714. return -1;
  3715. }
  3716. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3717. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3718. ff_er_frame_start(s);
  3719. v->bits = buf_size * 8;
  3720. vc1_decode_blocks(v);
  3721. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3722. // if(get_bits_count(&s->gb) > buf_size * 8)
  3723. // return -1;
  3724. ff_er_frame_end(s);
  3725. MPV_frame_end(s);
  3726. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3727. assert(s->current_picture.pict_type == s->pict_type);
  3728. if (s->pict_type == B_TYPE || s->low_delay) {
  3729. *pict= *(AVFrame*)s->current_picture_ptr;
  3730. } else if (s->last_picture_ptr != NULL) {
  3731. *pict= *(AVFrame*)s->last_picture_ptr;
  3732. }
  3733. if(s->last_picture_ptr || s->low_delay){
  3734. *data_size = sizeof(AVFrame);
  3735. ff_print_debug_info(s, pict);
  3736. }
  3737. /* Return the Picture timestamp as the frame number */
  3738. /* we subtract 1 because it is added on utils.c */
  3739. avctx->frame_number = s->picture_number - 1;
  3740. av_free(buf2);
  3741. return buf_size;
  3742. }
  3743. /** Close a VC1/WMV3 decoder
  3744. * @warning Initial try at using MpegEncContext stuff
  3745. */
  3746. static int vc1_decode_end(AVCodecContext *avctx)
  3747. {
  3748. VC1Context *v = avctx->priv_data;
  3749. av_freep(&v->hrd_rate);
  3750. av_freep(&v->hrd_buffer);
  3751. MPV_common_end(&v->s);
  3752. av_freep(&v->mv_type_mb_plane);
  3753. av_freep(&v->direct_mb_plane);
  3754. av_freep(&v->acpred_plane);
  3755. av_freep(&v->over_flags_plane);
  3756. av_freep(&v->mb_type_base);
  3757. return 0;
  3758. }
  3759. AVCodec vc1_decoder = {
  3760. "vc1",
  3761. CODEC_TYPE_VIDEO,
  3762. CODEC_ID_VC1,
  3763. sizeof(VC1Context),
  3764. vc1_decode_init,
  3765. NULL,
  3766. vc1_decode_end,
  3767. vc1_decode_frame,
  3768. CODEC_CAP_DELAY,
  3769. NULL
  3770. };
  3771. AVCodec wmv3_decoder = {
  3772. "wmv3",
  3773. CODEC_TYPE_VIDEO,
  3774. CODEC_ID_WMV3,
  3775. sizeof(VC1Context),
  3776. vc1_decode_init,
  3777. NULL,
  3778. vc1_decode_end,
  3779. vc1_decode_frame,
  3780. CODEC_CAP_DELAY,
  3781. NULL
  3782. };