You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

674 lines
31KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #ifndef SWSCALE_SWSCALE_INTERNAL_H
  21. #define SWSCALE_SWSCALE_INTERNAL_H
  22. #include "config.h"
  23. #if HAVE_ALTIVEC_H
  24. #include <altivec.h>
  25. #endif
  26. #include "libavutil/avutil.h"
  27. #include "libavutil/common.h"
  28. #include "libavutil/log.h"
  29. #include "libavutil/pixfmt.h"
  30. #include "libavutil/pixdesc.h"
  31. #define STR(s) AV_TOSTRING(s) // AV_STRINGIFY is too long
  32. #define FAST_BGR2YV12 // use 7-bit instead of 15-bit coefficients
  33. #define MAX_FILTER_SIZE 256
  34. #if HAVE_BIGENDIAN
  35. #define ALT32_CORR (-1)
  36. #else
  37. #define ALT32_CORR 1
  38. #endif
  39. #if ARCH_X86_64
  40. # define APCK_PTR2 8
  41. # define APCK_COEF 16
  42. # define APCK_SIZE 24
  43. #else
  44. # define APCK_PTR2 4
  45. # define APCK_COEF 8
  46. # define APCK_SIZE 16
  47. #endif
  48. struct SwsContext;
  49. typedef int (*SwsFunc)(struct SwsContext *context, const uint8_t *src[],
  50. int srcStride[], int srcSliceY, int srcSliceH,
  51. uint8_t *dst[], int dstStride[]);
  52. /**
  53. * Write one line of horizontally scaled data to planar output
  54. * without any additional vertical scaling (or point-scaling).
  55. *
  56. * @param src scaled source data, 15bit for 8-10bit output,
  57. * 19-bit for 16bit output (in int32_t)
  58. * @param dest pointer to the output plane. For >8bit
  59. * output, this is in uint16_t
  60. * @param dstW width of destination in pixels
  61. * @param dither ordered dither array of type int16_t and size 8
  62. * @param offset Dither offset
  63. */
  64. typedef void (*yuv2planar1_fn)(const int16_t *src, uint8_t *dest, int dstW,
  65. const uint8_t *dither, int offset);
  66. /**
  67. * Write one line of horizontally scaled data to planar output
  68. * with multi-point vertical scaling between input pixels.
  69. *
  70. * @param filter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  71. * @param src scaled luma (Y) or alpha (A) source data, 15bit for 8-10bit output,
  72. * 19-bit for 16bit output (in int32_t)
  73. * @param filterSize number of vertical input lines to scale
  74. * @param dest pointer to output plane. For >8bit
  75. * output, this is in uint16_t
  76. * @param dstW width of destination pixels
  77. * @param offset Dither offset
  78. */
  79. typedef void (*yuv2planarX_fn)(const int16_t *filter, int filterSize,
  80. const int16_t **src, uint8_t *dest, int dstW,
  81. const uint8_t *dither, int offset);
  82. /**
  83. * Write one line of horizontally scaled chroma to interleaved output
  84. * with multi-point vertical scaling between input pixels.
  85. *
  86. * @param c SWS scaling context
  87. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  88. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  89. * 19-bit for 16bit output (in int32_t)
  90. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  91. * 19-bit for 16bit output (in int32_t)
  92. * @param chrFilterSize number of vertical chroma input lines to scale
  93. * @param dest pointer to the output plane. For >8bit
  94. * output, this is in uint16_t
  95. * @param dstW width of chroma planes
  96. */
  97. typedef void (*yuv2interleavedX_fn)(struct SwsContext *c,
  98. const int16_t *chrFilter,
  99. int chrFilterSize,
  100. const int16_t **chrUSrc,
  101. const int16_t **chrVSrc,
  102. uint8_t *dest, int dstW);
  103. /**
  104. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  105. * output without any additional vertical scaling (or point-scaling). Note
  106. * that this function may do chroma scaling, see the "uvalpha" argument.
  107. *
  108. * @param c SWS scaling context
  109. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  110. * 19-bit for 16bit output (in int32_t)
  111. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  112. * 19-bit for 16bit output (in int32_t)
  113. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  114. * 19-bit for 16bit output (in int32_t)
  115. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  116. * 19-bit for 16bit output (in int32_t)
  117. * @param dest pointer to the output plane. For 16bit output, this is
  118. * uint16_t
  119. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  120. * to write into dest[]
  121. * @param uvalpha chroma scaling coefficient for the second line of chroma
  122. * pixels, either 2048 or 0. If 0, one chroma input is used
  123. * for 2 output pixels (or if the SWS_FLAG_FULL_CHR_INT flag
  124. * is set, it generates 1 output pixel). If 2048, two chroma
  125. * input pixels should be averaged for 2 output pixels (this
  126. * only happens if SWS_FLAG_FULL_CHR_INT is not set)
  127. * @param y vertical line number for this output. This does not need
  128. * to be used to calculate the offset in the destination,
  129. * but can be used to generate comfort noise using dithering
  130. * for some output formats.
  131. */
  132. typedef void (*yuv2packed1_fn)(struct SwsContext *c, const int16_t *lumSrc,
  133. const int16_t *chrUSrc[2],
  134. const int16_t *chrVSrc[2],
  135. const int16_t *alpSrc, uint8_t *dest,
  136. int dstW, int uvalpha, int y);
  137. /**
  138. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  139. * output by doing bilinear scaling between two input lines.
  140. *
  141. * @param c SWS scaling context
  142. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  143. * 19-bit for 16bit output (in int32_t)
  144. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  145. * 19-bit for 16bit output (in int32_t)
  146. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  147. * 19-bit for 16bit output (in int32_t)
  148. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  149. * 19-bit for 16bit output (in int32_t)
  150. * @param dest pointer to the output plane. For 16bit output, this is
  151. * uint16_t
  152. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  153. * to write into dest[]
  154. * @param yalpha luma/alpha scaling coefficients for the second input line.
  155. * The first line's coefficients can be calculated by using
  156. * 4096 - yalpha
  157. * @param uvalpha chroma scaling coefficient for the second input line. The
  158. * first line's coefficients can be calculated by using
  159. * 4096 - uvalpha
  160. * @param y vertical line number for this output. This does not need
  161. * to be used to calculate the offset in the destination,
  162. * but can be used to generate comfort noise using dithering
  163. * for some output formats.
  164. */
  165. typedef void (*yuv2packed2_fn)(struct SwsContext *c, const int16_t *lumSrc[2],
  166. const int16_t *chrUSrc[2],
  167. const int16_t *chrVSrc[2],
  168. const int16_t *alpSrc[2],
  169. uint8_t *dest,
  170. int dstW, int yalpha, int uvalpha, int y);
  171. /**
  172. * Write one line of horizontally scaled Y/U/V/A to packed-pixel YUV/RGB
  173. * output by doing multi-point vertical scaling between input pixels.
  174. *
  175. * @param c SWS scaling context
  176. * @param lumFilter vertical luma/alpha scaling coefficients, 12bit [0,4096]
  177. * @param lumSrc scaled luma (Y) source data, 15bit for 8-10bit output,
  178. * 19-bit for 16bit output (in int32_t)
  179. * @param lumFilterSize number of vertical luma/alpha input lines to scale
  180. * @param chrFilter vertical chroma scaling coefficients, 12bit [0,4096]
  181. * @param chrUSrc scaled chroma (U) source data, 15bit for 8-10bit output,
  182. * 19-bit for 16bit output (in int32_t)
  183. * @param chrVSrc scaled chroma (V) source data, 15bit for 8-10bit output,
  184. * 19-bit for 16bit output (in int32_t)
  185. * @param chrFilterSize number of vertical chroma input lines to scale
  186. * @param alpSrc scaled alpha (A) source data, 15bit for 8-10bit output,
  187. * 19-bit for 16bit output (in int32_t)
  188. * @param dest pointer to the output plane. For 16bit output, this is
  189. * uint16_t
  190. * @param dstW width of lumSrc and alpSrc in pixels, number of pixels
  191. * to write into dest[]
  192. * @param y vertical line number for this output. This does not need
  193. * to be used to calculate the offset in the destination,
  194. * but can be used to generate comfort noise using dithering
  195. * or some output formats.
  196. */
  197. typedef void (*yuv2packedX_fn)(struct SwsContext *c, const int16_t *lumFilter,
  198. const int16_t **lumSrc, int lumFilterSize,
  199. const int16_t *chrFilter,
  200. const int16_t **chrUSrc,
  201. const int16_t **chrVSrc, int chrFilterSize,
  202. const int16_t **alpSrc, uint8_t *dest,
  203. int dstW, int y);
  204. /* This struct should be aligned on at least a 32-byte boundary. */
  205. typedef struct SwsContext {
  206. /**
  207. * info on struct for av_log
  208. */
  209. const AVClass *av_class;
  210. /**
  211. * Note that src, dst, srcStride, dstStride will be copied in the
  212. * sws_scale() wrapper so they can be freely modified here.
  213. */
  214. SwsFunc swScale;
  215. int srcW; ///< Width of source luma/alpha planes.
  216. int srcH; ///< Height of source luma/alpha planes.
  217. int dstH; ///< Height of destination luma/alpha planes.
  218. int chrSrcW; ///< Width of source chroma planes.
  219. int chrSrcH; ///< Height of source chroma planes.
  220. int chrDstW; ///< Width of destination chroma planes.
  221. int chrDstH; ///< Height of destination chroma planes.
  222. int lumXInc, chrXInc;
  223. int lumYInc, chrYInc;
  224. enum PixelFormat dstFormat; ///< Destination pixel format.
  225. enum PixelFormat srcFormat; ///< Source pixel format.
  226. int dstFormatBpp; ///< Number of bits per pixel of the destination pixel format.
  227. int srcFormatBpp; ///< Number of bits per pixel of the source pixel format.
  228. int dstBpc, srcBpc;
  229. int chrSrcHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in source image.
  230. int chrSrcVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in source image.
  231. int chrDstHSubSample; ///< Binary logarithm of horizontal subsampling factor between luma/alpha and chroma planes in destination image.
  232. int chrDstVSubSample; ///< Binary logarithm of vertical subsampling factor between luma/alpha and chroma planes in destination image.
  233. int vChrDrop; ///< Binary logarithm of extra vertical subsampling factor in source image chroma planes specified by user.
  234. int sliceDir; ///< Direction that slices are fed to the scaler (1 = top-to-bottom, -1 = bottom-to-top).
  235. double param[2]; ///< Input parameters for scaling algorithms that need them.
  236. uint32_t pal_yuv[256];
  237. uint32_t pal_rgb[256];
  238. /**
  239. * @name Scaled horizontal lines ring buffer.
  240. * The horizontal scaler keeps just enough scaled lines in a ring buffer
  241. * so they may be passed to the vertical scaler. The pointers to the
  242. * allocated buffers for each line are duplicated in sequence in the ring
  243. * buffer to simplify indexing and avoid wrapping around between lines
  244. * inside the vertical scaler code. The wrapping is done before the
  245. * vertical scaler is called.
  246. */
  247. //@{
  248. int16_t **lumPixBuf; ///< Ring buffer for scaled horizontal luma plane lines to be fed to the vertical scaler.
  249. int16_t **chrUPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  250. int16_t **chrVPixBuf; ///< Ring buffer for scaled horizontal chroma plane lines to be fed to the vertical scaler.
  251. int16_t **alpPixBuf; ///< Ring buffer for scaled horizontal alpha plane lines to be fed to the vertical scaler.
  252. int vLumBufSize; ///< Number of vertical luma/alpha lines allocated in the ring buffer.
  253. int vChrBufSize; ///< Number of vertical chroma lines allocated in the ring buffer.
  254. int lastInLumBuf; ///< Last scaled horizontal luma/alpha line from source in the ring buffer.
  255. int lastInChrBuf; ///< Last scaled horizontal chroma line from source in the ring buffer.
  256. int lumBufIndex; ///< Index in ring buffer of the last scaled horizontal luma/alpha line from source.
  257. int chrBufIndex; ///< Index in ring buffer of the last scaled horizontal chroma line from source.
  258. //@}
  259. uint8_t *formatConvBuffer;
  260. /**
  261. * @name Horizontal and vertical filters.
  262. * To better understand the following fields, here is a pseudo-code of
  263. * their usage in filtering a horizontal line:
  264. * @code
  265. * for (i = 0; i < width; i++) {
  266. * dst[i] = 0;
  267. * for (j = 0; j < filterSize; j++)
  268. * dst[i] += src[ filterPos[i] + j ] * filter[ filterSize * i + j ];
  269. * dst[i] >>= FRAC_BITS; // The actual implementation is fixed-point.
  270. * }
  271. * @endcode
  272. */
  273. //@{
  274. int16_t *hLumFilter; ///< Array of horizontal filter coefficients for luma/alpha planes.
  275. int16_t *hChrFilter; ///< Array of horizontal filter coefficients for chroma planes.
  276. int16_t *vLumFilter; ///< Array of vertical filter coefficients for luma/alpha planes.
  277. int16_t *vChrFilter; ///< Array of vertical filter coefficients for chroma planes.
  278. int32_t *hLumFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for luma/alpha planes.
  279. int32_t *hChrFilterPos; ///< Array of horizontal filter starting positions for each dst[i] for chroma planes.
  280. int32_t *vLumFilterPos; ///< Array of vertical filter starting positions for each dst[i] for luma/alpha planes.
  281. int32_t *vChrFilterPos; ///< Array of vertical filter starting positions for each dst[i] for chroma planes.
  282. int hLumFilterSize; ///< Horizontal filter size for luma/alpha pixels.
  283. int hChrFilterSize; ///< Horizontal filter size for chroma pixels.
  284. int vLumFilterSize; ///< Vertical filter size for luma/alpha pixels.
  285. int vChrFilterSize; ///< Vertical filter size for chroma pixels.
  286. //@}
  287. int lumMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for luma/alpha planes.
  288. int chrMmx2FilterCodeSize; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code size for chroma planes.
  289. uint8_t *lumMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for luma/alpha planes.
  290. uint8_t *chrMmx2FilterCode; ///< Runtime-generated MMX2 horizontal fast bilinear scaler code for chroma planes.
  291. int canMMX2BeUsed;
  292. int dstY; ///< Last destination vertical line output from last slice.
  293. int flags; ///< Flags passed by the user to select scaler algorithm, optimizations, subsampling, etc...
  294. void *yuvTable; // pointer to the yuv->rgb table start so it can be freed()
  295. uint8_t *table_rV[256];
  296. uint8_t *table_gU[256];
  297. int table_gV[256];
  298. uint8_t *table_bU[256];
  299. //Colorspace stuff
  300. int contrast, brightness, saturation; // for sws_getColorspaceDetails
  301. int srcColorspaceTable[4];
  302. int dstColorspaceTable[4];
  303. int srcRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (source image).
  304. int dstRange; ///< 0 = MPG YUV range, 1 = JPG YUV range (destination image).
  305. int yuv2rgb_y_offset;
  306. int yuv2rgb_y_coeff;
  307. int yuv2rgb_v2r_coeff;
  308. int yuv2rgb_v2g_coeff;
  309. int yuv2rgb_u2g_coeff;
  310. int yuv2rgb_u2b_coeff;
  311. #define RED_DITHER "0*8"
  312. #define GREEN_DITHER "1*8"
  313. #define BLUE_DITHER "2*8"
  314. #define Y_COEFF "3*8"
  315. #define VR_COEFF "4*8"
  316. #define UB_COEFF "5*8"
  317. #define VG_COEFF "6*8"
  318. #define UG_COEFF "7*8"
  319. #define Y_OFFSET "8*8"
  320. #define U_OFFSET "9*8"
  321. #define V_OFFSET "10*8"
  322. #define LUM_MMX_FILTER_OFFSET "11*8"
  323. #define CHR_MMX_FILTER_OFFSET "11*8+4*4*256"
  324. #define DSTW_OFFSET "11*8+4*4*256*2" //do not change, it is hardcoded in the ASM
  325. #define ESP_OFFSET "11*8+4*4*256*2+8"
  326. #define VROUNDER_OFFSET "11*8+4*4*256*2+16"
  327. #define U_TEMP "11*8+4*4*256*2+24"
  328. #define V_TEMP "11*8+4*4*256*2+32"
  329. #define Y_TEMP "11*8+4*4*256*2+40"
  330. #define ALP_MMX_FILTER_OFFSET "11*8+4*4*256*2+48"
  331. #define UV_OFF_PX "11*8+4*4*256*3+48"
  332. #define UV_OFF_BYTE "11*8+4*4*256*3+56"
  333. #define DITHER16 "11*8+4*4*256*3+64"
  334. #define DITHER32 "11*8+4*4*256*3+80"
  335. DECLARE_ALIGNED(8, uint64_t, redDither);
  336. DECLARE_ALIGNED(8, uint64_t, greenDither);
  337. DECLARE_ALIGNED(8, uint64_t, blueDither);
  338. DECLARE_ALIGNED(8, uint64_t, yCoeff);
  339. DECLARE_ALIGNED(8, uint64_t, vrCoeff);
  340. DECLARE_ALIGNED(8, uint64_t, ubCoeff);
  341. DECLARE_ALIGNED(8, uint64_t, vgCoeff);
  342. DECLARE_ALIGNED(8, uint64_t, ugCoeff);
  343. DECLARE_ALIGNED(8, uint64_t, yOffset);
  344. DECLARE_ALIGNED(8, uint64_t, uOffset);
  345. DECLARE_ALIGNED(8, uint64_t, vOffset);
  346. int32_t lumMmxFilter[4 * MAX_FILTER_SIZE];
  347. int32_t chrMmxFilter[4 * MAX_FILTER_SIZE];
  348. int dstW; ///< Width of destination luma/alpha planes.
  349. DECLARE_ALIGNED(8, uint64_t, esp);
  350. DECLARE_ALIGNED(8, uint64_t, vRounder);
  351. DECLARE_ALIGNED(8, uint64_t, u_temp);
  352. DECLARE_ALIGNED(8, uint64_t, v_temp);
  353. DECLARE_ALIGNED(8, uint64_t, y_temp);
  354. int32_t alpMmxFilter[4 * MAX_FILTER_SIZE];
  355. // alignment of these values is not necessary, but merely here
  356. // to maintain the same offset across x8632 and x86-64. Once we
  357. // use proper offset macros in the asm, they can be removed.
  358. DECLARE_ALIGNED(8, ptrdiff_t, uv_off_px); ///< offset (in pixels) between u and v planes
  359. DECLARE_ALIGNED(8, ptrdiff_t, uv_off_byte); ///< offset (in bytes) between u and v planes
  360. DECLARE_ALIGNED(8, uint16_t, dither16)[8];
  361. DECLARE_ALIGNED(8, uint32_t, dither32)[8];
  362. const uint8_t *chrDither8, *lumDither8;
  363. #if HAVE_ALTIVEC
  364. vector signed short CY;
  365. vector signed short CRV;
  366. vector signed short CBU;
  367. vector signed short CGU;
  368. vector signed short CGV;
  369. vector signed short OY;
  370. vector unsigned short CSHIFT;
  371. vector signed short *vYCoeffsBank, *vCCoeffsBank;
  372. #endif
  373. #if ARCH_BFIN
  374. DECLARE_ALIGNED(4, uint32_t, oy);
  375. DECLARE_ALIGNED(4, uint32_t, oc);
  376. DECLARE_ALIGNED(4, uint32_t, zero);
  377. DECLARE_ALIGNED(4, uint32_t, cy);
  378. DECLARE_ALIGNED(4, uint32_t, crv);
  379. DECLARE_ALIGNED(4, uint32_t, rmask);
  380. DECLARE_ALIGNED(4, uint32_t, cbu);
  381. DECLARE_ALIGNED(4, uint32_t, bmask);
  382. DECLARE_ALIGNED(4, uint32_t, cgu);
  383. DECLARE_ALIGNED(4, uint32_t, cgv);
  384. DECLARE_ALIGNED(4, uint32_t, gmask);
  385. #endif
  386. #if HAVE_VIS
  387. DECLARE_ALIGNED(8, uint64_t, sparc_coeffs)[10];
  388. #endif
  389. /* function pointers for swScale() */
  390. yuv2planar1_fn yuv2plane1;
  391. yuv2planarX_fn yuv2planeX;
  392. yuv2interleavedX_fn yuv2nv12cX;
  393. yuv2packed1_fn yuv2packed1;
  394. yuv2packed2_fn yuv2packed2;
  395. yuv2packedX_fn yuv2packedX;
  396. /// Unscaled conversion of luma plane to YV12 for horizontal scaler.
  397. void (*lumToYV12)(uint8_t *dst, const uint8_t *src,
  398. int width, uint32_t *pal);
  399. /// Unscaled conversion of alpha plane to YV12 for horizontal scaler.
  400. void (*alpToYV12)(uint8_t *dst, const uint8_t *src,
  401. int width, uint32_t *pal);
  402. /// Unscaled conversion of chroma planes to YV12 for horizontal scaler.
  403. void (*chrToYV12)(uint8_t *dstU, uint8_t *dstV,
  404. const uint8_t *src1, const uint8_t *src2,
  405. int width, uint32_t *pal);
  406. /**
  407. * Functions to read planar input, such as planar RGB, and convert
  408. * internally to Y/UV.
  409. */
  410. /** @{ */
  411. void (*readLumPlanar)(uint8_t *dst, const uint8_t *src[4], int width);
  412. void (*readChrPlanar)(uint8_t *dstU, uint8_t *dstV, const uint8_t *src[4],
  413. int width);
  414. /** @} */
  415. /**
  416. * Scale one horizontal line of input data using a bilinear filter
  417. * to produce one line of output data. Compared to SwsContext->hScale(),
  418. * please take note of the following caveats when using these:
  419. * - Scaling is done using only 7bit instead of 14bit coefficients.
  420. * - You can use no more than 5 input pixels to produce 4 output
  421. * pixels. Therefore, this filter should not be used for downscaling
  422. * by more than ~20% in width (because that equals more than 5/4th
  423. * downscaling and thus more than 5 pixels input per 4 pixels output).
  424. * - In general, bilinear filters create artifacts during downscaling
  425. * (even when <20%), because one output pixel will span more than one
  426. * input pixel, and thus some pixels will need edges of both neighbor
  427. * pixels to interpolate the output pixel. Since you can use at most
  428. * two input pixels per output pixel in bilinear scaling, this is
  429. * impossible and thus downscaling by any size will create artifacts.
  430. * To enable this type of scaling, set SWS_FLAG_FAST_BILINEAR
  431. * in SwsContext->flags.
  432. */
  433. /** @{ */
  434. void (*hyscale_fast)(struct SwsContext *c,
  435. int16_t *dst, int dstWidth,
  436. const uint8_t *src, int srcW, int xInc);
  437. void (*hcscale_fast)(struct SwsContext *c,
  438. int16_t *dst1, int16_t *dst2, int dstWidth,
  439. const uint8_t *src1, const uint8_t *src2,
  440. int srcW, int xInc);
  441. /** @} */
  442. /**
  443. * Scale one horizontal line of input data using a filter over the input
  444. * lines, to produce one (differently sized) line of output data.
  445. *
  446. * @param dst pointer to destination buffer for horizontally scaled
  447. * data. If the number of bits per component of one
  448. * destination pixel (SwsContext->dstBpc) is <= 10, data
  449. * will be 15bpc in 16bits (int16_t) width. Else (i.e.
  450. * SwsContext->dstBpc == 16), data will be 19bpc in
  451. * 32bits (int32_t) width.
  452. * @param dstW width of destination image
  453. * @param src pointer to source data to be scaled. If the number of
  454. * bits per component of a source pixel (SwsContext->srcBpc)
  455. * is 8, this is 8bpc in 8bits (uint8_t) width. Else
  456. * (i.e. SwsContext->dstBpc > 8), this is native depth
  457. * in 16bits (uint16_t) width. In other words, for 9-bit
  458. * YUV input, this is 9bpc, for 10-bit YUV input, this is
  459. * 10bpc, and for 16-bit RGB or YUV, this is 16bpc.
  460. * @param filter filter coefficients to be used per output pixel for
  461. * scaling. This contains 14bpp filtering coefficients.
  462. * Guaranteed to contain dstW * filterSize entries.
  463. * @param filterPos position of the first input pixel to be used for
  464. * each output pixel during scaling. Guaranteed to
  465. * contain dstW entries.
  466. * @param filterSize the number of input coefficients to be used (and
  467. * thus the number of input pixels to be used) for
  468. * creating a single output pixel. Is aligned to 4
  469. * (and input coefficients thus padded with zeroes)
  470. * to simplify creating SIMD code.
  471. */
  472. /** @{ */
  473. void (*hyScale)(struct SwsContext *c, int16_t *dst, int dstW,
  474. const uint8_t *src, const int16_t *filter,
  475. const int32_t *filterPos, int filterSize);
  476. void (*hcScale)(struct SwsContext *c, int16_t *dst, int dstW,
  477. const uint8_t *src, const int16_t *filter,
  478. const int32_t *filterPos, int filterSize);
  479. /** @} */
  480. /// Color range conversion function for luma plane if needed.
  481. void (*lumConvertRange)(int16_t *dst, int width);
  482. /// Color range conversion function for chroma planes if needed.
  483. void (*chrConvertRange)(int16_t *dst1, int16_t *dst2, int width);
  484. int needs_hcscale; ///< Set if there are chroma planes to be converted.
  485. } SwsContext;
  486. //FIXME check init (where 0)
  487. SwsFunc ff_yuv2rgb_get_func_ptr(SwsContext *c);
  488. int ff_yuv2rgb_c_init_tables(SwsContext *c, const int inv_table[4],
  489. int fullRange, int brightness,
  490. int contrast, int saturation);
  491. void ff_yuv2rgb_init_tables_altivec(SwsContext *c, const int inv_table[4],
  492. int brightness, int contrast, int saturation);
  493. void updateMMXDitherTables(SwsContext *c, int dstY, int lumBufIndex, int chrBufIndex,
  494. int lastInLumBuf, int lastInChrBuf);
  495. SwsFunc ff_yuv2rgb_init_mmx(SwsContext *c);
  496. SwsFunc ff_yuv2rgb_init_vis(SwsContext *c);
  497. SwsFunc ff_yuv2rgb_init_altivec(SwsContext *c);
  498. SwsFunc ff_yuv2rgb_get_func_ptr_bfin(SwsContext *c);
  499. void ff_bfin_get_unscaled_swscale(SwsContext *c);
  500. const char *sws_format_name(enum PixelFormat format);
  501. #define is16BPS(x) \
  502. (av_pix_fmt_descriptors[x].comp[0].depth_minus1 == 15)
  503. #define is9_OR_10BPS(x) \
  504. (av_pix_fmt_descriptors[x].comp[0].depth_minus1 == 8 || \
  505. av_pix_fmt_descriptors[x].comp[0].depth_minus1 == 9)
  506. #define isBE(x) \
  507. (av_pix_fmt_descriptors[x].flags & PIX_FMT_BE)
  508. #define isYUV(x) \
  509. (!(av_pix_fmt_descriptors[x].flags & PIX_FMT_RGB) && \
  510. av_pix_fmt_descriptors[x].nb_components >= 2)
  511. #define isPlanarYUV(x) \
  512. ((av_pix_fmt_descriptors[x].flags & PIX_FMT_PLANAR) && \
  513. isYUV(x))
  514. #define isRGB(x) \
  515. (av_pix_fmt_descriptors[x].flags & PIX_FMT_RGB)
  516. #if 0 // FIXME
  517. #define isGray(x) \
  518. (!(av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL) && \
  519. av_pix_fmt_descriptors[x].nb_components <= 2)
  520. #else
  521. #define isGray(x) \
  522. ((x) == PIX_FMT_GRAY8 || \
  523. (x) == PIX_FMT_Y400A || \
  524. (x) == PIX_FMT_GRAY16BE || \
  525. (x) == PIX_FMT_GRAY16LE)
  526. #endif
  527. #define isRGBinInt(x) \
  528. ((x) == PIX_FMT_RGB48BE || \
  529. (x) == PIX_FMT_RGB48LE || \
  530. (x) == PIX_FMT_RGB32 || \
  531. (x) == PIX_FMT_RGB32_1 || \
  532. (x) == PIX_FMT_RGB24 || \
  533. (x) == PIX_FMT_RGB565BE || \
  534. (x) == PIX_FMT_RGB565LE || \
  535. (x) == PIX_FMT_RGB555BE || \
  536. (x) == PIX_FMT_RGB555LE || \
  537. (x) == PIX_FMT_RGB444BE || \
  538. (x) == PIX_FMT_RGB444LE || \
  539. (x) == PIX_FMT_RGB8 || \
  540. (x) == PIX_FMT_RGB4 || \
  541. (x) == PIX_FMT_RGB4_BYTE || \
  542. (x) == PIX_FMT_MONOBLACK || \
  543. (x) == PIX_FMT_MONOWHITE)
  544. #define isBGRinInt(x) \
  545. ((x) == PIX_FMT_BGR48BE || \
  546. (x) == PIX_FMT_BGR48LE || \
  547. (x) == PIX_FMT_BGR32 || \
  548. (x) == PIX_FMT_BGR32_1 || \
  549. (x) == PIX_FMT_BGR24 || \
  550. (x) == PIX_FMT_BGR565BE || \
  551. (x) == PIX_FMT_BGR565LE || \
  552. (x) == PIX_FMT_BGR555BE || \
  553. (x) == PIX_FMT_BGR555LE || \
  554. (x) == PIX_FMT_BGR444BE || \
  555. (x) == PIX_FMT_BGR444LE || \
  556. (x) == PIX_FMT_BGR8 || \
  557. (x) == PIX_FMT_BGR4 || \
  558. (x) == PIX_FMT_BGR4_BYTE || \
  559. (x) == PIX_FMT_MONOBLACK || \
  560. (x) == PIX_FMT_MONOWHITE)
  561. #define isAnyRGB(x) \
  562. (isRGBinInt(x) || \
  563. isBGRinInt(x))
  564. #define isALPHA(x) \
  565. (av_pix_fmt_descriptors[x].nb_components == 2 || \
  566. av_pix_fmt_descriptors[x].nb_components == 4)
  567. #define isPacked(x) \
  568. ((av_pix_fmt_descriptors[x].nb_components >= 2 && \
  569. !(av_pix_fmt_descriptors[x].flags & PIX_FMT_PLANAR)) || \
  570. (x) == PIX_FMT_PAL8)
  571. #define isPlanar(x) \
  572. (av_pix_fmt_descriptors[x].nb_components >= 2 && \
  573. (av_pix_fmt_descriptors[x].flags & PIX_FMT_PLANAR))
  574. #define isPackedRGB(x) \
  575. ((av_pix_fmt_descriptors[x].flags & \
  576. (PIX_FMT_PLANAR | PIX_FMT_RGB)) == PIX_FMT_RGB)
  577. #define isPlanarRGB(x) \
  578. ((av_pix_fmt_descriptors[x].flags & \
  579. (PIX_FMT_PLANAR | PIX_FMT_RGB)) == (PIX_FMT_PLANAR | PIX_FMT_RGB))
  580. #define usePal(x) ((av_pix_fmt_descriptors[x].flags & PIX_FMT_PAL) || \
  581. (av_pix_fmt_descriptors[x].flags & PIX_FMT_PSEUDOPAL) || \
  582. (x) == PIX_FMT_Y400A)
  583. extern const uint64_t ff_dither4[2];
  584. extern const uint64_t ff_dither8[2];
  585. extern const AVClass sws_context_class;
  586. /**
  587. * Set c->swScale to an unscaled converter if one exists for the specific
  588. * source and destination formats, bit depths, flags, etc.
  589. */
  590. void ff_get_unscaled_swscale(SwsContext *c);
  591. void ff_swscale_get_unscaled_altivec(SwsContext *c);
  592. /**
  593. * Return function pointer to fastest main scaler path function depending
  594. * on architecture and available optimizations.
  595. */
  596. SwsFunc ff_getSwsFunc(SwsContext *c);
  597. void ff_sws_init_input_funcs(SwsContext *c);
  598. void ff_sws_init_output_funcs(SwsContext *c,
  599. yuv2planar1_fn *yuv2plane1,
  600. yuv2planarX_fn *yuv2planeX,
  601. yuv2interleavedX_fn *yuv2nv12cX,
  602. yuv2packed1_fn *yuv2packed1,
  603. yuv2packed2_fn *yuv2packed2,
  604. yuv2packedX_fn *yuv2packedX);
  605. void ff_sws_init_swScale_altivec(SwsContext *c);
  606. void ff_sws_init_swScale_mmx(SwsContext *c);
  607. #endif /* SWSCALE_SWSCALE_INTERNAL_H */