You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

446 lines
14KB

  1. /*
  2. * WMA compatible encoder
  3. * Copyright (c) 2007 Michael Niedermayer
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "internal.h"
  23. #include "wma.h"
  24. #undef NDEBUG
  25. #include <assert.h>
  26. static int encode_init(AVCodecContext * avctx){
  27. WMACodecContext *s = avctx->priv_data;
  28. int i, flags1, flags2;
  29. uint8_t *extradata;
  30. s->avctx = avctx;
  31. if(avctx->channels > MAX_CHANNELS) {
  32. av_log(avctx, AV_LOG_ERROR, "too many channels: got %i, need %i or fewer",
  33. avctx->channels, MAX_CHANNELS);
  34. return AVERROR(EINVAL);
  35. }
  36. if (avctx->sample_rate > 48000) {
  37. av_log(avctx, AV_LOG_ERROR, "sample rate is too high: %d > 48kHz",
  38. avctx->sample_rate);
  39. return AVERROR(EINVAL);
  40. }
  41. if(avctx->bit_rate < 24*1000) {
  42. av_log(avctx, AV_LOG_ERROR, "bitrate too low: got %i, need 24000 or higher\n",
  43. avctx->bit_rate);
  44. return AVERROR(EINVAL);
  45. }
  46. /* extract flag infos */
  47. flags1 = 0;
  48. flags2 = 1;
  49. if (avctx->codec->id == AV_CODEC_ID_WMAV1) {
  50. extradata= av_malloc(4);
  51. avctx->extradata_size= 4;
  52. AV_WL16(extradata, flags1);
  53. AV_WL16(extradata+2, flags2);
  54. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2) {
  55. extradata= av_mallocz(10);
  56. avctx->extradata_size= 10;
  57. AV_WL32(extradata, flags1);
  58. AV_WL16(extradata+4, flags2);
  59. }else
  60. assert(0);
  61. avctx->extradata= extradata;
  62. s->use_exp_vlc = flags2 & 0x0001;
  63. s->use_bit_reservoir = flags2 & 0x0002;
  64. s->use_variable_block_len = flags2 & 0x0004;
  65. if (avctx->channels == 2)
  66. s->ms_stereo = 1;
  67. ff_wma_init(avctx, flags2);
  68. /* init MDCT */
  69. for(i = 0; i < s->nb_block_sizes; i++)
  70. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 0, 1.0);
  71. s->block_align = avctx->bit_rate * (int64_t)s->frame_len /
  72. (avctx->sample_rate * 8);
  73. s->block_align = FFMIN(s->block_align, MAX_CODED_SUPERFRAME_SIZE);
  74. avctx->block_align = s->block_align;
  75. avctx->bit_rate = avctx->block_align * 8LL * avctx->sample_rate /
  76. s->frame_len;
  77. avctx->frame_size = avctx->delay = s->frame_len;
  78. #if FF_API_OLD_ENCODE_AUDIO
  79. avctx->coded_frame = &s->frame;
  80. avcodec_get_frame_defaults(avctx->coded_frame);
  81. #endif
  82. return 0;
  83. }
  84. static void apply_window_and_mdct(AVCodecContext * avctx, const signed short * audio, int len) {
  85. WMACodecContext *s = avctx->priv_data;
  86. int window_index= s->frame_len_bits - s->block_len_bits;
  87. FFTContext *mdct = &s->mdct_ctx[window_index];
  88. int i, j, channel;
  89. const float * win = s->windows[window_index];
  90. int window_len = 1 << s->block_len_bits;
  91. float n = window_len/2;
  92. for (channel = 0; channel < avctx->channels; channel++) {
  93. memcpy(s->output, s->frame_out[channel], sizeof(float)*window_len);
  94. j = channel;
  95. for (i = 0; i < len; i++, j += avctx->channels){
  96. s->output[i+window_len] = audio[j] / n * win[window_len - i - 1];
  97. s->frame_out[channel][i] = audio[j] / n * win[i];
  98. }
  99. mdct->mdct_calc(mdct, s->coefs[channel], s->output);
  100. }
  101. }
  102. //FIXME use for decoding too
  103. static void init_exp(WMACodecContext *s, int ch, const int *exp_param){
  104. int n;
  105. const uint16_t *ptr;
  106. float v, *q, max_scale, *q_end;
  107. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  108. q = s->exponents[ch];
  109. q_end = q + s->block_len;
  110. max_scale = 0;
  111. while (q < q_end) {
  112. /* XXX: use a table */
  113. v = pow(10, *exp_param++ * (1.0 / 16.0));
  114. max_scale= FFMAX(max_scale, v);
  115. n = *ptr++;
  116. do {
  117. *q++ = v;
  118. } while (--n);
  119. }
  120. s->max_exponent[ch] = max_scale;
  121. }
  122. static void encode_exp_vlc(WMACodecContext *s, int ch, const int *exp_param){
  123. int last_exp;
  124. const uint16_t *ptr;
  125. float *q, *q_end;
  126. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  127. q = s->exponents[ch];
  128. q_end = q + s->block_len;
  129. if (s->version == 1) {
  130. last_exp= *exp_param++;
  131. assert(last_exp-10 >= 0 && last_exp-10 < 32);
  132. put_bits(&s->pb, 5, last_exp - 10);
  133. q+= *ptr++;
  134. }else
  135. last_exp = 36;
  136. while (q < q_end) {
  137. int exp = *exp_param++;
  138. int code = exp - last_exp + 60;
  139. assert(code >= 0 && code < 120);
  140. put_bits(&s->pb, ff_aac_scalefactor_bits[code], ff_aac_scalefactor_code[code]);
  141. /* XXX: use a table */
  142. q+= *ptr++;
  143. last_exp= exp;
  144. }
  145. }
  146. static int encode_block(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], int total_gain){
  147. int v, bsize, ch, coef_nb_bits, parse_exponents;
  148. float mdct_norm;
  149. int nb_coefs[MAX_CHANNELS];
  150. static const int fixed_exp[25]={20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20};
  151. //FIXME remove duplication relative to decoder
  152. if (s->use_variable_block_len) {
  153. assert(0); //FIXME not implemented
  154. }else{
  155. /* fixed block len */
  156. s->next_block_len_bits = s->frame_len_bits;
  157. s->prev_block_len_bits = s->frame_len_bits;
  158. s->block_len_bits = s->frame_len_bits;
  159. }
  160. s->block_len = 1 << s->block_len_bits;
  161. // assert((s->block_pos + s->block_len) <= s->frame_len);
  162. bsize = s->frame_len_bits - s->block_len_bits;
  163. //FIXME factor
  164. v = s->coefs_end[bsize] - s->coefs_start;
  165. for(ch = 0; ch < s->nb_channels; ch++)
  166. nb_coefs[ch] = v;
  167. {
  168. int n4 = s->block_len / 2;
  169. mdct_norm = 1.0 / (float)n4;
  170. if (s->version == 1) {
  171. mdct_norm *= sqrt(n4);
  172. }
  173. }
  174. if (s->nb_channels == 2) {
  175. put_bits(&s->pb, 1, !!s->ms_stereo);
  176. }
  177. for(ch = 0; ch < s->nb_channels; ch++) {
  178. s->channel_coded[ch] = 1; //FIXME only set channel_coded when needed, instead of always
  179. if (s->channel_coded[ch]) {
  180. init_exp(s, ch, fixed_exp);
  181. }
  182. }
  183. for(ch = 0; ch < s->nb_channels; ch++) {
  184. if (s->channel_coded[ch]) {
  185. WMACoef *coefs1;
  186. float *coefs, *exponents, mult;
  187. int i, n;
  188. coefs1 = s->coefs1[ch];
  189. exponents = s->exponents[ch];
  190. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  191. mult *= mdct_norm;
  192. coefs = src_coefs[ch];
  193. if (s->use_noise_coding && 0) {
  194. assert(0); //FIXME not implemented
  195. } else {
  196. coefs += s->coefs_start;
  197. n = nb_coefs[ch];
  198. for(i = 0;i < n; i++){
  199. double t= *coefs++ / (exponents[i] * mult);
  200. if(t<-32768 || t>32767)
  201. return -1;
  202. coefs1[i] = lrint(t);
  203. }
  204. }
  205. }
  206. }
  207. v = 0;
  208. for(ch = 0; ch < s->nb_channels; ch++) {
  209. int a = s->channel_coded[ch];
  210. put_bits(&s->pb, 1, a);
  211. v |= a;
  212. }
  213. if (!v)
  214. return 1;
  215. for(v= total_gain-1; v>=127; v-= 127)
  216. put_bits(&s->pb, 7, 127);
  217. put_bits(&s->pb, 7, v);
  218. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  219. if (s->use_noise_coding) {
  220. for(ch = 0; ch < s->nb_channels; ch++) {
  221. if (s->channel_coded[ch]) {
  222. int i, n;
  223. n = s->exponent_high_sizes[bsize];
  224. for(i=0;i<n;i++) {
  225. put_bits(&s->pb, 1, s->high_band_coded[ch][i]= 0);
  226. if (0)
  227. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  228. }
  229. }
  230. }
  231. }
  232. parse_exponents = 1;
  233. if (s->block_len_bits != s->frame_len_bits) {
  234. put_bits(&s->pb, 1, parse_exponents);
  235. }
  236. if (parse_exponents) {
  237. for(ch = 0; ch < s->nb_channels; ch++) {
  238. if (s->channel_coded[ch]) {
  239. if (s->use_exp_vlc) {
  240. encode_exp_vlc(s, ch, fixed_exp);
  241. } else {
  242. assert(0); //FIXME not implemented
  243. // encode_exp_lsp(s, ch);
  244. }
  245. }
  246. }
  247. } else {
  248. assert(0); //FIXME not implemented
  249. }
  250. for(ch = 0; ch < s->nb_channels; ch++) {
  251. if (s->channel_coded[ch]) {
  252. int run, tindex;
  253. WMACoef *ptr, *eptr;
  254. tindex = (ch == 1 && s->ms_stereo);
  255. ptr = &s->coefs1[ch][0];
  256. eptr = ptr + nb_coefs[ch];
  257. run=0;
  258. for(;ptr < eptr; ptr++){
  259. if(*ptr){
  260. int level= *ptr;
  261. int abs_level= FFABS(level);
  262. int code= 0;
  263. if(abs_level <= s->coef_vlcs[tindex]->max_level){
  264. if(run < s->coef_vlcs[tindex]->levels[abs_level-1])
  265. code= run + s->int_table[tindex][abs_level-1];
  266. }
  267. assert(code < s->coef_vlcs[tindex]->n);
  268. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[code], s->coef_vlcs[tindex]->huffcodes[code]);
  269. if(code == 0){
  270. if(1<<coef_nb_bits <= abs_level)
  271. return -1;
  272. put_bits(&s->pb, coef_nb_bits, abs_level);
  273. put_bits(&s->pb, s->frame_len_bits, run);
  274. }
  275. put_bits(&s->pb, 1, level < 0); //FIXME the sign is fliped somewhere
  276. run=0;
  277. }else{
  278. run++;
  279. }
  280. }
  281. if(run)
  282. put_bits(&s->pb, s->coef_vlcs[tindex]->huffbits[1], s->coef_vlcs[tindex]->huffcodes[1]);
  283. }
  284. if (s->version == 1 && s->nb_channels >= 2) {
  285. avpriv_align_put_bits(&s->pb);
  286. }
  287. }
  288. return 0;
  289. }
  290. static int encode_frame(WMACodecContext *s, float (*src_coefs)[BLOCK_MAX_SIZE], uint8_t *buf, int buf_size, int total_gain){
  291. init_put_bits(&s->pb, buf, buf_size);
  292. if (s->use_bit_reservoir) {
  293. assert(0);//FIXME not implemented
  294. }else{
  295. if(encode_block(s, src_coefs, total_gain) < 0)
  296. return INT_MAX;
  297. }
  298. avpriv_align_put_bits(&s->pb);
  299. return put_bits_count(&s->pb)/8 - s->block_align;
  300. }
  301. static int encode_superframe(AVCodecContext *avctx, AVPacket *avpkt,
  302. const AVFrame *frame, int *got_packet_ptr)
  303. {
  304. WMACodecContext *s = avctx->priv_data;
  305. const int16_t *samples = (const int16_t *)frame->data[0];
  306. int i, total_gain, ret;
  307. s->block_len_bits= s->frame_len_bits; //required by non variable block len
  308. s->block_len = 1 << s->block_len_bits;
  309. apply_window_and_mdct(avctx, samples, frame->nb_samples);
  310. if (s->ms_stereo) {
  311. float a, b;
  312. int i;
  313. for(i = 0; i < s->block_len; i++) {
  314. a = s->coefs[0][i]*0.5;
  315. b = s->coefs[1][i]*0.5;
  316. s->coefs[0][i] = a + b;
  317. s->coefs[1][i] = a - b;
  318. }
  319. }
  320. if ((ret = ff_alloc_packet(avpkt, 2 * MAX_CODED_SUPERFRAME_SIZE))) {
  321. av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
  322. return ret;
  323. }
  324. #if 1
  325. total_gain= 128;
  326. for(i=64; i; i>>=1){
  327. int error = encode_frame(s, s->coefs, avpkt->data, avpkt->size,
  328. total_gain - i);
  329. if(error<0)
  330. total_gain-= i;
  331. }
  332. #else
  333. total_gain= 90;
  334. best = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain);
  335. for(i=32; i; i>>=1){
  336. int scoreL = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain - i);
  337. int scoreR = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain + i);
  338. av_log(NULL, AV_LOG_ERROR, "%d %d %d (%d)\n", scoreL, best, scoreR, total_gain);
  339. if(scoreL < FFMIN(best, scoreR)){
  340. best = scoreL;
  341. total_gain -= i;
  342. }else if(scoreR < best){
  343. best = scoreR;
  344. total_gain += i;
  345. }
  346. }
  347. #endif
  348. if ((i = encode_frame(s, s->coefs, avpkt->data, avpkt->size, total_gain)) >= 0) {
  349. av_log(avctx, AV_LOG_ERROR, "required frame size too large. please "
  350. "use a higher bit rate.\n");
  351. return AVERROR(EINVAL);
  352. }
  353. assert((put_bits_count(&s->pb) & 7) == 0);
  354. while (i++)
  355. put_bits(&s->pb, 8, 'N');
  356. flush_put_bits(&s->pb);
  357. if (frame->pts != AV_NOPTS_VALUE)
  358. avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->delay);
  359. avpkt->size = s->block_align;
  360. *got_packet_ptr = 1;
  361. return 0;
  362. }
  363. AVCodec ff_wmav1_encoder = {
  364. .name = "wmav1",
  365. .type = AVMEDIA_TYPE_AUDIO,
  366. .id = AV_CODEC_ID_WMAV1,
  367. .priv_data_size = sizeof(WMACodecContext),
  368. .init = encode_init,
  369. .encode2 = encode_superframe,
  370. .close = ff_wma_end,
  371. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  372. AV_SAMPLE_FMT_NONE },
  373. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  374. };
  375. AVCodec ff_wmav2_encoder = {
  376. .name = "wmav2",
  377. .type = AVMEDIA_TYPE_AUDIO,
  378. .id = AV_CODEC_ID_WMAV2,
  379. .priv_data_size = sizeof(WMACodecContext),
  380. .init = encode_init,
  381. .encode2 = encode_superframe,
  382. .close = ff_wma_end,
  383. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
  384. AV_SAMPLE_FMT_NONE },
  385. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  386. };