You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1014 lines
35KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. //#define DEBUG
  26. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  27. #include "libavutil/opt.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #include "internal.h"
  31. #include "mpegvideo.h"
  32. #include "dnxhdenc.h"
  33. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  34. #define DNX10BIT_QMAT_SHIFT 18 // The largest value that will not lead to overflow for 10bit samples.
  35. static const AVOption options[]={
  36. {"nitris_compat", "encode with Avid Nitris compatibility", offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, VE},
  37. {NULL}
  38. };
  39. static const AVClass class = { "dnxhd", av_default_item_name, options, LIBAVUTIL_VERSION_INT };
  40. #define LAMBDA_FRAC_BITS 10
  41. static void dnxhd_8bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  42. {
  43. int i;
  44. for (i = 0; i < 4; i++) {
  45. block[0] = pixels[0]; block[1] = pixels[1];
  46. block[2] = pixels[2]; block[3] = pixels[3];
  47. block[4] = pixels[4]; block[5] = pixels[5];
  48. block[6] = pixels[6]; block[7] = pixels[7];
  49. pixels += line_size;
  50. block += 8;
  51. }
  52. memcpy(block, block - 8, sizeof(*block) * 8);
  53. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  54. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  55. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  56. }
  57. static av_always_inline void dnxhd_10bit_get_pixels_8x4_sym(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  58. {
  59. int i;
  60. block += 32;
  61. for (i = 0; i < 4; i++) {
  62. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  63. memcpy(block - (i+1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  64. }
  65. }
  66. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, DCTELEM *block,
  67. int n, int qscale, int *overflow)
  68. {
  69. const uint8_t *scantable= ctx->intra_scantable.scantable;
  70. const int *qmat = ctx->q_intra_matrix[qscale];
  71. int last_non_zero = 0;
  72. int i;
  73. ctx->dsp.fdct(block);
  74. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  75. block[0] = (block[0] + 2) >> 2;
  76. for (i = 1; i < 64; ++i) {
  77. int j = scantable[i];
  78. int sign = block[j] >> 31;
  79. int level = (block[j] ^ sign) - sign;
  80. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  81. block[j] = (level ^ sign) - sign;
  82. if (level)
  83. last_non_zero = i;
  84. }
  85. return last_non_zero;
  86. }
  87. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  88. {
  89. int i, j, level, run;
  90. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  91. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  92. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits, max_level*4*sizeof(*ctx->vlc_bits) , fail);
  93. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2, fail);
  94. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits, 63, fail);
  95. ctx->vlc_codes += max_level*2;
  96. ctx->vlc_bits += max_level*2;
  97. for (level = -max_level; level < max_level; level++) {
  98. for (run = 0; run < 2; run++) {
  99. int index = (level<<1)|run;
  100. int sign, offset = 0, alevel = level;
  101. MASK_ABS(sign, alevel);
  102. if (alevel > 64) {
  103. offset = (alevel-1)>>6;
  104. alevel -= offset<<6;
  105. }
  106. for (j = 0; j < 257; j++) {
  107. if (ctx->cid_table->ac_level[j] == alevel &&
  108. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  109. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  110. assert(!ctx->vlc_codes[index]);
  111. if (alevel) {
  112. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  113. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  114. } else {
  115. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  116. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  117. }
  118. break;
  119. }
  120. }
  121. assert(!alevel || j < 257);
  122. if (offset) {
  123. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  124. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  125. }
  126. }
  127. }
  128. for (i = 0; i < 62; i++) {
  129. int run = ctx->cid_table->run[i];
  130. assert(run < 63);
  131. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  132. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  133. }
  134. return 0;
  135. fail:
  136. return -1;
  137. }
  138. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  139. {
  140. // init first elem to 1 to avoid div by 0 in convert_matrix
  141. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  142. int qscale, i;
  143. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  144. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  145. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  146. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int), fail);
  147. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  148. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  149. if (ctx->cid_table->bit_depth == 8) {
  150. for (i = 1; i < 64; i++) {
  151. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  152. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  153. }
  154. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  155. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  156. for (i = 1; i < 64; i++) {
  157. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  158. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  159. }
  160. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  161. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  162. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  163. for (i = 0; i < 64; i++) {
  164. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  165. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  166. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  167. }
  168. }
  169. } else {
  170. // 10-bit
  171. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  172. for (i = 1; i < 64; i++) {
  173. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  174. // The quantization formula from the VC-3 standard is:
  175. // quantized = sign(block[i]) * floor(abs(block[i]/s) * p / (qscale * weight_table[i]))
  176. // Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  177. // The s factor compensates scaling of DCT coefficients done by the DCT routines,
  178. // and therefore is not present in standard. It's 8 for 8-bit samples and 4 for 10-bit ones.
  179. // We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  180. // ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) / (qscale * weight_table[i])
  181. // For 10-bit samples, p / s == 2
  182. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * luma_weight_table[i]);
  183. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) / (qscale * chroma_weight_table[i]);
  184. }
  185. }
  186. }
  187. return 0;
  188. fail:
  189. return -1;
  190. }
  191. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  192. {
  193. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  194. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  195. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  196. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4 - ctx->min_padding) * 8;
  197. ctx->qscale = 1;
  198. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  199. return 0;
  200. fail:
  201. return -1;
  202. }
  203. static int dnxhd_encode_init(AVCodecContext *avctx)
  204. {
  205. DNXHDEncContext *ctx = avctx->priv_data;
  206. int i, index, bit_depth;
  207. switch (avctx->pix_fmt) {
  208. case PIX_FMT_YUV422P:
  209. bit_depth = 8;
  210. break;
  211. case PIX_FMT_YUV422P10:
  212. bit_depth = 10;
  213. break;
  214. default:
  215. av_log(avctx, AV_LOG_ERROR, "pixel format is incompatible with DNxHD\n");
  216. return -1;
  217. }
  218. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  219. if (!ctx->cid) {
  220. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  221. return -1;
  222. }
  223. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  224. index = ff_dnxhd_get_cid_table(ctx->cid);
  225. ctx->cid_table = &ff_dnxhd_cid_table[index];
  226. ctx->m.avctx = avctx;
  227. ctx->m.mb_intra = 1;
  228. ctx->m.h263_aic = 1;
  229. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  230. ff_dsputil_init(&ctx->m.dsp, avctx);
  231. ff_dct_common_init(&ctx->m);
  232. if (!ctx->m.dct_quantize)
  233. ctx->m.dct_quantize = ff_dct_quantize_c;
  234. if (ctx->cid_table->bit_depth == 10) {
  235. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  236. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  237. ctx->block_width_l2 = 4;
  238. } else {
  239. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  240. ctx->block_width_l2 = 3;
  241. }
  242. if (ARCH_X86)
  243. ff_dnxhdenc_init_x86(ctx);
  244. ctx->m.mb_height = (avctx->height + 15) / 16;
  245. ctx->m.mb_width = (avctx->width + 15) / 16;
  246. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  247. ctx->interlaced = 1;
  248. ctx->m.mb_height /= 2;
  249. }
  250. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  251. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  252. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  253. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  254. return -1;
  255. // Avid Nitris hardware decoder requires a minimum amount of padding in the coding unit payload
  256. if (ctx->nitris_compat)
  257. ctx->min_padding = 1600;
  258. if (dnxhd_init_vlc(ctx) < 0)
  259. return -1;
  260. if (dnxhd_init_rc(ctx) < 0)
  261. return -1;
  262. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  263. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  264. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  265. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t), fail);
  266. ctx->frame.key_frame = 1;
  267. ctx->frame.pict_type = AV_PICTURE_TYPE_I;
  268. ctx->m.avctx->coded_frame = &ctx->frame;
  269. if (avctx->thread_count > MAX_THREADS) {
  270. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  271. return -1;
  272. }
  273. ctx->thread[0] = ctx;
  274. for (i = 1; i < avctx->thread_count; i++) {
  275. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  276. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  277. }
  278. return 0;
  279. fail: //for FF_ALLOCZ_OR_GOTO
  280. return -1;
  281. }
  282. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  283. {
  284. DNXHDEncContext *ctx = avctx->priv_data;
  285. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  286. memset(buf, 0, 640);
  287. memcpy(buf, header_prefix, 5);
  288. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  289. buf[6] = 0x80; // crc flag off
  290. buf[7] = 0xa0; // reserved
  291. AV_WB16(buf + 0x18, avctx->height>>ctx->interlaced); // ALPF
  292. AV_WB16(buf + 0x1a, avctx->width); // SPL
  293. AV_WB16(buf + 0x1d, avctx->height>>ctx->interlaced); // NAL
  294. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  295. buf[0x22] = 0x88 + (ctx->interlaced<<2);
  296. AV_WB32(buf + 0x28, ctx->cid); // CID
  297. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  298. buf[0x5f] = 0x01; // UDL
  299. buf[0x167] = 0x02; // reserved
  300. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  301. buf[0x16d] = ctx->m.mb_height; // Ns
  302. buf[0x16f] = 0x10; // reserved
  303. ctx->msip = buf + 0x170;
  304. return 0;
  305. }
  306. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  307. {
  308. int nbits;
  309. if (diff < 0) {
  310. nbits = av_log2_16bit(-2*diff);
  311. diff--;
  312. } else {
  313. nbits = av_log2_16bit(2*diff);
  314. }
  315. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  316. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  317. }
  318. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  319. {
  320. int last_non_zero = 0;
  321. int slevel, i, j;
  322. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  323. ctx->m.last_dc[n] = block[0];
  324. for (i = 1; i <= last_index; i++) {
  325. j = ctx->m.intra_scantable.permutated[i];
  326. slevel = block[j];
  327. if (slevel) {
  328. int run_level = i - last_non_zero - 1;
  329. int rlevel = (slevel<<1)|!!run_level;
  330. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  331. if (run_level)
  332. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  333. last_non_zero = i;
  334. }
  335. }
  336. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  337. }
  338. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  339. {
  340. const uint8_t *weight_matrix;
  341. int level;
  342. int i;
  343. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  344. for (i = 1; i <= last_index; i++) {
  345. int j = ctx->m.intra_scantable.permutated[i];
  346. level = block[j];
  347. if (level) {
  348. if (level < 0) {
  349. level = (1-2*level) * qscale * weight_matrix[i];
  350. if (ctx->cid_table->bit_depth == 10) {
  351. if (weight_matrix[i] != 8)
  352. level += 8;
  353. level >>= 4;
  354. } else {
  355. if (weight_matrix[i] != 32)
  356. level += 32;
  357. level >>= 6;
  358. }
  359. level = -level;
  360. } else {
  361. level = (2*level+1) * qscale * weight_matrix[i];
  362. if (ctx->cid_table->bit_depth == 10) {
  363. if (weight_matrix[i] != 8)
  364. level += 8;
  365. level >>= 4;
  366. } else {
  367. if (weight_matrix[i] != 32)
  368. level += 32;
  369. level >>= 6;
  370. }
  371. }
  372. block[j] = level;
  373. }
  374. }
  375. }
  376. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  377. {
  378. int score = 0;
  379. int i;
  380. for (i = 0; i < 64; i++)
  381. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  382. return score;
  383. }
  384. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  385. {
  386. int last_non_zero = 0;
  387. int bits = 0;
  388. int i, j, level;
  389. for (i = 1; i <= last_index; i++) {
  390. j = ctx->m.intra_scantable.permutated[i];
  391. level = block[j];
  392. if (level) {
  393. int run_level = i - last_non_zero - 1;
  394. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  395. last_non_zero = i;
  396. }
  397. }
  398. return bits;
  399. }
  400. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  401. {
  402. const int bs = ctx->block_width_l2;
  403. const int bw = 1 << bs;
  404. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs+1);
  405. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  406. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  407. DSPContext *dsp = &ctx->m.dsp;
  408. dsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  409. dsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  410. dsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  411. dsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  412. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  413. if (ctx->interlaced) {
  414. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  415. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  416. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  417. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  418. } else {
  419. dsp->clear_block(ctx->blocks[4]);
  420. dsp->clear_block(ctx->blocks[5]);
  421. dsp->clear_block(ctx->blocks[6]);
  422. dsp->clear_block(ctx->blocks[7]);
  423. }
  424. } else {
  425. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  426. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  427. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  428. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  429. }
  430. }
  431. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  432. {
  433. if (i&2) {
  434. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  435. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  436. return 1 + (i&1);
  437. } else {
  438. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  439. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  440. return 0;
  441. }
  442. }
  443. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  444. {
  445. DNXHDEncContext *ctx = avctx->priv_data;
  446. int mb_y = jobnr, mb_x;
  447. int qscale = ctx->qscale;
  448. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  449. ctx = ctx->thread[threadnr];
  450. ctx->m.last_dc[0] =
  451. ctx->m.last_dc[1] =
  452. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  453. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  454. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  455. int ssd = 0;
  456. int ac_bits = 0;
  457. int dc_bits = 0;
  458. int i;
  459. dnxhd_get_blocks(ctx, mb_x, mb_y);
  460. for (i = 0; i < 8; i++) {
  461. DCTELEM *src_block = ctx->blocks[i];
  462. int overflow, nbits, diff, last_index;
  463. int n = dnxhd_switch_matrix(ctx, i);
  464. memcpy(block, src_block, 64*sizeof(*block));
  465. last_index = ctx->m.dct_quantize(&ctx->m, block, i, qscale, &overflow);
  466. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  467. diff = block[0] - ctx->m.last_dc[n];
  468. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  469. else nbits = av_log2_16bit( 2*diff);
  470. assert(nbits < ctx->cid_table->bit_depth + 4);
  471. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  472. ctx->m.last_dc[n] = block[0];
  473. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  474. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  475. ctx->m.dsp.idct(block);
  476. ssd += dnxhd_ssd_block(block, src_block);
  477. }
  478. }
  479. ctx->mb_rc[qscale][mb].ssd = ssd;
  480. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  481. }
  482. return 0;
  483. }
  484. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  485. {
  486. DNXHDEncContext *ctx = avctx->priv_data;
  487. int mb_y = jobnr, mb_x;
  488. ctx = ctx->thread[threadnr];
  489. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  490. ctx->m.last_dc[0] =
  491. ctx->m.last_dc[1] =
  492. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  493. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  494. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  495. int qscale = ctx->mb_qscale[mb];
  496. int i;
  497. put_bits(&ctx->m.pb, 12, qscale<<1);
  498. dnxhd_get_blocks(ctx, mb_x, mb_y);
  499. for (i = 0; i < 8; i++) {
  500. DCTELEM *block = ctx->blocks[i];
  501. int overflow, n = dnxhd_switch_matrix(ctx, i);
  502. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  503. qscale, &overflow);
  504. //START_TIMER;
  505. dnxhd_encode_block(ctx, block, last_index, n);
  506. //STOP_TIMER("encode_block");
  507. }
  508. }
  509. if (put_bits_count(&ctx->m.pb)&31)
  510. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  511. flush_put_bits(&ctx->m.pb);
  512. return 0;
  513. }
  514. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  515. {
  516. int mb_y, mb_x;
  517. int offset = 0;
  518. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  519. int thread_size;
  520. ctx->slice_offs[mb_y] = offset;
  521. ctx->slice_size[mb_y] = 0;
  522. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  523. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  524. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  525. }
  526. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  527. ctx->slice_size[mb_y] >>= 3;
  528. thread_size = ctx->slice_size[mb_y];
  529. offset += thread_size;
  530. }
  531. }
  532. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  533. {
  534. DNXHDEncContext *ctx = avctx->priv_data;
  535. int mb_y = jobnr, mb_x;
  536. ctx = ctx->thread[threadnr];
  537. if (ctx->cid_table->bit_depth == 8) {
  538. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize);
  539. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  540. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  541. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  542. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)sum*sum)>>8)+128)>>8;
  543. ctx->mb_cmp[mb].value = varc;
  544. ctx->mb_cmp[mb].mb = mb;
  545. }
  546. } else { // 10-bit
  547. int const linesize = ctx->m.linesize >> 1;
  548. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  549. uint16_t *pix = (uint16_t*)ctx->thread[0]->src[0] + ((mb_y << 4) * linesize) + (mb_x << 4);
  550. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  551. int sum = 0;
  552. int sqsum = 0;
  553. int mean, sqmean;
  554. int i, j;
  555. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  556. for (i = 0; i < 16; ++i) {
  557. for (j = 0; j < 16; ++j) {
  558. // Turn 16-bit pixels into 10-bit ones.
  559. int const sample = (unsigned)pix[j] >> 6;
  560. sum += sample;
  561. sqsum += sample * sample;
  562. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  563. }
  564. pix += linesize;
  565. }
  566. mean = sum >> 8; // 16*16 == 2^8
  567. sqmean = sqsum >> 8;
  568. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  569. ctx->mb_cmp[mb].mb = mb;
  570. }
  571. }
  572. return 0;
  573. }
  574. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  575. {
  576. int lambda, up_step, down_step;
  577. int last_lower = INT_MAX, last_higher = 0;
  578. int x, y, q;
  579. for (q = 1; q < avctx->qmax; q++) {
  580. ctx->qscale = q;
  581. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  582. }
  583. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  584. lambda = ctx->lambda;
  585. for (;;) {
  586. int bits = 0;
  587. int end = 0;
  588. if (lambda == last_higher) {
  589. lambda++;
  590. end = 1; // need to set final qscales/bits
  591. }
  592. for (y = 0; y < ctx->m.mb_height; y++) {
  593. for (x = 0; x < ctx->m.mb_width; x++) {
  594. unsigned min = UINT_MAX;
  595. int qscale = 1;
  596. int mb = y*ctx->m.mb_width+x;
  597. for (q = 1; q < avctx->qmax; q++) {
  598. unsigned score = ctx->mb_rc[q][mb].bits*lambda+
  599. ((unsigned)ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  600. if (score < min) {
  601. min = score;
  602. qscale = q;
  603. }
  604. }
  605. bits += ctx->mb_rc[qscale][mb].bits;
  606. ctx->mb_qscale[mb] = qscale;
  607. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  608. }
  609. bits = (bits+31)&~31; // padding
  610. if (bits > ctx->frame_bits)
  611. break;
  612. }
  613. //av_dlog(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  614. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  615. if (end) {
  616. if (bits > ctx->frame_bits)
  617. return -1;
  618. break;
  619. }
  620. if (bits < ctx->frame_bits) {
  621. last_lower = FFMIN(lambda, last_lower);
  622. if (last_higher != 0)
  623. lambda = (lambda+last_higher)>>1;
  624. else
  625. lambda -= down_step;
  626. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  627. up_step = 1<<LAMBDA_FRAC_BITS;
  628. lambda = FFMAX(1, lambda);
  629. if (lambda == last_lower)
  630. break;
  631. } else {
  632. last_higher = FFMAX(lambda, last_higher);
  633. if (last_lower != INT_MAX)
  634. lambda = (lambda+last_lower)>>1;
  635. else if ((int64_t)lambda + up_step > INT_MAX)
  636. return -1;
  637. else
  638. lambda += up_step;
  639. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  640. down_step = 1<<LAMBDA_FRAC_BITS;
  641. }
  642. }
  643. //av_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  644. ctx->lambda = lambda;
  645. return 0;
  646. }
  647. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  648. {
  649. int bits = 0;
  650. int up_step = 1;
  651. int down_step = 1;
  652. int last_higher = 0;
  653. int last_lower = INT_MAX;
  654. int qscale;
  655. int x, y;
  656. qscale = ctx->qscale;
  657. for (;;) {
  658. bits = 0;
  659. ctx->qscale = qscale;
  660. // XXX avoid recalculating bits
  661. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  662. for (y = 0; y < ctx->m.mb_height; y++) {
  663. for (x = 0; x < ctx->m.mb_width; x++)
  664. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  665. bits = (bits+31)&~31; // padding
  666. if (bits > ctx->frame_bits)
  667. break;
  668. }
  669. //av_dlog(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  670. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  671. if (bits < ctx->frame_bits) {
  672. if (qscale == 1)
  673. return 1;
  674. if (last_higher == qscale - 1) {
  675. qscale = last_higher;
  676. break;
  677. }
  678. last_lower = FFMIN(qscale, last_lower);
  679. if (last_higher != 0)
  680. qscale = (qscale+last_higher)>>1;
  681. else
  682. qscale -= down_step++;
  683. if (qscale < 1)
  684. qscale = 1;
  685. up_step = 1;
  686. } else {
  687. if (last_lower == qscale + 1)
  688. break;
  689. last_higher = FFMAX(qscale, last_higher);
  690. if (last_lower != INT_MAX)
  691. qscale = (qscale+last_lower)>>1;
  692. else
  693. qscale += up_step++;
  694. down_step = 1;
  695. if (qscale >= ctx->m.avctx->qmax)
  696. return -1;
  697. }
  698. }
  699. //av_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  700. ctx->qscale = qscale;
  701. return 0;
  702. }
  703. #define BUCKET_BITS 8
  704. #define RADIX_PASSES 4
  705. #define NBUCKETS (1 << BUCKET_BITS)
  706. static inline int get_bucket(int value, int shift)
  707. {
  708. value >>= shift;
  709. value &= NBUCKETS - 1;
  710. return NBUCKETS - 1 - value;
  711. }
  712. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  713. {
  714. int i, j;
  715. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  716. for (i = 0; i < size; i++) {
  717. int v = data[i].value;
  718. for (j = 0; j < RADIX_PASSES; j++) {
  719. buckets[j][get_bucket(v, 0)]++;
  720. v >>= BUCKET_BITS;
  721. }
  722. assert(!v);
  723. }
  724. for (j = 0; j < RADIX_PASSES; j++) {
  725. int offset = size;
  726. for (i = NBUCKETS - 1; i >= 0; i--)
  727. buckets[j][i] = offset -= buckets[j][i];
  728. assert(!buckets[j][0]);
  729. }
  730. }
  731. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  732. {
  733. int shift = pass * BUCKET_BITS;
  734. int i;
  735. for (i = 0; i < size; i++) {
  736. int v = get_bucket(data[i].value, shift);
  737. int pos = buckets[v]++;
  738. dst[pos] = data[i];
  739. }
  740. }
  741. static void radix_sort(RCCMPEntry *data, int size)
  742. {
  743. int buckets[RADIX_PASSES][NBUCKETS];
  744. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  745. radix_count(data, size, buckets);
  746. radix_sort_pass(tmp, data, size, buckets[0], 0);
  747. radix_sort_pass(data, tmp, size, buckets[1], 1);
  748. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  749. radix_sort_pass(tmp, data, size, buckets[2], 2);
  750. radix_sort_pass(data, tmp, size, buckets[3], 3);
  751. }
  752. av_free(tmp);
  753. }
  754. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  755. {
  756. int max_bits = 0;
  757. int ret, x, y;
  758. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  759. return -1;
  760. for (y = 0; y < ctx->m.mb_height; y++) {
  761. for (x = 0; x < ctx->m.mb_width; x++) {
  762. int mb = y*ctx->m.mb_width+x;
  763. int delta_bits;
  764. ctx->mb_qscale[mb] = ctx->qscale;
  765. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  766. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  767. if (!RC_VARIANCE) {
  768. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  769. ctx->mb_cmp[mb].mb = mb;
  770. ctx->mb_cmp[mb].value = delta_bits ?
  771. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  772. : INT_MIN; //avoid increasing qscale
  773. }
  774. }
  775. max_bits += 31; //worst padding
  776. }
  777. if (!ret) {
  778. if (RC_VARIANCE)
  779. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  780. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  781. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  782. int mb = ctx->mb_cmp[x].mb;
  783. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  784. ctx->mb_qscale[mb] = ctx->qscale+1;
  785. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  786. }
  787. }
  788. return 0;
  789. }
  790. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  791. {
  792. int i;
  793. for (i = 0; i < 3; i++) {
  794. ctx->frame.data[i] = frame->data[i];
  795. ctx->frame.linesize[i] = frame->linesize[i];
  796. }
  797. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  798. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  799. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  800. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  801. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  802. }
  803. ctx->frame.interlaced_frame = frame->interlaced_frame;
  804. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  805. }
  806. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  807. const AVFrame *frame, int *got_packet)
  808. {
  809. DNXHDEncContext *ctx = avctx->priv_data;
  810. int first_field = 1;
  811. int offset, i, ret;
  812. uint8_t *buf;
  813. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  814. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  815. return ret;
  816. }
  817. buf = pkt->data;
  818. dnxhd_load_picture(ctx, frame);
  819. encode_coding_unit:
  820. for (i = 0; i < 3; i++) {
  821. ctx->src[i] = ctx->frame.data[i];
  822. if (ctx->interlaced && ctx->cur_field)
  823. ctx->src[i] += ctx->frame.linesize[i];
  824. }
  825. dnxhd_write_header(avctx, buf);
  826. if (avctx->mb_decision == FF_MB_DECISION_RD)
  827. ret = dnxhd_encode_rdo(avctx, ctx);
  828. else
  829. ret = dnxhd_encode_fast(avctx, ctx);
  830. if (ret < 0) {
  831. av_log(avctx, AV_LOG_ERROR,
  832. "picture could not fit ratecontrol constraints, increase qmax\n");
  833. return -1;
  834. }
  835. dnxhd_setup_threads_slices(ctx);
  836. offset = 0;
  837. for (i = 0; i < ctx->m.mb_height; i++) {
  838. AV_WB32(ctx->msip + i * 4, offset);
  839. offset += ctx->slice_size[i];
  840. assert(!(ctx->slice_size[i] & 3));
  841. }
  842. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  843. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  844. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  845. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  846. if (ctx->interlaced && first_field) {
  847. first_field = 0;
  848. ctx->cur_field ^= 1;
  849. buf += ctx->cid_table->coding_unit_size;
  850. goto encode_coding_unit;
  851. }
  852. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  853. pkt->flags |= AV_PKT_FLAG_KEY;
  854. *got_packet = 1;
  855. return 0;
  856. }
  857. static int dnxhd_encode_end(AVCodecContext *avctx)
  858. {
  859. DNXHDEncContext *ctx = avctx->priv_data;
  860. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  861. int i;
  862. av_free(ctx->vlc_codes-max_level*2);
  863. av_free(ctx->vlc_bits -max_level*2);
  864. av_freep(&ctx->run_codes);
  865. av_freep(&ctx->run_bits);
  866. av_freep(&ctx->mb_bits);
  867. av_freep(&ctx->mb_qscale);
  868. av_freep(&ctx->mb_rc);
  869. av_freep(&ctx->mb_cmp);
  870. av_freep(&ctx->slice_size);
  871. av_freep(&ctx->slice_offs);
  872. av_freep(&ctx->qmatrix_c);
  873. av_freep(&ctx->qmatrix_l);
  874. av_freep(&ctx->qmatrix_c16);
  875. av_freep(&ctx->qmatrix_l16);
  876. for (i = 1; i < avctx->thread_count; i++)
  877. av_freep(&ctx->thread[i]);
  878. return 0;
  879. }
  880. AVCodec ff_dnxhd_encoder = {
  881. .name = "dnxhd",
  882. .type = AVMEDIA_TYPE_VIDEO,
  883. .id = AV_CODEC_ID_DNXHD,
  884. .priv_data_size = sizeof(DNXHDEncContext),
  885. .init = dnxhd_encode_init,
  886. .encode2 = dnxhd_encode_picture,
  887. .close = dnxhd_encode_end,
  888. .capabilities = CODEC_CAP_SLICE_THREADS,
  889. .pix_fmts = (const enum PixelFormat[]){ PIX_FMT_YUV422P,
  890. PIX_FMT_YUV422P10,
  891. PIX_FMT_NONE },
  892. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  893. .priv_class = &class,
  894. };