You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4347 lines
154KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /**
  46. * Init VC-1 specific tables and VC1Context members
  47. * @param v The VC1Context to initialize
  48. * @return Status
  49. */
  50. static int vc1_init_common(VC1Context *v)
  51. {
  52. static int done = 0;
  53. int i = 0;
  54. v->hrd_rate = v->hrd_buffer = NULL;
  55. /* VLC tables */
  56. if(!done)
  57. {
  58. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  59. ff_vc1_bfraction_bits, 1, 1,
  60. ff_vc1_bfraction_codes, 1, 1, INIT_VLC_USE_STATIC);
  61. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  62. ff_vc1_norm2_bits, 1, 1,
  63. ff_vc1_norm2_codes, 1, 1, INIT_VLC_USE_STATIC);
  64. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  65. ff_vc1_norm6_bits, 1, 1,
  66. ff_vc1_norm6_codes, 2, 2, INIT_VLC_USE_STATIC);
  67. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  68. ff_vc1_imode_bits, 1, 1,
  69. ff_vc1_imode_codes, 1, 1, INIT_VLC_USE_STATIC);
  70. for (i=0; i<3; i++)
  71. {
  72. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  73. ff_vc1_ttmb_bits[i], 1, 1,
  74. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_STATIC);
  75. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  76. ff_vc1_ttblk_bits[i], 1, 1,
  77. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_STATIC);
  78. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  79. ff_vc1_subblkpat_bits[i], 1, 1,
  80. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_STATIC);
  81. }
  82. for(i=0; i<4; i++)
  83. {
  84. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  85. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  86. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_STATIC);
  87. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  88. ff_vc1_cbpcy_p_bits[i], 1, 1,
  89. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_STATIC);
  90. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  91. ff_vc1_mv_diff_bits[i], 1, 1,
  92. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_STATIC);
  93. }
  94. for(i=0; i<8; i++)
  95. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  96. &vc1_ac_tables[i][0][1], 8, 4,
  97. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_STATIC);
  98. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  99. &ff_msmp4_mb_i_table[0][1], 4, 2,
  100. &ff_msmp4_mb_i_table[0][0], 4, 2, INIT_VLC_USE_STATIC);
  101. done = 1;
  102. }
  103. /* Other defaults */
  104. v->pq = -1;
  105. v->mvrange = 0; /* 7.1.1.18, p80 */
  106. return 0;
  107. }
  108. /***********************************************************************/
  109. /**
  110. * @defgroup vc1bitplane VC-1 Bitplane decoding
  111. * @see 8.7, p56
  112. * @{
  113. */
  114. /**
  115. * Imode types
  116. * @{
  117. */
  118. enum Imode {
  119. IMODE_RAW,
  120. IMODE_NORM2,
  121. IMODE_DIFF2,
  122. IMODE_NORM6,
  123. IMODE_DIFF6,
  124. IMODE_ROWSKIP,
  125. IMODE_COLSKIP
  126. };
  127. /** @} */ //imode defines
  128. /** Decode rows by checking if they are skipped
  129. * @param plane Buffer to store decoded bits
  130. * @param[in] width Width of this buffer
  131. * @param[in] height Height of this buffer
  132. * @param[in] stride of this buffer
  133. */
  134. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  135. int x, y;
  136. for (y=0; y<height; y++){
  137. if (!get_bits1(gb)) //rowskip
  138. memset(plane, 0, width);
  139. else
  140. for (x=0; x<width; x++)
  141. plane[x] = get_bits1(gb);
  142. plane += stride;
  143. }
  144. }
  145. /** Decode columns by checking if they are skipped
  146. * @param plane Buffer to store decoded bits
  147. * @param[in] width Width of this buffer
  148. * @param[in] height Height of this buffer
  149. * @param[in] stride of this buffer
  150. * @todo FIXME: Optimize
  151. */
  152. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  153. int x, y;
  154. for (x=0; x<width; x++){
  155. if (!get_bits1(gb)) //colskip
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = 0;
  158. else
  159. for (y=0; y<height; y++)
  160. plane[y*stride] = get_bits1(gb);
  161. plane ++;
  162. }
  163. }
  164. /** Decode a bitplane's bits
  165. * @param data bitplane where to store the decode bits
  166. * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
  167. * @param v VC-1 context for bit reading and logging
  168. * @return Status
  169. * @todo FIXME: Optimize
  170. */
  171. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  172. {
  173. GetBitContext *gb = &v->s.gb;
  174. int imode, x, y, code, offset;
  175. uint8_t invert, *planep = data;
  176. int width, height, stride;
  177. width = v->s.mb_width;
  178. height = v->s.mb_height;
  179. stride = v->s.mb_stride;
  180. invert = get_bits1(gb);
  181. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  182. *raw_flag = 0;
  183. switch (imode)
  184. {
  185. case IMODE_RAW:
  186. //Data is actually read in the MB layer (same for all tests == "raw")
  187. *raw_flag = 1; //invert ignored
  188. return invert;
  189. case IMODE_DIFF2:
  190. case IMODE_NORM2:
  191. if ((height * width) & 1)
  192. {
  193. *planep++ = get_bits1(gb);
  194. offset = 1;
  195. }
  196. else offset = 0;
  197. // decode bitplane as one long line
  198. for (y = offset; y < height * width; y += 2) {
  199. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  200. *planep++ = code & 1;
  201. offset++;
  202. if(offset == width) {
  203. offset = 0;
  204. planep += stride - width;
  205. }
  206. *planep++ = code >> 1;
  207. offset++;
  208. if(offset == width) {
  209. offset = 0;
  210. planep += stride - width;
  211. }
  212. }
  213. break;
  214. case IMODE_DIFF6:
  215. case IMODE_NORM6:
  216. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  217. for(y = 0; y < height; y+= 3) {
  218. for(x = width & 1; x < width; x += 2) {
  219. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  220. if(code < 0){
  221. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  222. return -1;
  223. }
  224. planep[x + 0] = (code >> 0) & 1;
  225. planep[x + 1] = (code >> 1) & 1;
  226. planep[x + 0 + stride] = (code >> 2) & 1;
  227. planep[x + 1 + stride] = (code >> 3) & 1;
  228. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  229. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  230. }
  231. planep += stride * 3;
  232. }
  233. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  234. } else { // 3x2
  235. planep += (height & 1) * stride;
  236. for(y = height & 1; y < height; y += 2) {
  237. for(x = width % 3; x < width; x += 3) {
  238. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  239. if(code < 0){
  240. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  241. return -1;
  242. }
  243. planep[x + 0] = (code >> 0) & 1;
  244. planep[x + 1] = (code >> 1) & 1;
  245. planep[x + 2] = (code >> 2) & 1;
  246. planep[x + 0 + stride] = (code >> 3) & 1;
  247. planep[x + 1 + stride] = (code >> 4) & 1;
  248. planep[x + 2 + stride] = (code >> 5) & 1;
  249. }
  250. planep += stride * 2;
  251. }
  252. x = width % 3;
  253. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  254. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  255. }
  256. break;
  257. case IMODE_ROWSKIP:
  258. decode_rowskip(data, width, height, stride, &v->s.gb);
  259. break;
  260. case IMODE_COLSKIP:
  261. decode_colskip(data, width, height, stride, &v->s.gb);
  262. break;
  263. default: break;
  264. }
  265. /* Applying diff operator */
  266. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  267. {
  268. planep = data;
  269. planep[0] ^= invert;
  270. for (x=1; x<width; x++)
  271. planep[x] ^= planep[x-1];
  272. for (y=1; y<height; y++)
  273. {
  274. planep += stride;
  275. planep[0] ^= planep[-stride];
  276. for (x=1; x<width; x++)
  277. {
  278. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  279. else planep[x] ^= planep[x-1];
  280. }
  281. }
  282. }
  283. else if (invert)
  284. {
  285. planep = data;
  286. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  287. }
  288. return (imode<<1) + invert;
  289. }
  290. /** @} */ //Bitplane group
  291. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  292. {
  293. int i, j;
  294. if(!s->first_slice_line)
  295. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  296. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  297. for(i = !s->mb_x*8; i < 16; i += 8)
  298. s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
  299. for(j = 0; j < 2; j++){
  300. if(!s->first_slice_line)
  301. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  302. if(s->mb_x)
  303. s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  304. }
  305. }
  306. /***********************************************************************/
  307. /** VOP Dquant decoding
  308. * @param v VC-1 Context
  309. */
  310. static int vop_dquant_decoding(VC1Context *v)
  311. {
  312. GetBitContext *gb = &v->s.gb;
  313. int pqdiff;
  314. //variable size
  315. if (v->dquant == 2)
  316. {
  317. pqdiff = get_bits(gb, 3);
  318. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  319. else v->altpq = v->pq + pqdiff + 1;
  320. }
  321. else
  322. {
  323. v->dquantfrm = get_bits1(gb);
  324. if ( v->dquantfrm )
  325. {
  326. v->dqprofile = get_bits(gb, 2);
  327. switch (v->dqprofile)
  328. {
  329. case DQPROFILE_SINGLE_EDGE:
  330. case DQPROFILE_DOUBLE_EDGES:
  331. v->dqsbedge = get_bits(gb, 2);
  332. break;
  333. case DQPROFILE_ALL_MBS:
  334. v->dqbilevel = get_bits1(gb);
  335. if(!v->dqbilevel)
  336. v->halfpq = 0;
  337. default: break; //Forbidden ?
  338. }
  339. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  340. {
  341. pqdiff = get_bits(gb, 3);
  342. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  343. else v->altpq = v->pq + pqdiff + 1;
  344. }
  345. }
  346. }
  347. return 0;
  348. }
  349. /** Put block onto picture
  350. */
  351. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  352. {
  353. uint8_t *Y;
  354. int ys, us, vs;
  355. DSPContext *dsp = &v->s.dsp;
  356. if(v->rangeredfrm) {
  357. int i, j, k;
  358. for(k = 0; k < 6; k++)
  359. for(j = 0; j < 8; j++)
  360. for(i = 0; i < 8; i++)
  361. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  362. }
  363. ys = v->s.current_picture.linesize[0];
  364. us = v->s.current_picture.linesize[1];
  365. vs = v->s.current_picture.linesize[2];
  366. Y = v->s.dest[0];
  367. dsp->put_pixels_clamped(block[0], Y, ys);
  368. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  369. Y += ys * 8;
  370. dsp->put_pixels_clamped(block[2], Y, ys);
  371. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  372. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  373. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  374. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  375. }
  376. }
  377. /** Do motion compensation over 1 macroblock
  378. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  379. */
  380. static void vc1_mc_1mv(VC1Context *v, int dir)
  381. {
  382. MpegEncContext *s = &v->s;
  383. DSPContext *dsp = &v->s.dsp;
  384. uint8_t *srcY, *srcU, *srcV;
  385. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  386. if(!v->s.last_picture.data[0])return;
  387. mx = s->mv[dir][0][0];
  388. my = s->mv[dir][0][1];
  389. // store motion vectors for further use in B frames
  390. if(s->pict_type == FF_P_TYPE) {
  391. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  392. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  393. }
  394. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  395. uvmy = (my + ((my & 3) == 3)) >> 1;
  396. if(v->fastuvmc) {
  397. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  398. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  399. }
  400. if(!dir) {
  401. srcY = s->last_picture.data[0];
  402. srcU = s->last_picture.data[1];
  403. srcV = s->last_picture.data[2];
  404. } else {
  405. srcY = s->next_picture.data[0];
  406. srcU = s->next_picture.data[1];
  407. srcV = s->next_picture.data[2];
  408. }
  409. src_x = s->mb_x * 16 + (mx >> 2);
  410. src_y = s->mb_y * 16 + (my >> 2);
  411. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  412. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  413. if(v->profile != PROFILE_ADVANCED){
  414. src_x = av_clip( src_x, -16, s->mb_width * 16);
  415. src_y = av_clip( src_y, -16, s->mb_height * 16);
  416. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  417. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  418. }else{
  419. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  420. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  421. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  422. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  423. }
  424. srcY += src_y * s->linesize + src_x;
  425. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  426. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  427. /* for grayscale we should not try to read from unknown area */
  428. if(s->flags & CODEC_FLAG_GRAY) {
  429. srcU = s->edge_emu_buffer + 18 * s->linesize;
  430. srcV = s->edge_emu_buffer + 18 * s->linesize;
  431. }
  432. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  433. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  434. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  435. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  436. srcY -= s->mspel * (1 + s->linesize);
  437. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  438. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  439. srcY = s->edge_emu_buffer;
  440. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  441. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  442. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  443. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  444. srcU = uvbuf;
  445. srcV = uvbuf + 16;
  446. /* if we deal with range reduction we need to scale source blocks */
  447. if(v->rangeredfrm) {
  448. int i, j;
  449. uint8_t *src, *src2;
  450. src = srcY;
  451. for(j = 0; j < 17 + s->mspel*2; j++) {
  452. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  453. src += s->linesize;
  454. }
  455. src = srcU; src2 = srcV;
  456. for(j = 0; j < 9; j++) {
  457. for(i = 0; i < 9; i++) {
  458. src[i] = ((src[i] - 128) >> 1) + 128;
  459. src2[i] = ((src2[i] - 128) >> 1) + 128;
  460. }
  461. src += s->uvlinesize;
  462. src2 += s->uvlinesize;
  463. }
  464. }
  465. /* if we deal with intensity compensation we need to scale source blocks */
  466. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  467. int i, j;
  468. uint8_t *src, *src2;
  469. src = srcY;
  470. for(j = 0; j < 17 + s->mspel*2; j++) {
  471. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  472. src += s->linesize;
  473. }
  474. src = srcU; src2 = srcV;
  475. for(j = 0; j < 9; j++) {
  476. for(i = 0; i < 9; i++) {
  477. src[i] = v->lutuv[src[i]];
  478. src2[i] = v->lutuv[src2[i]];
  479. }
  480. src += s->uvlinesize;
  481. src2 += s->uvlinesize;
  482. }
  483. }
  484. srcY += s->mspel * (1 + s->linesize);
  485. }
  486. if(s->mspel) {
  487. dxy = ((my & 3) << 2) | (mx & 3);
  488. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  489. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  490. srcY += s->linesize * 8;
  491. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  492. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  493. } else { // hpel mc - always used for luma
  494. dxy = (my & 2) | ((mx & 2) >> 1);
  495. if(!v->rnd)
  496. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  497. else
  498. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  499. }
  500. if(s->flags & CODEC_FLAG_GRAY) return;
  501. /* Chroma MC always uses qpel bilinear */
  502. uvmx = (uvmx&3)<<1;
  503. uvmy = (uvmy&3)<<1;
  504. if(!v->rnd){
  505. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  506. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  507. }else{
  508. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  509. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  510. }
  511. }
  512. /** Do motion compensation for 4-MV macroblock - luminance block
  513. */
  514. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  515. {
  516. MpegEncContext *s = &v->s;
  517. DSPContext *dsp = &v->s.dsp;
  518. uint8_t *srcY;
  519. int dxy, mx, my, src_x, src_y;
  520. int off;
  521. if(!v->s.last_picture.data[0])return;
  522. mx = s->mv[0][n][0];
  523. my = s->mv[0][n][1];
  524. srcY = s->last_picture.data[0];
  525. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  526. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  527. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  528. if(v->profile != PROFILE_ADVANCED){
  529. src_x = av_clip( src_x, -16, s->mb_width * 16);
  530. src_y = av_clip( src_y, -16, s->mb_height * 16);
  531. }else{
  532. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  533. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  534. }
  535. srcY += src_y * s->linesize + src_x;
  536. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  537. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  538. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  539. srcY -= s->mspel * (1 + s->linesize);
  540. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  541. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  542. srcY = s->edge_emu_buffer;
  543. /* if we deal with range reduction we need to scale source blocks */
  544. if(v->rangeredfrm) {
  545. int i, j;
  546. uint8_t *src;
  547. src = srcY;
  548. for(j = 0; j < 9 + s->mspel*2; j++) {
  549. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  550. src += s->linesize;
  551. }
  552. }
  553. /* if we deal with intensity compensation we need to scale source blocks */
  554. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  555. int i, j;
  556. uint8_t *src;
  557. src = srcY;
  558. for(j = 0; j < 9 + s->mspel*2; j++) {
  559. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  560. src += s->linesize;
  561. }
  562. }
  563. srcY += s->mspel * (1 + s->linesize);
  564. }
  565. if(s->mspel) {
  566. dxy = ((my & 3) << 2) | (mx & 3);
  567. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  568. } else { // hpel mc - always used for luma
  569. dxy = (my & 2) | ((mx & 2) >> 1);
  570. if(!v->rnd)
  571. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  572. else
  573. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  574. }
  575. }
  576. static inline int median4(int a, int b, int c, int d)
  577. {
  578. if(a < b) {
  579. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  580. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  581. } else {
  582. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  583. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  584. }
  585. }
  586. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  587. */
  588. static void vc1_mc_4mv_chroma(VC1Context *v)
  589. {
  590. MpegEncContext *s = &v->s;
  591. DSPContext *dsp = &v->s.dsp;
  592. uint8_t *srcU, *srcV;
  593. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  594. int i, idx, tx = 0, ty = 0;
  595. int mvx[4], mvy[4], intra[4];
  596. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  597. if(!v->s.last_picture.data[0])return;
  598. if(s->flags & CODEC_FLAG_GRAY) return;
  599. for(i = 0; i < 4; i++) {
  600. mvx[i] = s->mv[0][i][0];
  601. mvy[i] = s->mv[0][i][1];
  602. intra[i] = v->mb_type[0][s->block_index[i]];
  603. }
  604. /* calculate chroma MV vector from four luma MVs */
  605. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  606. if(!idx) { // all blocks are inter
  607. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  608. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  609. } else if(count[idx] == 1) { // 3 inter blocks
  610. switch(idx) {
  611. case 0x1:
  612. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  613. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  614. break;
  615. case 0x2:
  616. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  617. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  618. break;
  619. case 0x4:
  620. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  621. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  622. break;
  623. case 0x8:
  624. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  625. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  626. break;
  627. }
  628. } else if(count[idx] == 2) {
  629. int t1 = 0, t2 = 0;
  630. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  631. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  632. tx = (mvx[t1] + mvx[t2]) / 2;
  633. ty = (mvy[t1] + mvy[t2]) / 2;
  634. } else {
  635. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  636. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  637. return; //no need to do MC for inter blocks
  638. }
  639. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  640. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  641. uvmx = (tx + ((tx&3) == 3)) >> 1;
  642. uvmy = (ty + ((ty&3) == 3)) >> 1;
  643. if(v->fastuvmc) {
  644. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  645. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  646. }
  647. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  648. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  649. if(v->profile != PROFILE_ADVANCED){
  650. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  651. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  652. }else{
  653. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  654. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  655. }
  656. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  657. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  658. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  659. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  660. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  661. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  662. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  663. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  664. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  665. srcU = s->edge_emu_buffer;
  666. srcV = s->edge_emu_buffer + 16;
  667. /* if we deal with range reduction we need to scale source blocks */
  668. if(v->rangeredfrm) {
  669. int i, j;
  670. uint8_t *src, *src2;
  671. src = srcU; src2 = srcV;
  672. for(j = 0; j < 9; j++) {
  673. for(i = 0; i < 9; i++) {
  674. src[i] = ((src[i] - 128) >> 1) + 128;
  675. src2[i] = ((src2[i] - 128) >> 1) + 128;
  676. }
  677. src += s->uvlinesize;
  678. src2 += s->uvlinesize;
  679. }
  680. }
  681. /* if we deal with intensity compensation we need to scale source blocks */
  682. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  683. int i, j;
  684. uint8_t *src, *src2;
  685. src = srcU; src2 = srcV;
  686. for(j = 0; j < 9; j++) {
  687. for(i = 0; i < 9; i++) {
  688. src[i] = v->lutuv[src[i]];
  689. src2[i] = v->lutuv[src2[i]];
  690. }
  691. src += s->uvlinesize;
  692. src2 += s->uvlinesize;
  693. }
  694. }
  695. }
  696. /* Chroma MC always uses qpel bilinear */
  697. uvmx = (uvmx&3)<<1;
  698. uvmy = (uvmy&3)<<1;
  699. if(!v->rnd){
  700. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  701. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  702. }else{
  703. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  704. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  705. }
  706. }
  707. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  708. /**
  709. * Decode Simple/Main Profiles sequence header
  710. * @see Figure 7-8, p16-17
  711. * @param avctx Codec context
  712. * @param gb GetBit context initialized from Codec context extra_data
  713. * @return Status
  714. */
  715. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  716. {
  717. VC1Context *v = avctx->priv_data;
  718. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  719. v->profile = get_bits(gb, 2);
  720. if (v->profile == PROFILE_COMPLEX)
  721. {
  722. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  723. }
  724. if (v->profile == PROFILE_ADVANCED)
  725. {
  726. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  727. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  728. return decode_sequence_header_adv(v, gb);
  729. }
  730. else
  731. {
  732. v->zz_8x4 = wmv2_scantableA;
  733. v->zz_4x8 = wmv2_scantableB;
  734. v->res_sm = get_bits(gb, 2); //reserved
  735. if (v->res_sm)
  736. {
  737. av_log(avctx, AV_LOG_ERROR,
  738. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  739. return -1;
  740. }
  741. }
  742. // (fps-2)/4 (->30)
  743. v->frmrtq_postproc = get_bits(gb, 3); //common
  744. // (bitrate-32kbps)/64kbps
  745. v->bitrtq_postproc = get_bits(gb, 5); //common
  746. v->s.loop_filter = get_bits1(gb); //common
  747. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  748. {
  749. av_log(avctx, AV_LOG_ERROR,
  750. "LOOPFILTER shell not be enabled in simple profile\n");
  751. }
  752. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  753. v->s.loop_filter = 0;
  754. v->res_x8 = get_bits1(gb); //reserved
  755. v->multires = get_bits1(gb);
  756. v->res_fasttx = get_bits1(gb);
  757. if (!v->res_fasttx)
  758. {
  759. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  760. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  761. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  762. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  763. }
  764. v->fastuvmc = get_bits1(gb); //common
  765. if (!v->profile && !v->fastuvmc)
  766. {
  767. av_log(avctx, AV_LOG_ERROR,
  768. "FASTUVMC unavailable in Simple Profile\n");
  769. return -1;
  770. }
  771. v->extended_mv = get_bits1(gb); //common
  772. if (!v->profile && v->extended_mv)
  773. {
  774. av_log(avctx, AV_LOG_ERROR,
  775. "Extended MVs unavailable in Simple Profile\n");
  776. return -1;
  777. }
  778. v->dquant = get_bits(gb, 2); //common
  779. v->vstransform = get_bits1(gb); //common
  780. v->res_transtab = get_bits1(gb);
  781. if (v->res_transtab)
  782. {
  783. av_log(avctx, AV_LOG_ERROR,
  784. "1 for reserved RES_TRANSTAB is forbidden\n");
  785. return -1;
  786. }
  787. v->overlap = get_bits1(gb); //common
  788. v->s.resync_marker = get_bits1(gb);
  789. v->rangered = get_bits1(gb);
  790. if (v->rangered && v->profile == PROFILE_SIMPLE)
  791. {
  792. av_log(avctx, AV_LOG_INFO,
  793. "RANGERED should be set to 0 in simple profile\n");
  794. }
  795. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  796. v->quantizer_mode = get_bits(gb, 2); //common
  797. v->finterpflag = get_bits1(gb); //common
  798. v->res_rtm_flag = get_bits1(gb); //reserved
  799. if (!v->res_rtm_flag)
  800. {
  801. // av_log(avctx, AV_LOG_ERROR,
  802. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  803. av_log(avctx, AV_LOG_ERROR,
  804. "Old WMV3 version detected, only I-frames will be decoded\n");
  805. //return -1;
  806. }
  807. //TODO: figure out what they mean (always 0x402F)
  808. if(!v->res_fasttx) skip_bits(gb, 16);
  809. av_log(avctx, AV_LOG_DEBUG,
  810. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  811. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  812. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  813. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  814. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  815. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  816. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  817. v->dquant, v->quantizer_mode, avctx->max_b_frames
  818. );
  819. return 0;
  820. }
  821. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  822. {
  823. v->res_rtm_flag = 1;
  824. v->level = get_bits(gb, 3);
  825. if(v->level >= 5)
  826. {
  827. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  828. }
  829. v->chromaformat = get_bits(gb, 2);
  830. if (v->chromaformat != 1)
  831. {
  832. av_log(v->s.avctx, AV_LOG_ERROR,
  833. "Only 4:2:0 chroma format supported\n");
  834. return -1;
  835. }
  836. // (fps-2)/4 (->30)
  837. v->frmrtq_postproc = get_bits(gb, 3); //common
  838. // (bitrate-32kbps)/64kbps
  839. v->bitrtq_postproc = get_bits(gb, 5); //common
  840. v->postprocflag = get_bits1(gb); //common
  841. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  842. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  843. v->s.avctx->width = v->s.avctx->coded_width;
  844. v->s.avctx->height = v->s.avctx->coded_height;
  845. v->broadcast = get_bits1(gb);
  846. v->interlace = get_bits1(gb);
  847. v->tfcntrflag = get_bits1(gb);
  848. v->finterpflag = get_bits1(gb);
  849. skip_bits1(gb); // reserved
  850. v->s.h_edge_pos = v->s.avctx->coded_width;
  851. v->s.v_edge_pos = v->s.avctx->coded_height;
  852. av_log(v->s.avctx, AV_LOG_DEBUG,
  853. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  854. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  855. "TFCTRflag=%i, FINTERPflag=%i\n",
  856. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  857. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  858. v->tfcntrflag, v->finterpflag
  859. );
  860. v->psf = get_bits1(gb);
  861. if(v->psf) { //PsF, 6.1.13
  862. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  863. return -1;
  864. }
  865. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  866. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  867. int w, h, ar = 0;
  868. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  869. v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
  870. v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
  871. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  872. if(get_bits1(gb))
  873. ar = get_bits(gb, 4);
  874. if(ar && ar < 14){
  875. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  876. }else if(ar == 15){
  877. w = get_bits(gb, 8);
  878. h = get_bits(gb, 8);
  879. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  880. }
  881. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  882. if(get_bits1(gb)){ //framerate stuff
  883. if(get_bits1(gb)) {
  884. v->s.avctx->time_base.num = 32;
  885. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  886. } else {
  887. int nr, dr;
  888. nr = get_bits(gb, 8);
  889. dr = get_bits(gb, 4);
  890. if(nr && nr < 8 && dr && dr < 3){
  891. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  892. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  893. }
  894. }
  895. }
  896. if(get_bits1(gb)){
  897. v->color_prim = get_bits(gb, 8);
  898. v->transfer_char = get_bits(gb, 8);
  899. v->matrix_coef = get_bits(gb, 8);
  900. }
  901. }
  902. v->hrd_param_flag = get_bits1(gb);
  903. if(v->hrd_param_flag) {
  904. int i;
  905. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  906. skip_bits(gb, 4); //bitrate exponent
  907. skip_bits(gb, 4); //buffer size exponent
  908. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  909. skip_bits(gb, 16); //hrd_rate[n]
  910. skip_bits(gb, 16); //hrd_buffer[n]
  911. }
  912. }
  913. return 0;
  914. }
  915. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  916. {
  917. VC1Context *v = avctx->priv_data;
  918. int i;
  919. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  920. v->broken_link = get_bits1(gb);
  921. v->closed_entry = get_bits1(gb);
  922. v->panscanflag = get_bits1(gb);
  923. v->refdist_flag = get_bits1(gb);
  924. v->s.loop_filter = get_bits1(gb);
  925. v->fastuvmc = get_bits1(gb);
  926. v->extended_mv = get_bits1(gb);
  927. v->dquant = get_bits(gb, 2);
  928. v->vstransform = get_bits1(gb);
  929. v->overlap = get_bits1(gb);
  930. v->quantizer_mode = get_bits(gb, 2);
  931. if(v->hrd_param_flag){
  932. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  933. skip_bits(gb, 8); //hrd_full[n]
  934. }
  935. }
  936. if(get_bits1(gb)){
  937. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  938. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  939. }
  940. if(v->extended_mv)
  941. v->extended_dmv = get_bits1(gb);
  942. if((v->range_mapy_flag = get_bits1(gb))) {
  943. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  944. v->range_mapy = get_bits(gb, 3);
  945. }
  946. if((v->range_mapuv_flag = get_bits1(gb))) {
  947. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  948. v->range_mapuv = get_bits(gb, 3);
  949. }
  950. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  951. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  952. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  953. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  954. v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  955. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  956. return 0;
  957. }
  958. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  959. {
  960. int pqindex, lowquant, status;
  961. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  962. skip_bits(gb, 2); //framecnt unused
  963. v->rangeredfrm = 0;
  964. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  965. v->s.pict_type = get_bits1(gb);
  966. if (v->s.avctx->max_b_frames) {
  967. if (!v->s.pict_type) {
  968. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  969. else v->s.pict_type = FF_B_TYPE;
  970. } else v->s.pict_type = FF_P_TYPE;
  971. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  972. v->bi_type = 0;
  973. if(v->s.pict_type == FF_B_TYPE) {
  974. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  975. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  976. if(v->bfraction == 0) {
  977. v->s.pict_type = FF_BI_TYPE;
  978. }
  979. }
  980. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  981. skip_bits(gb, 7); // skip buffer fullness
  982. /* calculate RND */
  983. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  984. v->rnd = 1;
  985. if(v->s.pict_type == FF_P_TYPE)
  986. v->rnd ^= 1;
  987. /* Quantizer stuff */
  988. pqindex = get_bits(gb, 5);
  989. if(!pqindex) return -1;
  990. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  991. v->pq = ff_vc1_pquant_table[0][pqindex];
  992. else
  993. v->pq = ff_vc1_pquant_table[1][pqindex];
  994. v->pquantizer = 1;
  995. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  996. v->pquantizer = pqindex < 9;
  997. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  998. v->pquantizer = 0;
  999. v->pqindex = pqindex;
  1000. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1001. else v->halfpq = 0;
  1002. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1003. v->pquantizer = get_bits1(gb);
  1004. v->dquantfrm = 0;
  1005. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1006. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1007. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1008. v->range_x = 1 << (v->k_x - 1);
  1009. v->range_y = 1 << (v->k_y - 1);
  1010. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1011. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1012. v->x8_type = get_bits1(gb);
  1013. }else v->x8_type = 0;
  1014. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1015. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1016. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1017. switch(v->s.pict_type) {
  1018. case FF_P_TYPE:
  1019. if (v->pq < 5) v->tt_index = 0;
  1020. else if(v->pq < 13) v->tt_index = 1;
  1021. else v->tt_index = 2;
  1022. lowquant = (v->pq > 12) ? 0 : 1;
  1023. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1024. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1025. {
  1026. int scale, shift, i;
  1027. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1028. v->lumscale = get_bits(gb, 6);
  1029. v->lumshift = get_bits(gb, 6);
  1030. v->use_ic = 1;
  1031. /* fill lookup tables for intensity compensation */
  1032. if(!v->lumscale) {
  1033. scale = -64;
  1034. shift = (255 - v->lumshift * 2) << 6;
  1035. if(v->lumshift > 31)
  1036. shift += 128 << 6;
  1037. } else {
  1038. scale = v->lumscale + 32;
  1039. if(v->lumshift > 31)
  1040. shift = (v->lumshift - 64) << 6;
  1041. else
  1042. shift = v->lumshift << 6;
  1043. }
  1044. for(i = 0; i < 256; i++) {
  1045. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1046. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1047. }
  1048. }
  1049. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1050. v->s.quarter_sample = 0;
  1051. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1052. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1053. v->s.quarter_sample = 0;
  1054. else
  1055. v->s.quarter_sample = 1;
  1056. } else
  1057. v->s.quarter_sample = 1;
  1058. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1059. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1060. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1061. || v->mv_mode == MV_PMODE_MIXED_MV)
  1062. {
  1063. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1064. if (status < 0) return -1;
  1065. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1066. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1067. } else {
  1068. v->mv_type_is_raw = 0;
  1069. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1070. }
  1071. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1072. if (status < 0) return -1;
  1073. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1074. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1075. /* Hopefully this is correct for P frames */
  1076. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1077. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1078. if (v->dquant)
  1079. {
  1080. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1081. vop_dquant_decoding(v);
  1082. }
  1083. v->ttfrm = 0; //FIXME Is that so ?
  1084. if (v->vstransform)
  1085. {
  1086. v->ttmbf = get_bits1(gb);
  1087. if (v->ttmbf)
  1088. {
  1089. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1090. }
  1091. } else {
  1092. v->ttmbf = 1;
  1093. v->ttfrm = TT_8X8;
  1094. }
  1095. break;
  1096. case FF_B_TYPE:
  1097. if (v->pq < 5) v->tt_index = 0;
  1098. else if(v->pq < 13) v->tt_index = 1;
  1099. else v->tt_index = 2;
  1100. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1101. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1102. v->s.mspel = v->s.quarter_sample;
  1103. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1104. if (status < 0) return -1;
  1105. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1106. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1107. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1108. if (status < 0) return -1;
  1109. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1110. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1111. v->s.mv_table_index = get_bits(gb, 2);
  1112. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1113. if (v->dquant)
  1114. {
  1115. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1116. vop_dquant_decoding(v);
  1117. }
  1118. v->ttfrm = 0;
  1119. if (v->vstransform)
  1120. {
  1121. v->ttmbf = get_bits1(gb);
  1122. if (v->ttmbf)
  1123. {
  1124. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1125. }
  1126. } else {
  1127. v->ttmbf = 1;
  1128. v->ttfrm = TT_8X8;
  1129. }
  1130. break;
  1131. }
  1132. if(!v->x8_type)
  1133. {
  1134. /* AC Syntax */
  1135. v->c_ac_table_index = decode012(gb);
  1136. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1137. {
  1138. v->y_ac_table_index = decode012(gb);
  1139. }
  1140. /* DC Syntax */
  1141. v->s.dc_table_index = get_bits1(gb);
  1142. }
  1143. if(v->s.pict_type == FF_BI_TYPE) {
  1144. v->s.pict_type = FF_B_TYPE;
  1145. v->bi_type = 1;
  1146. }
  1147. return 0;
  1148. }
  1149. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1150. {
  1151. int pqindex, lowquant;
  1152. int status;
  1153. v->p_frame_skipped = 0;
  1154. if(v->interlace){
  1155. v->fcm = decode012(gb);
  1156. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1157. }
  1158. switch(get_unary(gb, 0, 4)) {
  1159. case 0:
  1160. v->s.pict_type = FF_P_TYPE;
  1161. break;
  1162. case 1:
  1163. v->s.pict_type = FF_B_TYPE;
  1164. break;
  1165. case 2:
  1166. v->s.pict_type = FF_I_TYPE;
  1167. break;
  1168. case 3:
  1169. v->s.pict_type = FF_BI_TYPE;
  1170. break;
  1171. case 4:
  1172. v->s.pict_type = FF_P_TYPE; // skipped pic
  1173. v->p_frame_skipped = 1;
  1174. return 0;
  1175. }
  1176. if(v->tfcntrflag)
  1177. skip_bits(gb, 8);
  1178. if(v->broadcast) {
  1179. if(!v->interlace || v->psf) {
  1180. v->rptfrm = get_bits(gb, 2);
  1181. } else {
  1182. v->tff = get_bits1(gb);
  1183. v->rptfrm = get_bits1(gb);
  1184. }
  1185. }
  1186. if(v->panscanflag) {
  1187. //...
  1188. }
  1189. v->rnd = get_bits1(gb);
  1190. if(v->interlace)
  1191. v->uvsamp = get_bits1(gb);
  1192. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1193. if(v->s.pict_type == FF_B_TYPE) {
  1194. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1195. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1196. if(v->bfraction == 0) {
  1197. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1198. }
  1199. }
  1200. pqindex = get_bits(gb, 5);
  1201. if(!pqindex) return -1;
  1202. v->pqindex = pqindex;
  1203. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1204. v->pq = ff_vc1_pquant_table[0][pqindex];
  1205. else
  1206. v->pq = ff_vc1_pquant_table[1][pqindex];
  1207. v->pquantizer = 1;
  1208. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1209. v->pquantizer = pqindex < 9;
  1210. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1211. v->pquantizer = 0;
  1212. v->pqindex = pqindex;
  1213. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1214. else v->halfpq = 0;
  1215. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1216. v->pquantizer = get_bits1(gb);
  1217. if(v->postprocflag)
  1218. v->postproc = get_bits(gb, 2);
  1219. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1220. switch(v->s.pict_type) {
  1221. case FF_I_TYPE:
  1222. case FF_BI_TYPE:
  1223. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1224. if (status < 0) return -1;
  1225. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1226. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1227. v->condover = CONDOVER_NONE;
  1228. if(v->overlap && v->pq <= 8) {
  1229. v->condover = decode012(gb);
  1230. if(v->condover == CONDOVER_SELECT) {
  1231. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1232. if (status < 0) return -1;
  1233. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1234. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1235. }
  1236. }
  1237. break;
  1238. case FF_P_TYPE:
  1239. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1240. else v->mvrange = 0;
  1241. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1242. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1243. v->range_x = 1 << (v->k_x - 1);
  1244. v->range_y = 1 << (v->k_y - 1);
  1245. if (v->pq < 5) v->tt_index = 0;
  1246. else if(v->pq < 13) v->tt_index = 1;
  1247. else v->tt_index = 2;
  1248. lowquant = (v->pq > 12) ? 0 : 1;
  1249. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1250. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1251. {
  1252. int scale, shift, i;
  1253. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1254. v->lumscale = get_bits(gb, 6);
  1255. v->lumshift = get_bits(gb, 6);
  1256. /* fill lookup tables for intensity compensation */
  1257. if(!v->lumscale) {
  1258. scale = -64;
  1259. shift = (255 - v->lumshift * 2) << 6;
  1260. if(v->lumshift > 31)
  1261. shift += 128 << 6;
  1262. } else {
  1263. scale = v->lumscale + 32;
  1264. if(v->lumshift > 31)
  1265. shift = (v->lumshift - 64) << 6;
  1266. else
  1267. shift = v->lumshift << 6;
  1268. }
  1269. for(i = 0; i < 256; i++) {
  1270. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1271. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1272. }
  1273. v->use_ic = 1;
  1274. }
  1275. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1276. v->s.quarter_sample = 0;
  1277. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1278. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1279. v->s.quarter_sample = 0;
  1280. else
  1281. v->s.quarter_sample = 1;
  1282. } else
  1283. v->s.quarter_sample = 1;
  1284. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1285. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1286. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1287. || v->mv_mode == MV_PMODE_MIXED_MV)
  1288. {
  1289. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1290. if (status < 0) return -1;
  1291. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1292. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1293. } else {
  1294. v->mv_type_is_raw = 0;
  1295. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1296. }
  1297. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1298. if (status < 0) return -1;
  1299. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1300. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1301. /* Hopefully this is correct for P frames */
  1302. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1303. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1304. if (v->dquant)
  1305. {
  1306. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1307. vop_dquant_decoding(v);
  1308. }
  1309. v->ttfrm = 0; //FIXME Is that so ?
  1310. if (v->vstransform)
  1311. {
  1312. v->ttmbf = get_bits1(gb);
  1313. if (v->ttmbf)
  1314. {
  1315. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1316. }
  1317. } else {
  1318. v->ttmbf = 1;
  1319. v->ttfrm = TT_8X8;
  1320. }
  1321. break;
  1322. case FF_B_TYPE:
  1323. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1324. else v->mvrange = 0;
  1325. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1326. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1327. v->range_x = 1 << (v->k_x - 1);
  1328. v->range_y = 1 << (v->k_y - 1);
  1329. if (v->pq < 5) v->tt_index = 0;
  1330. else if(v->pq < 13) v->tt_index = 1;
  1331. else v->tt_index = 2;
  1332. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1333. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1334. v->s.mspel = v->s.quarter_sample;
  1335. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1336. if (status < 0) return -1;
  1337. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1338. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1339. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1340. if (status < 0) return -1;
  1341. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1342. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1343. v->s.mv_table_index = get_bits(gb, 2);
  1344. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1345. if (v->dquant)
  1346. {
  1347. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1348. vop_dquant_decoding(v);
  1349. }
  1350. v->ttfrm = 0;
  1351. if (v->vstransform)
  1352. {
  1353. v->ttmbf = get_bits1(gb);
  1354. if (v->ttmbf)
  1355. {
  1356. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1357. }
  1358. } else {
  1359. v->ttmbf = 1;
  1360. v->ttfrm = TT_8X8;
  1361. }
  1362. break;
  1363. }
  1364. /* AC Syntax */
  1365. v->c_ac_table_index = decode012(gb);
  1366. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1367. {
  1368. v->y_ac_table_index = decode012(gb);
  1369. }
  1370. /* DC Syntax */
  1371. v->s.dc_table_index = get_bits1(gb);
  1372. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1373. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1374. vop_dquant_decoding(v);
  1375. }
  1376. v->bi_type = 0;
  1377. if(v->s.pict_type == FF_BI_TYPE) {
  1378. v->s.pict_type = FF_B_TYPE;
  1379. v->bi_type = 1;
  1380. }
  1381. return 0;
  1382. }
  1383. /***********************************************************************/
  1384. /**
  1385. * @defgroup vc1block VC-1 Block-level functions
  1386. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1387. * @{
  1388. */
  1389. /**
  1390. * @def GET_MQUANT
  1391. * @brief Get macroblock-level quantizer scale
  1392. */
  1393. #define GET_MQUANT() \
  1394. if (v->dquantfrm) \
  1395. { \
  1396. int edges = 0; \
  1397. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1398. { \
  1399. if (v->dqbilevel) \
  1400. { \
  1401. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1402. } \
  1403. else \
  1404. { \
  1405. mqdiff = get_bits(gb, 3); \
  1406. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1407. else mquant = get_bits(gb, 5); \
  1408. } \
  1409. } \
  1410. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1411. edges = 1 << v->dqsbedge; \
  1412. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1413. edges = (3 << v->dqsbedge) % 15; \
  1414. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1415. edges = 15; \
  1416. if((edges&1) && !s->mb_x) \
  1417. mquant = v->altpq; \
  1418. if((edges&2) && s->first_slice_line) \
  1419. mquant = v->altpq; \
  1420. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1421. mquant = v->altpq; \
  1422. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1423. mquant = v->altpq; \
  1424. }
  1425. /**
  1426. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1427. * @brief Get MV differentials
  1428. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1429. * @param _dmv_x Horizontal differential for decoded MV
  1430. * @param _dmv_y Vertical differential for decoded MV
  1431. */
  1432. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1433. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1434. VC1_MV_DIFF_VLC_BITS, 2); \
  1435. if (index > 36) \
  1436. { \
  1437. mb_has_coeffs = 1; \
  1438. index -= 37; \
  1439. } \
  1440. else mb_has_coeffs = 0; \
  1441. s->mb_intra = 0; \
  1442. if (!index) { _dmv_x = _dmv_y = 0; } \
  1443. else if (index == 35) \
  1444. { \
  1445. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1446. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1447. } \
  1448. else if (index == 36) \
  1449. { \
  1450. _dmv_x = 0; \
  1451. _dmv_y = 0; \
  1452. s->mb_intra = 1; \
  1453. } \
  1454. else \
  1455. { \
  1456. index1 = index%6; \
  1457. if (!s->quarter_sample && index1 == 5) val = 1; \
  1458. else val = 0; \
  1459. if(size_table[index1] - val > 0) \
  1460. val = get_bits(gb, size_table[index1] - val); \
  1461. else val = 0; \
  1462. sign = 0 - (val&1); \
  1463. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1464. \
  1465. index1 = index/6; \
  1466. if (!s->quarter_sample && index1 == 5) val = 1; \
  1467. else val = 0; \
  1468. if(size_table[index1] - val > 0) \
  1469. val = get_bits(gb, size_table[index1] - val); \
  1470. else val = 0; \
  1471. sign = 0 - (val&1); \
  1472. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1473. }
  1474. /** Predict and set motion vector
  1475. */
  1476. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1477. {
  1478. int xy, wrap, off = 0;
  1479. int16_t *A, *B, *C;
  1480. int px, py;
  1481. int sum;
  1482. /* scale MV difference to be quad-pel */
  1483. dmv_x <<= 1 - s->quarter_sample;
  1484. dmv_y <<= 1 - s->quarter_sample;
  1485. wrap = s->b8_stride;
  1486. xy = s->block_index[n];
  1487. if(s->mb_intra){
  1488. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1489. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1490. s->current_picture.motion_val[1][xy][0] = 0;
  1491. s->current_picture.motion_val[1][xy][1] = 0;
  1492. if(mv1) { /* duplicate motion data for 1-MV block */
  1493. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1494. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1495. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1496. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1497. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1498. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1499. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1500. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1501. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1502. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1503. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1504. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1505. }
  1506. return;
  1507. }
  1508. C = s->current_picture.motion_val[0][xy - 1];
  1509. A = s->current_picture.motion_val[0][xy - wrap];
  1510. if(mv1)
  1511. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1512. else {
  1513. //in 4-MV mode different blocks have different B predictor position
  1514. switch(n){
  1515. case 0:
  1516. off = (s->mb_x > 0) ? -1 : 1;
  1517. break;
  1518. case 1:
  1519. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1520. break;
  1521. case 2:
  1522. off = 1;
  1523. break;
  1524. case 3:
  1525. off = -1;
  1526. }
  1527. }
  1528. B = s->current_picture.motion_val[0][xy - wrap + off];
  1529. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1530. if(s->mb_width == 1) {
  1531. px = A[0];
  1532. py = A[1];
  1533. } else {
  1534. px = mid_pred(A[0], B[0], C[0]);
  1535. py = mid_pred(A[1], B[1], C[1]);
  1536. }
  1537. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1538. px = C[0];
  1539. py = C[1];
  1540. } else {
  1541. px = py = 0;
  1542. }
  1543. /* Pullback MV as specified in 8.3.5.3.4 */
  1544. {
  1545. int qx, qy, X, Y;
  1546. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1547. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1548. X = (s->mb_width << 6) - 4;
  1549. Y = (s->mb_height << 6) - 4;
  1550. if(mv1) {
  1551. if(qx + px < -60) px = -60 - qx;
  1552. if(qy + py < -60) py = -60 - qy;
  1553. } else {
  1554. if(qx + px < -28) px = -28 - qx;
  1555. if(qy + py < -28) py = -28 - qy;
  1556. }
  1557. if(qx + px > X) px = X - qx;
  1558. if(qy + py > Y) py = Y - qy;
  1559. }
  1560. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1561. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1562. if(is_intra[xy - wrap])
  1563. sum = FFABS(px) + FFABS(py);
  1564. else
  1565. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1566. if(sum > 32) {
  1567. if(get_bits1(&s->gb)) {
  1568. px = A[0];
  1569. py = A[1];
  1570. } else {
  1571. px = C[0];
  1572. py = C[1];
  1573. }
  1574. } else {
  1575. if(is_intra[xy - 1])
  1576. sum = FFABS(px) + FFABS(py);
  1577. else
  1578. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1579. if(sum > 32) {
  1580. if(get_bits1(&s->gb)) {
  1581. px = A[0];
  1582. py = A[1];
  1583. } else {
  1584. px = C[0];
  1585. py = C[1];
  1586. }
  1587. }
  1588. }
  1589. }
  1590. /* store MV using signed modulus of MV range defined in 4.11 */
  1591. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1592. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1593. if(mv1) { /* duplicate motion data for 1-MV block */
  1594. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1595. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1596. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1597. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1598. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1599. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1600. }
  1601. }
  1602. /** Motion compensation for direct or interpolated blocks in B-frames
  1603. */
  1604. static void vc1_interp_mc(VC1Context *v)
  1605. {
  1606. MpegEncContext *s = &v->s;
  1607. DSPContext *dsp = &v->s.dsp;
  1608. uint8_t *srcY, *srcU, *srcV;
  1609. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1610. if(!v->s.next_picture.data[0])return;
  1611. mx = s->mv[1][0][0];
  1612. my = s->mv[1][0][1];
  1613. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1614. uvmy = (my + ((my & 3) == 3)) >> 1;
  1615. if(v->fastuvmc) {
  1616. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1617. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1618. }
  1619. srcY = s->next_picture.data[0];
  1620. srcU = s->next_picture.data[1];
  1621. srcV = s->next_picture.data[2];
  1622. src_x = s->mb_x * 16 + (mx >> 2);
  1623. src_y = s->mb_y * 16 + (my >> 2);
  1624. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1625. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1626. if(v->profile != PROFILE_ADVANCED){
  1627. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1628. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1629. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1630. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1631. }else{
  1632. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1633. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1634. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1635. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1636. }
  1637. srcY += src_y * s->linesize + src_x;
  1638. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1639. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1640. /* for grayscale we should not try to read from unknown area */
  1641. if(s->flags & CODEC_FLAG_GRAY) {
  1642. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1643. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1644. }
  1645. if(v->rangeredfrm
  1646. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1647. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1648. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1649. srcY -= s->mspel * (1 + s->linesize);
  1650. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1651. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1652. srcY = s->edge_emu_buffer;
  1653. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1654. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1655. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1656. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1657. srcU = uvbuf;
  1658. srcV = uvbuf + 16;
  1659. /* if we deal with range reduction we need to scale source blocks */
  1660. if(v->rangeredfrm) {
  1661. int i, j;
  1662. uint8_t *src, *src2;
  1663. src = srcY;
  1664. for(j = 0; j < 17 + s->mspel*2; j++) {
  1665. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1666. src += s->linesize;
  1667. }
  1668. src = srcU; src2 = srcV;
  1669. for(j = 0; j < 9; j++) {
  1670. for(i = 0; i < 9; i++) {
  1671. src[i] = ((src[i] - 128) >> 1) + 128;
  1672. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1673. }
  1674. src += s->uvlinesize;
  1675. src2 += s->uvlinesize;
  1676. }
  1677. }
  1678. srcY += s->mspel * (1 + s->linesize);
  1679. }
  1680. if(s->mspel) {
  1681. dxy = ((my & 3) << 2) | (mx & 3);
  1682. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  1683. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  1684. srcY += s->linesize * 8;
  1685. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1686. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1687. } else { // hpel mc
  1688. dxy = (my & 2) | ((mx & 2) >> 1);
  1689. if(!v->rnd)
  1690. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1691. else
  1692. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1693. }
  1694. if(s->flags & CODEC_FLAG_GRAY) return;
  1695. /* Chroma MC always uses qpel blilinear */
  1696. uvmx = (uvmx&3)<<1;
  1697. uvmy = (uvmy&3)<<1;
  1698. if(!v->rnd){
  1699. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1700. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1701. }else{
  1702. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1703. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1704. }
  1705. }
  1706. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1707. {
  1708. int n = bfrac;
  1709. #if B_FRACTION_DEN==256
  1710. if(inv)
  1711. n -= 256;
  1712. if(!qs)
  1713. return 2 * ((value * n + 255) >> 9);
  1714. return (value * n + 128) >> 8;
  1715. #else
  1716. if(inv)
  1717. n -= B_FRACTION_DEN;
  1718. if(!qs)
  1719. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1720. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1721. #endif
  1722. }
  1723. /** Reconstruct motion vector for B-frame and do motion compensation
  1724. */
  1725. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1726. {
  1727. if(v->use_ic) {
  1728. v->mv_mode2 = v->mv_mode;
  1729. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1730. }
  1731. if(direct) {
  1732. vc1_mc_1mv(v, 0);
  1733. vc1_interp_mc(v);
  1734. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1735. return;
  1736. }
  1737. if(mode == BMV_TYPE_INTERPOLATED) {
  1738. vc1_mc_1mv(v, 0);
  1739. vc1_interp_mc(v);
  1740. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1741. return;
  1742. }
  1743. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1744. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1745. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1746. }
  1747. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1748. {
  1749. MpegEncContext *s = &v->s;
  1750. int xy, wrap, off = 0;
  1751. int16_t *A, *B, *C;
  1752. int px, py;
  1753. int sum;
  1754. int r_x, r_y;
  1755. const uint8_t *is_intra = v->mb_type[0];
  1756. r_x = v->range_x;
  1757. r_y = v->range_y;
  1758. /* scale MV difference to be quad-pel */
  1759. dmv_x[0] <<= 1 - s->quarter_sample;
  1760. dmv_y[0] <<= 1 - s->quarter_sample;
  1761. dmv_x[1] <<= 1 - s->quarter_sample;
  1762. dmv_y[1] <<= 1 - s->quarter_sample;
  1763. wrap = s->b8_stride;
  1764. xy = s->block_index[0];
  1765. if(s->mb_intra) {
  1766. s->current_picture.motion_val[0][xy][0] =
  1767. s->current_picture.motion_val[0][xy][1] =
  1768. s->current_picture.motion_val[1][xy][0] =
  1769. s->current_picture.motion_val[1][xy][1] = 0;
  1770. return;
  1771. }
  1772. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1773. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1774. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1775. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1776. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1777. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1778. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1779. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1780. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1781. if(direct) {
  1782. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1783. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1784. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1785. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1786. return;
  1787. }
  1788. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1789. C = s->current_picture.motion_val[0][xy - 2];
  1790. A = s->current_picture.motion_val[0][xy - wrap*2];
  1791. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1792. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1793. if(!s->mb_x) C[0] = C[1] = 0;
  1794. if(!s->first_slice_line) { // predictor A is not out of bounds
  1795. if(s->mb_width == 1) {
  1796. px = A[0];
  1797. py = A[1];
  1798. } else {
  1799. px = mid_pred(A[0], B[0], C[0]);
  1800. py = mid_pred(A[1], B[1], C[1]);
  1801. }
  1802. } else if(s->mb_x) { // predictor C is not out of bounds
  1803. px = C[0];
  1804. py = C[1];
  1805. } else {
  1806. px = py = 0;
  1807. }
  1808. /* Pullback MV as specified in 8.3.5.3.4 */
  1809. {
  1810. int qx, qy, X, Y;
  1811. if(v->profile < PROFILE_ADVANCED) {
  1812. qx = (s->mb_x << 5);
  1813. qy = (s->mb_y << 5);
  1814. X = (s->mb_width << 5) - 4;
  1815. Y = (s->mb_height << 5) - 4;
  1816. if(qx + px < -28) px = -28 - qx;
  1817. if(qy + py < -28) py = -28 - qy;
  1818. if(qx + px > X) px = X - qx;
  1819. if(qy + py > Y) py = Y - qy;
  1820. } else {
  1821. qx = (s->mb_x << 6);
  1822. qy = (s->mb_y << 6);
  1823. X = (s->mb_width << 6) - 4;
  1824. Y = (s->mb_height << 6) - 4;
  1825. if(qx + px < -60) px = -60 - qx;
  1826. if(qy + py < -60) py = -60 - qy;
  1827. if(qx + px > X) px = X - qx;
  1828. if(qy + py > Y) py = Y - qy;
  1829. }
  1830. }
  1831. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1832. if(0 && !s->first_slice_line && s->mb_x) {
  1833. if(is_intra[xy - wrap])
  1834. sum = FFABS(px) + FFABS(py);
  1835. else
  1836. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1837. if(sum > 32) {
  1838. if(get_bits1(&s->gb)) {
  1839. px = A[0];
  1840. py = A[1];
  1841. } else {
  1842. px = C[0];
  1843. py = C[1];
  1844. }
  1845. } else {
  1846. if(is_intra[xy - 2])
  1847. sum = FFABS(px) + FFABS(py);
  1848. else
  1849. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1850. if(sum > 32) {
  1851. if(get_bits1(&s->gb)) {
  1852. px = A[0];
  1853. py = A[1];
  1854. } else {
  1855. px = C[0];
  1856. py = C[1];
  1857. }
  1858. }
  1859. }
  1860. }
  1861. /* store MV using signed modulus of MV range defined in 4.11 */
  1862. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1863. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1864. }
  1865. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1866. C = s->current_picture.motion_val[1][xy - 2];
  1867. A = s->current_picture.motion_val[1][xy - wrap*2];
  1868. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1869. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1870. if(!s->mb_x) C[0] = C[1] = 0;
  1871. if(!s->first_slice_line) { // predictor A is not out of bounds
  1872. if(s->mb_width == 1) {
  1873. px = A[0];
  1874. py = A[1];
  1875. } else {
  1876. px = mid_pred(A[0], B[0], C[0]);
  1877. py = mid_pred(A[1], B[1], C[1]);
  1878. }
  1879. } else if(s->mb_x) { // predictor C is not out of bounds
  1880. px = C[0];
  1881. py = C[1];
  1882. } else {
  1883. px = py = 0;
  1884. }
  1885. /* Pullback MV as specified in 8.3.5.3.4 */
  1886. {
  1887. int qx, qy, X, Y;
  1888. if(v->profile < PROFILE_ADVANCED) {
  1889. qx = (s->mb_x << 5);
  1890. qy = (s->mb_y << 5);
  1891. X = (s->mb_width << 5) - 4;
  1892. Y = (s->mb_height << 5) - 4;
  1893. if(qx + px < -28) px = -28 - qx;
  1894. if(qy + py < -28) py = -28 - qy;
  1895. if(qx + px > X) px = X - qx;
  1896. if(qy + py > Y) py = Y - qy;
  1897. } else {
  1898. qx = (s->mb_x << 6);
  1899. qy = (s->mb_y << 6);
  1900. X = (s->mb_width << 6) - 4;
  1901. Y = (s->mb_height << 6) - 4;
  1902. if(qx + px < -60) px = -60 - qx;
  1903. if(qy + py < -60) py = -60 - qy;
  1904. if(qx + px > X) px = X - qx;
  1905. if(qy + py > Y) py = Y - qy;
  1906. }
  1907. }
  1908. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1909. if(0 && !s->first_slice_line && s->mb_x) {
  1910. if(is_intra[xy - wrap])
  1911. sum = FFABS(px) + FFABS(py);
  1912. else
  1913. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1914. if(sum > 32) {
  1915. if(get_bits1(&s->gb)) {
  1916. px = A[0];
  1917. py = A[1];
  1918. } else {
  1919. px = C[0];
  1920. py = C[1];
  1921. }
  1922. } else {
  1923. if(is_intra[xy - 2])
  1924. sum = FFABS(px) + FFABS(py);
  1925. else
  1926. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1927. if(sum > 32) {
  1928. if(get_bits1(&s->gb)) {
  1929. px = A[0];
  1930. py = A[1];
  1931. } else {
  1932. px = C[0];
  1933. py = C[1];
  1934. }
  1935. }
  1936. }
  1937. }
  1938. /* store MV using signed modulus of MV range defined in 4.11 */
  1939. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1940. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1941. }
  1942. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1943. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1944. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1945. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1946. }
  1947. /** Get predicted DC value for I-frames only
  1948. * prediction dir: left=0, top=1
  1949. * @param s MpegEncContext
  1950. * @param overlap flag indicating that overlap filtering is used
  1951. * @param pq integer part of picture quantizer
  1952. * @param[in] n block index in the current MB
  1953. * @param dc_val_ptr Pointer to DC predictor
  1954. * @param dir_ptr Prediction direction for use in AC prediction
  1955. */
  1956. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1957. int16_t **dc_val_ptr, int *dir_ptr)
  1958. {
  1959. int a, b, c, wrap, pred, scale;
  1960. int16_t *dc_val;
  1961. static const uint16_t dcpred[32] = {
  1962. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1963. 114, 102, 93, 85, 79, 73, 68, 64,
  1964. 60, 57, 54, 51, 49, 47, 45, 43,
  1965. 41, 39, 38, 37, 35, 34, 33
  1966. };
  1967. /* find prediction - wmv3_dc_scale always used here in fact */
  1968. if (n < 4) scale = s->y_dc_scale;
  1969. else scale = s->c_dc_scale;
  1970. wrap = s->block_wrap[n];
  1971. dc_val= s->dc_val[0] + s->block_index[n];
  1972. /* B A
  1973. * C X
  1974. */
  1975. c = dc_val[ - 1];
  1976. b = dc_val[ - 1 - wrap];
  1977. a = dc_val[ - wrap];
  1978. if (pq < 9 || !overlap)
  1979. {
  1980. /* Set outer values */
  1981. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1982. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1983. }
  1984. else
  1985. {
  1986. /* Set outer values */
  1987. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1988. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1989. }
  1990. if (abs(a - b) <= abs(b - c)) {
  1991. pred = c;
  1992. *dir_ptr = 1;//left
  1993. } else {
  1994. pred = a;
  1995. *dir_ptr = 0;//top
  1996. }
  1997. /* update predictor */
  1998. *dc_val_ptr = &dc_val[0];
  1999. return pred;
  2000. }
  2001. /** Get predicted DC value
  2002. * prediction dir: left=0, top=1
  2003. * @param s MpegEncContext
  2004. * @param overlap flag indicating that overlap filtering is used
  2005. * @param pq integer part of picture quantizer
  2006. * @param[in] n block index in the current MB
  2007. * @param a_avail flag indicating top block availability
  2008. * @param c_avail flag indicating left block availability
  2009. * @param dc_val_ptr Pointer to DC predictor
  2010. * @param dir_ptr Prediction direction for use in AC prediction
  2011. */
  2012. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2013. int a_avail, int c_avail,
  2014. int16_t **dc_val_ptr, int *dir_ptr)
  2015. {
  2016. int a, b, c, wrap, pred;
  2017. int16_t *dc_val;
  2018. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2019. int q1, q2 = 0;
  2020. wrap = s->block_wrap[n];
  2021. dc_val= s->dc_val[0] + s->block_index[n];
  2022. /* B A
  2023. * C X
  2024. */
  2025. c = dc_val[ - 1];
  2026. b = dc_val[ - 1 - wrap];
  2027. a = dc_val[ - wrap];
  2028. /* scale predictors if needed */
  2029. q1 = s->current_picture.qscale_table[mb_pos];
  2030. if(c_avail && (n!= 1 && n!=3)) {
  2031. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2032. if(q2 && q2 != q1)
  2033. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2034. }
  2035. if(a_avail && (n!= 2 && n!=3)) {
  2036. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2037. if(q2 && q2 != q1)
  2038. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2039. }
  2040. if(a_avail && c_avail && (n!=3)) {
  2041. int off = mb_pos;
  2042. if(n != 1) off--;
  2043. if(n != 2) off -= s->mb_stride;
  2044. q2 = s->current_picture.qscale_table[off];
  2045. if(q2 && q2 != q1)
  2046. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2047. }
  2048. if(a_avail && c_avail) {
  2049. if(abs(a - b) <= abs(b - c)) {
  2050. pred = c;
  2051. *dir_ptr = 1;//left
  2052. } else {
  2053. pred = a;
  2054. *dir_ptr = 0;//top
  2055. }
  2056. } else if(a_avail) {
  2057. pred = a;
  2058. *dir_ptr = 0;//top
  2059. } else if(c_avail) {
  2060. pred = c;
  2061. *dir_ptr = 1;//left
  2062. } else {
  2063. pred = 0;
  2064. *dir_ptr = 1;//left
  2065. }
  2066. /* update predictor */
  2067. *dc_val_ptr = &dc_val[0];
  2068. return pred;
  2069. }
  2070. /** @} */ // Block group
  2071. /**
  2072. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2073. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2074. * @{
  2075. */
  2076. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2077. {
  2078. int xy, wrap, pred, a, b, c;
  2079. xy = s->block_index[n];
  2080. wrap = s->b8_stride;
  2081. /* B C
  2082. * A X
  2083. */
  2084. a = s->coded_block[xy - 1 ];
  2085. b = s->coded_block[xy - 1 - wrap];
  2086. c = s->coded_block[xy - wrap];
  2087. if (b == c) {
  2088. pred = a;
  2089. } else {
  2090. pred = c;
  2091. }
  2092. /* store value */
  2093. *coded_block_ptr = &s->coded_block[xy];
  2094. return pred;
  2095. }
  2096. /**
  2097. * Decode one AC coefficient
  2098. * @param v The VC1 context
  2099. * @param last Last coefficient
  2100. * @param skip How much zero coefficients to skip
  2101. * @param value Decoded AC coefficient value
  2102. * @param codingset set of VLC to decode data
  2103. * @see 8.1.3.4
  2104. */
  2105. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2106. {
  2107. GetBitContext *gb = &v->s.gb;
  2108. int index, escape, run = 0, level = 0, lst = 0;
  2109. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2110. if (index != vc1_ac_sizes[codingset] - 1) {
  2111. run = vc1_index_decode_table[codingset][index][0];
  2112. level = vc1_index_decode_table[codingset][index][1];
  2113. lst = index >= vc1_last_decode_table[codingset];
  2114. if(get_bits1(gb))
  2115. level = -level;
  2116. } else {
  2117. escape = decode210(gb);
  2118. if (escape != 2) {
  2119. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2120. run = vc1_index_decode_table[codingset][index][0];
  2121. level = vc1_index_decode_table[codingset][index][1];
  2122. lst = index >= vc1_last_decode_table[codingset];
  2123. if(escape == 0) {
  2124. if(lst)
  2125. level += vc1_last_delta_level_table[codingset][run];
  2126. else
  2127. level += vc1_delta_level_table[codingset][run];
  2128. } else {
  2129. if(lst)
  2130. run += vc1_last_delta_run_table[codingset][level] + 1;
  2131. else
  2132. run += vc1_delta_run_table[codingset][level] + 1;
  2133. }
  2134. if(get_bits1(gb))
  2135. level = -level;
  2136. } else {
  2137. int sign;
  2138. lst = get_bits1(gb);
  2139. if(v->s.esc3_level_length == 0) {
  2140. if(v->pq < 8 || v->dquantfrm) { // table 59
  2141. v->s.esc3_level_length = get_bits(gb, 3);
  2142. if(!v->s.esc3_level_length)
  2143. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2144. } else { //table 60
  2145. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2146. }
  2147. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2148. }
  2149. run = get_bits(gb, v->s.esc3_run_length);
  2150. sign = get_bits1(gb);
  2151. level = get_bits(gb, v->s.esc3_level_length);
  2152. if(sign)
  2153. level = -level;
  2154. }
  2155. }
  2156. *last = lst;
  2157. *skip = run;
  2158. *value = level;
  2159. }
  2160. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2161. * @param v VC1Context
  2162. * @param block block to decode
  2163. * @param[in] n subblock index
  2164. * @param coded are AC coeffs present or not
  2165. * @param codingset set of VLC to decode data
  2166. */
  2167. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2168. {
  2169. GetBitContext *gb = &v->s.gb;
  2170. MpegEncContext *s = &v->s;
  2171. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2172. int run_diff, i;
  2173. int16_t *dc_val;
  2174. int16_t *ac_val, *ac_val2;
  2175. int dcdiff;
  2176. /* Get DC differential */
  2177. if (n < 4) {
  2178. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2179. } else {
  2180. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2181. }
  2182. if (dcdiff < 0){
  2183. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2184. return -1;
  2185. }
  2186. if (dcdiff)
  2187. {
  2188. if (dcdiff == 119 /* ESC index value */)
  2189. {
  2190. /* TODO: Optimize */
  2191. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2192. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2193. else dcdiff = get_bits(gb, 8);
  2194. }
  2195. else
  2196. {
  2197. if (v->pq == 1)
  2198. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2199. else if (v->pq == 2)
  2200. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2201. }
  2202. if (get_bits1(gb))
  2203. dcdiff = -dcdiff;
  2204. }
  2205. /* Prediction */
  2206. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2207. *dc_val = dcdiff;
  2208. /* Store the quantized DC coeff, used for prediction */
  2209. if (n < 4) {
  2210. block[0] = dcdiff * s->y_dc_scale;
  2211. } else {
  2212. block[0] = dcdiff * s->c_dc_scale;
  2213. }
  2214. /* Skip ? */
  2215. run_diff = 0;
  2216. if (!coded) {
  2217. goto not_coded;
  2218. }
  2219. //AC Decoding
  2220. i = 1;
  2221. {
  2222. int last = 0, skip, value;
  2223. const int8_t *zz_table;
  2224. int scale;
  2225. int k;
  2226. scale = v->pq * 2 + v->halfpq;
  2227. if(v->s.ac_pred) {
  2228. if(!dc_pred_dir)
  2229. zz_table = wmv1_scantable[2];
  2230. else
  2231. zz_table = wmv1_scantable[3];
  2232. } else
  2233. zz_table = wmv1_scantable[1];
  2234. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2235. ac_val2 = ac_val;
  2236. if(dc_pred_dir) //left
  2237. ac_val -= 16;
  2238. else //top
  2239. ac_val -= 16 * s->block_wrap[n];
  2240. while (!last) {
  2241. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2242. i += skip;
  2243. if(i > 63)
  2244. break;
  2245. block[zz_table[i++]] = value;
  2246. }
  2247. /* apply AC prediction if needed */
  2248. if(s->ac_pred) {
  2249. if(dc_pred_dir) { //left
  2250. for(k = 1; k < 8; k++)
  2251. block[k << 3] += ac_val[k];
  2252. } else { //top
  2253. for(k = 1; k < 8; k++)
  2254. block[k] += ac_val[k + 8];
  2255. }
  2256. }
  2257. /* save AC coeffs for further prediction */
  2258. for(k = 1; k < 8; k++) {
  2259. ac_val2[k] = block[k << 3];
  2260. ac_val2[k + 8] = block[k];
  2261. }
  2262. /* scale AC coeffs */
  2263. for(k = 1; k < 64; k++)
  2264. if(block[k]) {
  2265. block[k] *= scale;
  2266. if(!v->pquantizer)
  2267. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2268. }
  2269. if(s->ac_pred) i = 63;
  2270. }
  2271. not_coded:
  2272. if(!coded) {
  2273. int k, scale;
  2274. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2275. ac_val2 = ac_val;
  2276. i = 0;
  2277. scale = v->pq * 2 + v->halfpq;
  2278. memset(ac_val2, 0, 16 * 2);
  2279. if(dc_pred_dir) {//left
  2280. ac_val -= 16;
  2281. if(s->ac_pred)
  2282. memcpy(ac_val2, ac_val, 8 * 2);
  2283. } else {//top
  2284. ac_val -= 16 * s->block_wrap[n];
  2285. if(s->ac_pred)
  2286. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2287. }
  2288. /* apply AC prediction if needed */
  2289. if(s->ac_pred) {
  2290. if(dc_pred_dir) { //left
  2291. for(k = 1; k < 8; k++) {
  2292. block[k << 3] = ac_val[k] * scale;
  2293. if(!v->pquantizer && block[k << 3])
  2294. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2295. }
  2296. } else { //top
  2297. for(k = 1; k < 8; k++) {
  2298. block[k] = ac_val[k + 8] * scale;
  2299. if(!v->pquantizer && block[k])
  2300. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2301. }
  2302. }
  2303. i = 63;
  2304. }
  2305. }
  2306. s->block_last_index[n] = i;
  2307. return 0;
  2308. }
  2309. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2310. * @param v VC1Context
  2311. * @param block block to decode
  2312. * @param[in] n subblock number
  2313. * @param coded are AC coeffs present or not
  2314. * @param codingset set of VLC to decode data
  2315. * @param mquant quantizer value for this macroblock
  2316. */
  2317. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2318. {
  2319. GetBitContext *gb = &v->s.gb;
  2320. MpegEncContext *s = &v->s;
  2321. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2322. int run_diff, i;
  2323. int16_t *dc_val;
  2324. int16_t *ac_val, *ac_val2;
  2325. int dcdiff;
  2326. int a_avail = v->a_avail, c_avail = v->c_avail;
  2327. int use_pred = s->ac_pred;
  2328. int scale;
  2329. int q1, q2 = 0;
  2330. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2331. /* Get DC differential */
  2332. if (n < 4) {
  2333. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2334. } else {
  2335. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2336. }
  2337. if (dcdiff < 0){
  2338. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2339. return -1;
  2340. }
  2341. if (dcdiff)
  2342. {
  2343. if (dcdiff == 119 /* ESC index value */)
  2344. {
  2345. /* TODO: Optimize */
  2346. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2347. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2348. else dcdiff = get_bits(gb, 8);
  2349. }
  2350. else
  2351. {
  2352. if (mquant == 1)
  2353. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2354. else if (mquant == 2)
  2355. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2356. }
  2357. if (get_bits1(gb))
  2358. dcdiff = -dcdiff;
  2359. }
  2360. /* Prediction */
  2361. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2362. *dc_val = dcdiff;
  2363. /* Store the quantized DC coeff, used for prediction */
  2364. if (n < 4) {
  2365. block[0] = dcdiff * s->y_dc_scale;
  2366. } else {
  2367. block[0] = dcdiff * s->c_dc_scale;
  2368. }
  2369. /* Skip ? */
  2370. run_diff = 0;
  2371. //AC Decoding
  2372. i = 1;
  2373. /* check if AC is needed at all */
  2374. if(!a_avail && !c_avail) use_pred = 0;
  2375. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2376. ac_val2 = ac_val;
  2377. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2378. if(dc_pred_dir) //left
  2379. ac_val -= 16;
  2380. else //top
  2381. ac_val -= 16 * s->block_wrap[n];
  2382. q1 = s->current_picture.qscale_table[mb_pos];
  2383. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2384. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2385. if(dc_pred_dir && n==1) q2 = q1;
  2386. if(!dc_pred_dir && n==2) q2 = q1;
  2387. if(n==3) q2 = q1;
  2388. if(coded) {
  2389. int last = 0, skip, value;
  2390. const int8_t *zz_table;
  2391. int k;
  2392. if(v->s.ac_pred) {
  2393. if(!dc_pred_dir)
  2394. zz_table = wmv1_scantable[2];
  2395. else
  2396. zz_table = wmv1_scantable[3];
  2397. } else
  2398. zz_table = wmv1_scantable[1];
  2399. while (!last) {
  2400. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2401. i += skip;
  2402. if(i > 63)
  2403. break;
  2404. block[zz_table[i++]] = value;
  2405. }
  2406. /* apply AC prediction if needed */
  2407. if(use_pred) {
  2408. /* scale predictors if needed*/
  2409. if(q2 && q1!=q2) {
  2410. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2411. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2412. if(dc_pred_dir) { //left
  2413. for(k = 1; k < 8; k++)
  2414. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2415. } else { //top
  2416. for(k = 1; k < 8; k++)
  2417. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2418. }
  2419. } else {
  2420. if(dc_pred_dir) { //left
  2421. for(k = 1; k < 8; k++)
  2422. block[k << 3] += ac_val[k];
  2423. } else { //top
  2424. for(k = 1; k < 8; k++)
  2425. block[k] += ac_val[k + 8];
  2426. }
  2427. }
  2428. }
  2429. /* save AC coeffs for further prediction */
  2430. for(k = 1; k < 8; k++) {
  2431. ac_val2[k] = block[k << 3];
  2432. ac_val2[k + 8] = block[k];
  2433. }
  2434. /* scale AC coeffs */
  2435. for(k = 1; k < 64; k++)
  2436. if(block[k]) {
  2437. block[k] *= scale;
  2438. if(!v->pquantizer)
  2439. block[k] += (block[k] < 0) ? -mquant : mquant;
  2440. }
  2441. if(use_pred) i = 63;
  2442. } else { // no AC coeffs
  2443. int k;
  2444. memset(ac_val2, 0, 16 * 2);
  2445. if(dc_pred_dir) {//left
  2446. if(use_pred) {
  2447. memcpy(ac_val2, ac_val, 8 * 2);
  2448. if(q2 && q1!=q2) {
  2449. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2450. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2451. for(k = 1; k < 8; k++)
  2452. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2453. }
  2454. }
  2455. } else {//top
  2456. if(use_pred) {
  2457. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2458. if(q2 && q1!=q2) {
  2459. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2460. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2461. for(k = 1; k < 8; k++)
  2462. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2463. }
  2464. }
  2465. }
  2466. /* apply AC prediction if needed */
  2467. if(use_pred) {
  2468. if(dc_pred_dir) { //left
  2469. for(k = 1; k < 8; k++) {
  2470. block[k << 3] = ac_val2[k] * scale;
  2471. if(!v->pquantizer && block[k << 3])
  2472. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2473. }
  2474. } else { //top
  2475. for(k = 1; k < 8; k++) {
  2476. block[k] = ac_val2[k + 8] * scale;
  2477. if(!v->pquantizer && block[k])
  2478. block[k] += (block[k] < 0) ? -mquant : mquant;
  2479. }
  2480. }
  2481. i = 63;
  2482. }
  2483. }
  2484. s->block_last_index[n] = i;
  2485. return 0;
  2486. }
  2487. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2488. * @param v VC1Context
  2489. * @param block block to decode
  2490. * @param[in] n subblock index
  2491. * @param coded are AC coeffs present or not
  2492. * @param mquant block quantizer
  2493. * @param codingset set of VLC to decode data
  2494. */
  2495. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2496. {
  2497. GetBitContext *gb = &v->s.gb;
  2498. MpegEncContext *s = &v->s;
  2499. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2500. int run_diff, i;
  2501. int16_t *dc_val;
  2502. int16_t *ac_val, *ac_val2;
  2503. int dcdiff;
  2504. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2505. int a_avail = v->a_avail, c_avail = v->c_avail;
  2506. int use_pred = s->ac_pred;
  2507. int scale;
  2508. int q1, q2 = 0;
  2509. /* XXX: Guard against dumb values of mquant */
  2510. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2511. /* Set DC scale - y and c use the same */
  2512. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2513. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2514. /* Get DC differential */
  2515. if (n < 4) {
  2516. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2517. } else {
  2518. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2519. }
  2520. if (dcdiff < 0){
  2521. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2522. return -1;
  2523. }
  2524. if (dcdiff)
  2525. {
  2526. if (dcdiff == 119 /* ESC index value */)
  2527. {
  2528. /* TODO: Optimize */
  2529. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2530. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2531. else dcdiff = get_bits(gb, 8);
  2532. }
  2533. else
  2534. {
  2535. if (mquant == 1)
  2536. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2537. else if (mquant == 2)
  2538. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2539. }
  2540. if (get_bits1(gb))
  2541. dcdiff = -dcdiff;
  2542. }
  2543. /* Prediction */
  2544. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2545. *dc_val = dcdiff;
  2546. /* Store the quantized DC coeff, used for prediction */
  2547. if (n < 4) {
  2548. block[0] = dcdiff * s->y_dc_scale;
  2549. } else {
  2550. block[0] = dcdiff * s->c_dc_scale;
  2551. }
  2552. /* Skip ? */
  2553. run_diff = 0;
  2554. //AC Decoding
  2555. i = 1;
  2556. /* check if AC is needed at all and adjust direction if needed */
  2557. if(!a_avail) dc_pred_dir = 1;
  2558. if(!c_avail) dc_pred_dir = 0;
  2559. if(!a_avail && !c_avail) use_pred = 0;
  2560. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2561. ac_val2 = ac_val;
  2562. scale = mquant * 2 + v->halfpq;
  2563. if(dc_pred_dir) //left
  2564. ac_val -= 16;
  2565. else //top
  2566. ac_val -= 16 * s->block_wrap[n];
  2567. q1 = s->current_picture.qscale_table[mb_pos];
  2568. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2569. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2570. if(dc_pred_dir && n==1) q2 = q1;
  2571. if(!dc_pred_dir && n==2) q2 = q1;
  2572. if(n==3) q2 = q1;
  2573. if(coded) {
  2574. int last = 0, skip, value;
  2575. const int8_t *zz_table;
  2576. int k;
  2577. zz_table = wmv1_scantable[0];
  2578. while (!last) {
  2579. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2580. i += skip;
  2581. if(i > 63)
  2582. break;
  2583. block[zz_table[i++]] = value;
  2584. }
  2585. /* apply AC prediction if needed */
  2586. if(use_pred) {
  2587. /* scale predictors if needed*/
  2588. if(q2 && q1!=q2) {
  2589. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2590. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2591. if(dc_pred_dir) { //left
  2592. for(k = 1; k < 8; k++)
  2593. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2594. } else { //top
  2595. for(k = 1; k < 8; k++)
  2596. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2597. }
  2598. } else {
  2599. if(dc_pred_dir) { //left
  2600. for(k = 1; k < 8; k++)
  2601. block[k << 3] += ac_val[k];
  2602. } else { //top
  2603. for(k = 1; k < 8; k++)
  2604. block[k] += ac_val[k + 8];
  2605. }
  2606. }
  2607. }
  2608. /* save AC coeffs for further prediction */
  2609. for(k = 1; k < 8; k++) {
  2610. ac_val2[k] = block[k << 3];
  2611. ac_val2[k + 8] = block[k];
  2612. }
  2613. /* scale AC coeffs */
  2614. for(k = 1; k < 64; k++)
  2615. if(block[k]) {
  2616. block[k] *= scale;
  2617. if(!v->pquantizer)
  2618. block[k] += (block[k] < 0) ? -mquant : mquant;
  2619. }
  2620. if(use_pred) i = 63;
  2621. } else { // no AC coeffs
  2622. int k;
  2623. memset(ac_val2, 0, 16 * 2);
  2624. if(dc_pred_dir) {//left
  2625. if(use_pred) {
  2626. memcpy(ac_val2, ac_val, 8 * 2);
  2627. if(q2 && q1!=q2) {
  2628. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2629. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2630. for(k = 1; k < 8; k++)
  2631. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2632. }
  2633. }
  2634. } else {//top
  2635. if(use_pred) {
  2636. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2637. if(q2 && q1!=q2) {
  2638. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2639. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2640. for(k = 1; k < 8; k++)
  2641. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2642. }
  2643. }
  2644. }
  2645. /* apply AC prediction if needed */
  2646. if(use_pred) {
  2647. if(dc_pred_dir) { //left
  2648. for(k = 1; k < 8; k++) {
  2649. block[k << 3] = ac_val2[k] * scale;
  2650. if(!v->pquantizer && block[k << 3])
  2651. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2652. }
  2653. } else { //top
  2654. for(k = 1; k < 8; k++) {
  2655. block[k] = ac_val2[k + 8] * scale;
  2656. if(!v->pquantizer && block[k])
  2657. block[k] += (block[k] < 0) ? -mquant : mquant;
  2658. }
  2659. }
  2660. i = 63;
  2661. }
  2662. }
  2663. s->block_last_index[n] = i;
  2664. return 0;
  2665. }
  2666. /** Decode P block
  2667. */
  2668. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2669. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2670. {
  2671. MpegEncContext *s = &v->s;
  2672. GetBitContext *gb = &s->gb;
  2673. int i, j;
  2674. int subblkpat = 0;
  2675. int scale, off, idx, last, skip, value;
  2676. int ttblk = ttmb & 7;
  2677. int pat = 0;
  2678. if(ttmb == -1) {
  2679. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2680. }
  2681. if(ttblk == TT_4X4) {
  2682. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2683. }
  2684. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2685. subblkpat = decode012(gb);
  2686. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2687. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2688. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2689. }
  2690. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2691. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2692. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2693. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2694. ttblk = TT_8X4;
  2695. }
  2696. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2697. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2698. ttblk = TT_4X8;
  2699. }
  2700. switch(ttblk) {
  2701. case TT_8X8:
  2702. pat = 0xF;
  2703. i = 0;
  2704. last = 0;
  2705. while (!last) {
  2706. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2707. i += skip;
  2708. if(i > 63)
  2709. break;
  2710. idx = wmv1_scantable[0][i++];
  2711. block[idx] = value * scale;
  2712. if(!v->pquantizer)
  2713. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2714. }
  2715. if(!skip_block){
  2716. s->dsp.vc1_inv_trans_8x8(block);
  2717. s->dsp.add_pixels_clamped(block, dst, linesize);
  2718. if(apply_filter && cbp_top & 0xC)
  2719. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2720. if(apply_filter && cbp_left & 0xA)
  2721. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2722. }
  2723. break;
  2724. case TT_4X4:
  2725. pat = ~subblkpat & 0xF;
  2726. for(j = 0; j < 4; j++) {
  2727. last = subblkpat & (1 << (3 - j));
  2728. i = 0;
  2729. off = (j & 1) * 4 + (j & 2) * 16;
  2730. while (!last) {
  2731. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2732. i += skip;
  2733. if(i > 15)
  2734. break;
  2735. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2736. block[idx + off] = value * scale;
  2737. if(!v->pquantizer)
  2738. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2739. }
  2740. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2741. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2742. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2743. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2744. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2745. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2746. }
  2747. }
  2748. break;
  2749. case TT_8X4:
  2750. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2751. for(j = 0; j < 2; j++) {
  2752. last = subblkpat & (1 << (1 - j));
  2753. i = 0;
  2754. off = j * 32;
  2755. while (!last) {
  2756. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2757. i += skip;
  2758. if(i > 31)
  2759. break;
  2760. idx = v->zz_8x4[i++]+off;
  2761. block[idx] = value * scale;
  2762. if(!v->pquantizer)
  2763. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2764. }
  2765. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2766. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2767. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2768. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  2769. if(apply_filter && cbp_left & (2 << j))
  2770. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  2771. }
  2772. }
  2773. break;
  2774. case TT_4X8:
  2775. pat = ~(subblkpat*5) & 0xF;
  2776. for(j = 0; j < 2; j++) {
  2777. last = subblkpat & (1 << (1 - j));
  2778. i = 0;
  2779. off = j * 4;
  2780. while (!last) {
  2781. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2782. i += skip;
  2783. if(i > 31)
  2784. break;
  2785. idx = v->zz_4x8[i++]+off;
  2786. block[idx] = value * scale;
  2787. if(!v->pquantizer)
  2788. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2789. }
  2790. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2791. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2792. if(apply_filter && cbp_top & (2 << j))
  2793. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  2794. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2795. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  2796. }
  2797. }
  2798. break;
  2799. }
  2800. return pat;
  2801. }
  2802. /** @} */ // Macroblock group
  2803. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2804. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2805. /** Decode one P-frame MB (in Simple/Main profile)
  2806. */
  2807. static int vc1_decode_p_mb(VC1Context *v)
  2808. {
  2809. MpegEncContext *s = &v->s;
  2810. GetBitContext *gb = &s->gb;
  2811. int i, j;
  2812. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2813. int cbp; /* cbp decoding stuff */
  2814. int mqdiff, mquant; /* MB quantization */
  2815. int ttmb = v->ttfrm; /* MB Transform type */
  2816. int mb_has_coeffs = 1; /* last_flag */
  2817. int dmv_x, dmv_y; /* Differential MV components */
  2818. int index, index1; /* LUT indexes */
  2819. int val, sign; /* temp values */
  2820. int first_block = 1;
  2821. int dst_idx, off;
  2822. int skipped, fourmv;
  2823. int block_cbp = 0, pat;
  2824. int apply_loop_filter;
  2825. mquant = v->pq; /* Loosy initialization */
  2826. if (v->mv_type_is_raw)
  2827. fourmv = get_bits1(gb);
  2828. else
  2829. fourmv = v->mv_type_mb_plane[mb_pos];
  2830. if (v->skip_is_raw)
  2831. skipped = get_bits1(gb);
  2832. else
  2833. skipped = v->s.mbskip_table[mb_pos];
  2834. s->dsp.clear_blocks(s->block[0]);
  2835. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2836. if (!fourmv) /* 1MV mode */
  2837. {
  2838. if (!skipped)
  2839. {
  2840. GET_MVDATA(dmv_x, dmv_y);
  2841. if (s->mb_intra) {
  2842. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2843. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2844. }
  2845. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2846. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2847. /* FIXME Set DC val for inter block ? */
  2848. if (s->mb_intra && !mb_has_coeffs)
  2849. {
  2850. GET_MQUANT();
  2851. s->ac_pred = get_bits1(gb);
  2852. cbp = 0;
  2853. }
  2854. else if (mb_has_coeffs)
  2855. {
  2856. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2857. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2858. GET_MQUANT();
  2859. }
  2860. else
  2861. {
  2862. mquant = v->pq;
  2863. cbp = 0;
  2864. }
  2865. s->current_picture.qscale_table[mb_pos] = mquant;
  2866. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2867. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2868. VC1_TTMB_VLC_BITS, 2);
  2869. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2870. dst_idx = 0;
  2871. for (i=0; i<6; i++)
  2872. {
  2873. s->dc_val[0][s->block_index[i]] = 0;
  2874. dst_idx += i >> 2;
  2875. val = ((cbp >> (5 - i)) & 1);
  2876. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2877. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2878. if(s->mb_intra) {
  2879. /* check if prediction blocks A and C are available */
  2880. v->a_avail = v->c_avail = 0;
  2881. if(i == 2 || i == 3 || !s->first_slice_line)
  2882. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2883. if(i == 1 || i == 3 || s->mb_x)
  2884. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2885. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2886. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2887. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2888. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2889. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2890. if(v->pq >= 9 && v->overlap) {
  2891. if(v->c_avail)
  2892. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2893. if(v->a_avail)
  2894. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2895. }
  2896. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2897. int left_cbp, top_cbp;
  2898. if(i & 4){
  2899. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2900. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2901. }else{
  2902. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2903. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2904. }
  2905. if(left_cbp & 0xC)
  2906. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2907. if(top_cbp & 0xA)
  2908. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2909. }
  2910. block_cbp |= 0xF << (i << 2);
  2911. } else if(val) {
  2912. int left_cbp = 0, top_cbp = 0, filter = 0;
  2913. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2914. filter = 1;
  2915. if(i & 4){
  2916. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2917. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2918. }else{
  2919. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2920. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2921. }
  2922. if(left_cbp & 0xC)
  2923. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2924. if(top_cbp & 0xA)
  2925. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2926. }
  2927. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2928. block_cbp |= pat << (i << 2);
  2929. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2930. first_block = 0;
  2931. }
  2932. }
  2933. }
  2934. else //Skipped
  2935. {
  2936. s->mb_intra = 0;
  2937. for(i = 0; i < 6; i++) {
  2938. v->mb_type[0][s->block_index[i]] = 0;
  2939. s->dc_val[0][s->block_index[i]] = 0;
  2940. }
  2941. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2942. s->current_picture.qscale_table[mb_pos] = 0;
  2943. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2944. vc1_mc_1mv(v, 0);
  2945. return 0;
  2946. }
  2947. } //1MV mode
  2948. else //4MV mode
  2949. {
  2950. if (!skipped /* unskipped MB */)
  2951. {
  2952. int intra_count = 0, coded_inter = 0;
  2953. int is_intra[6], is_coded[6];
  2954. /* Get CBPCY */
  2955. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2956. for (i=0; i<6; i++)
  2957. {
  2958. val = ((cbp >> (5 - i)) & 1);
  2959. s->dc_val[0][s->block_index[i]] = 0;
  2960. s->mb_intra = 0;
  2961. if(i < 4) {
  2962. dmv_x = dmv_y = 0;
  2963. s->mb_intra = 0;
  2964. mb_has_coeffs = 0;
  2965. if(val) {
  2966. GET_MVDATA(dmv_x, dmv_y);
  2967. }
  2968. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2969. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2970. intra_count += s->mb_intra;
  2971. is_intra[i] = s->mb_intra;
  2972. is_coded[i] = mb_has_coeffs;
  2973. }
  2974. if(i&4){
  2975. is_intra[i] = (intra_count >= 3);
  2976. is_coded[i] = val;
  2977. }
  2978. if(i == 4) vc1_mc_4mv_chroma(v);
  2979. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2980. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2981. }
  2982. // if there are no coded blocks then don't do anything more
  2983. if(!intra_count && !coded_inter) return 0;
  2984. dst_idx = 0;
  2985. GET_MQUANT();
  2986. s->current_picture.qscale_table[mb_pos] = mquant;
  2987. /* test if block is intra and has pred */
  2988. {
  2989. int intrapred = 0;
  2990. for(i=0; i<6; i++)
  2991. if(is_intra[i]) {
  2992. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2993. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2994. intrapred = 1;
  2995. break;
  2996. }
  2997. }
  2998. if(intrapred)s->ac_pred = get_bits1(gb);
  2999. else s->ac_pred = 0;
  3000. }
  3001. if (!v->ttmbf && coded_inter)
  3002. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3003. for (i=0; i<6; i++)
  3004. {
  3005. dst_idx += i >> 2;
  3006. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3007. s->mb_intra = is_intra[i];
  3008. if (is_intra[i]) {
  3009. /* check if prediction blocks A and C are available */
  3010. v->a_avail = v->c_avail = 0;
  3011. if(i == 2 || i == 3 || !s->first_slice_line)
  3012. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3013. if(i == 1 || i == 3 || s->mb_x)
  3014. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3015. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3016. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3017. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3018. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3019. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3020. if(v->pq >= 9 && v->overlap) {
  3021. if(v->c_avail)
  3022. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3023. if(v->a_avail)
  3024. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3025. }
  3026. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3027. int left_cbp, top_cbp;
  3028. if(i & 4){
  3029. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3030. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3031. }else{
  3032. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3033. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3034. }
  3035. if(left_cbp & 0xC)
  3036. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3037. if(top_cbp & 0xA)
  3038. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3039. }
  3040. block_cbp |= 0xF << (i << 2);
  3041. } else if(is_coded[i]) {
  3042. int left_cbp = 0, top_cbp = 0, filter = 0;
  3043. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3044. filter = 1;
  3045. if(i & 4){
  3046. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3047. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3048. }else{
  3049. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3050. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3051. }
  3052. if(left_cbp & 0xC)
  3053. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3054. if(top_cbp & 0xA)
  3055. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3056. }
  3057. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3058. block_cbp |= pat << (i << 2);
  3059. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3060. first_block = 0;
  3061. }
  3062. }
  3063. return 0;
  3064. }
  3065. else //Skipped MB
  3066. {
  3067. s->mb_intra = 0;
  3068. s->current_picture.qscale_table[mb_pos] = 0;
  3069. for (i=0; i<6; i++) {
  3070. v->mb_type[0][s->block_index[i]] = 0;
  3071. s->dc_val[0][s->block_index[i]] = 0;
  3072. }
  3073. for (i=0; i<4; i++)
  3074. {
  3075. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3076. vc1_mc_4mv_luma(v, i);
  3077. }
  3078. vc1_mc_4mv_chroma(v);
  3079. s->current_picture.qscale_table[mb_pos] = 0;
  3080. return 0;
  3081. }
  3082. }
  3083. v->cbp[s->mb_x] = block_cbp;
  3084. /* Should never happen */
  3085. return -1;
  3086. }
  3087. /** Decode one B-frame MB (in Main profile)
  3088. */
  3089. static void vc1_decode_b_mb(VC1Context *v)
  3090. {
  3091. MpegEncContext *s = &v->s;
  3092. GetBitContext *gb = &s->gb;
  3093. int i, j;
  3094. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3095. int cbp = 0; /* cbp decoding stuff */
  3096. int mqdiff, mquant; /* MB quantization */
  3097. int ttmb = v->ttfrm; /* MB Transform type */
  3098. int mb_has_coeffs = 0; /* last_flag */
  3099. int index, index1; /* LUT indexes */
  3100. int val, sign; /* temp values */
  3101. int first_block = 1;
  3102. int dst_idx, off;
  3103. int skipped, direct;
  3104. int dmv_x[2], dmv_y[2];
  3105. int bmvtype = BMV_TYPE_BACKWARD;
  3106. mquant = v->pq; /* Loosy initialization */
  3107. s->mb_intra = 0;
  3108. if (v->dmb_is_raw)
  3109. direct = get_bits1(gb);
  3110. else
  3111. direct = v->direct_mb_plane[mb_pos];
  3112. if (v->skip_is_raw)
  3113. skipped = get_bits1(gb);
  3114. else
  3115. skipped = v->s.mbskip_table[mb_pos];
  3116. s->dsp.clear_blocks(s->block[0]);
  3117. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3118. for(i = 0; i < 6; i++) {
  3119. v->mb_type[0][s->block_index[i]] = 0;
  3120. s->dc_val[0][s->block_index[i]] = 0;
  3121. }
  3122. s->current_picture.qscale_table[mb_pos] = 0;
  3123. if (!direct) {
  3124. if (!skipped) {
  3125. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3126. dmv_x[1] = dmv_x[0];
  3127. dmv_y[1] = dmv_y[0];
  3128. }
  3129. if(skipped || !s->mb_intra) {
  3130. bmvtype = decode012(gb);
  3131. switch(bmvtype) {
  3132. case 0:
  3133. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3134. break;
  3135. case 1:
  3136. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3137. break;
  3138. case 2:
  3139. bmvtype = BMV_TYPE_INTERPOLATED;
  3140. dmv_x[0] = dmv_y[0] = 0;
  3141. }
  3142. }
  3143. }
  3144. for(i = 0; i < 6; i++)
  3145. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3146. if (skipped) {
  3147. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3148. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3149. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3150. return;
  3151. }
  3152. if (direct) {
  3153. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3154. GET_MQUANT();
  3155. s->mb_intra = 0;
  3156. s->current_picture.qscale_table[mb_pos] = mquant;
  3157. if(!v->ttmbf)
  3158. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3159. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3160. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3161. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3162. } else {
  3163. if(!mb_has_coeffs && !s->mb_intra) {
  3164. /* no coded blocks - effectively skipped */
  3165. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3166. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3167. return;
  3168. }
  3169. if(s->mb_intra && !mb_has_coeffs) {
  3170. GET_MQUANT();
  3171. s->current_picture.qscale_table[mb_pos] = mquant;
  3172. s->ac_pred = get_bits1(gb);
  3173. cbp = 0;
  3174. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3175. } else {
  3176. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3177. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3178. if(!mb_has_coeffs) {
  3179. /* interpolated skipped block */
  3180. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3181. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3182. return;
  3183. }
  3184. }
  3185. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3186. if(!s->mb_intra) {
  3187. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3188. }
  3189. if(s->mb_intra)
  3190. s->ac_pred = get_bits1(gb);
  3191. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3192. GET_MQUANT();
  3193. s->current_picture.qscale_table[mb_pos] = mquant;
  3194. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3195. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3196. }
  3197. }
  3198. dst_idx = 0;
  3199. for (i=0; i<6; i++)
  3200. {
  3201. s->dc_val[0][s->block_index[i]] = 0;
  3202. dst_idx += i >> 2;
  3203. val = ((cbp >> (5 - i)) & 1);
  3204. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3205. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3206. if(s->mb_intra) {
  3207. /* check if prediction blocks A and C are available */
  3208. v->a_avail = v->c_avail = 0;
  3209. if(i == 2 || i == 3 || !s->first_slice_line)
  3210. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3211. if(i == 1 || i == 3 || s->mb_x)
  3212. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3213. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3214. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3215. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3216. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3217. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3218. } else if(val) {
  3219. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3220. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3221. first_block = 0;
  3222. }
  3223. }
  3224. }
  3225. /** Decode blocks of I-frame
  3226. */
  3227. static void vc1_decode_i_blocks(VC1Context *v)
  3228. {
  3229. int k, j;
  3230. MpegEncContext *s = &v->s;
  3231. int cbp, val;
  3232. uint8_t *coded_val;
  3233. int mb_pos;
  3234. /* select codingmode used for VLC tables selection */
  3235. switch(v->y_ac_table_index){
  3236. case 0:
  3237. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3238. break;
  3239. case 1:
  3240. v->codingset = CS_HIGH_MOT_INTRA;
  3241. break;
  3242. case 2:
  3243. v->codingset = CS_MID_RATE_INTRA;
  3244. break;
  3245. }
  3246. switch(v->c_ac_table_index){
  3247. case 0:
  3248. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3249. break;
  3250. case 1:
  3251. v->codingset2 = CS_HIGH_MOT_INTER;
  3252. break;
  3253. case 2:
  3254. v->codingset2 = CS_MID_RATE_INTER;
  3255. break;
  3256. }
  3257. /* Set DC scale - y and c use the same */
  3258. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3259. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3260. //do frame decode
  3261. s->mb_x = s->mb_y = 0;
  3262. s->mb_intra = 1;
  3263. s->first_slice_line = 1;
  3264. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3265. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3266. ff_init_block_index(s);
  3267. ff_update_block_index(s);
  3268. s->dsp.clear_blocks(s->block[0]);
  3269. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3270. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3271. s->current_picture.qscale_table[mb_pos] = v->pq;
  3272. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3273. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3274. // do actual MB decoding and displaying
  3275. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3276. v->s.ac_pred = get_bits1(&v->s.gb);
  3277. for(k = 0; k < 6; k++) {
  3278. val = ((cbp >> (5 - k)) & 1);
  3279. if (k < 4) {
  3280. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3281. val = val ^ pred;
  3282. *coded_val = val;
  3283. }
  3284. cbp |= val << (5 - k);
  3285. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3286. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3287. if(v->pq >= 9 && v->overlap) {
  3288. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3289. }
  3290. }
  3291. vc1_put_block(v, s->block);
  3292. if(v->pq >= 9 && v->overlap) {
  3293. if(s->mb_x) {
  3294. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3295. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3296. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3297. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3298. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3299. }
  3300. }
  3301. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3302. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3303. if(!s->first_slice_line) {
  3304. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3305. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3306. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3307. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3308. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3309. }
  3310. }
  3311. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3312. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3313. }
  3314. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3315. if(get_bits_count(&s->gb) > v->bits) {
  3316. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3317. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3318. return;
  3319. }
  3320. }
  3321. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3322. s->first_slice_line = 0;
  3323. }
  3324. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3325. }
  3326. /** Decode blocks of I-frame for advanced profile
  3327. */
  3328. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3329. {
  3330. int k, j;
  3331. MpegEncContext *s = &v->s;
  3332. int cbp, val;
  3333. uint8_t *coded_val;
  3334. int mb_pos;
  3335. int mquant = v->pq;
  3336. int mqdiff;
  3337. int overlap;
  3338. GetBitContext *gb = &s->gb;
  3339. /* select codingmode used for VLC tables selection */
  3340. switch(v->y_ac_table_index){
  3341. case 0:
  3342. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3343. break;
  3344. case 1:
  3345. v->codingset = CS_HIGH_MOT_INTRA;
  3346. break;
  3347. case 2:
  3348. v->codingset = CS_MID_RATE_INTRA;
  3349. break;
  3350. }
  3351. switch(v->c_ac_table_index){
  3352. case 0:
  3353. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3354. break;
  3355. case 1:
  3356. v->codingset2 = CS_HIGH_MOT_INTER;
  3357. break;
  3358. case 2:
  3359. v->codingset2 = CS_MID_RATE_INTER;
  3360. break;
  3361. }
  3362. //do frame decode
  3363. s->mb_x = s->mb_y = 0;
  3364. s->mb_intra = 1;
  3365. s->first_slice_line = 1;
  3366. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3367. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3368. ff_init_block_index(s);
  3369. ff_update_block_index(s);
  3370. s->dsp.clear_blocks(s->block[0]);
  3371. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3372. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3373. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3374. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3375. // do actual MB decoding and displaying
  3376. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3377. if(v->acpred_is_raw)
  3378. v->s.ac_pred = get_bits1(&v->s.gb);
  3379. else
  3380. v->s.ac_pred = v->acpred_plane[mb_pos];
  3381. if(v->condover == CONDOVER_SELECT) {
  3382. if(v->overflg_is_raw)
  3383. overlap = get_bits1(&v->s.gb);
  3384. else
  3385. overlap = v->over_flags_plane[mb_pos];
  3386. } else
  3387. overlap = (v->condover == CONDOVER_ALL);
  3388. GET_MQUANT();
  3389. s->current_picture.qscale_table[mb_pos] = mquant;
  3390. /* Set DC scale - y and c use the same */
  3391. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3392. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3393. for(k = 0; k < 6; k++) {
  3394. val = ((cbp >> (5 - k)) & 1);
  3395. if (k < 4) {
  3396. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3397. val = val ^ pred;
  3398. *coded_val = val;
  3399. }
  3400. cbp |= val << (5 - k);
  3401. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3402. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3403. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3404. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3405. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3406. }
  3407. vc1_put_block(v, s->block);
  3408. if(overlap) {
  3409. if(s->mb_x) {
  3410. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3411. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3412. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3413. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3414. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3415. }
  3416. }
  3417. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3418. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3419. if(!s->first_slice_line) {
  3420. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3421. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3422. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3423. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3424. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3425. }
  3426. }
  3427. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3428. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3429. }
  3430. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3431. if(get_bits_count(&s->gb) > v->bits) {
  3432. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3433. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3434. return;
  3435. }
  3436. }
  3437. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3438. s->first_slice_line = 0;
  3439. }
  3440. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3441. }
  3442. static void vc1_decode_p_blocks(VC1Context *v)
  3443. {
  3444. MpegEncContext *s = &v->s;
  3445. /* select codingmode used for VLC tables selection */
  3446. switch(v->c_ac_table_index){
  3447. case 0:
  3448. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3449. break;
  3450. case 1:
  3451. v->codingset = CS_HIGH_MOT_INTRA;
  3452. break;
  3453. case 2:
  3454. v->codingset = CS_MID_RATE_INTRA;
  3455. break;
  3456. }
  3457. switch(v->c_ac_table_index){
  3458. case 0:
  3459. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3460. break;
  3461. case 1:
  3462. v->codingset2 = CS_HIGH_MOT_INTER;
  3463. break;
  3464. case 2:
  3465. v->codingset2 = CS_MID_RATE_INTER;
  3466. break;
  3467. }
  3468. s->first_slice_line = 1;
  3469. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3470. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3471. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3472. ff_init_block_index(s);
  3473. ff_update_block_index(s);
  3474. s->dsp.clear_blocks(s->block[0]);
  3475. vc1_decode_p_mb(v);
  3476. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3477. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3478. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3479. return;
  3480. }
  3481. }
  3482. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3483. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3484. s->first_slice_line = 0;
  3485. }
  3486. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3487. }
  3488. static void vc1_decode_b_blocks(VC1Context *v)
  3489. {
  3490. MpegEncContext *s = &v->s;
  3491. /* select codingmode used for VLC tables selection */
  3492. switch(v->c_ac_table_index){
  3493. case 0:
  3494. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3495. break;
  3496. case 1:
  3497. v->codingset = CS_HIGH_MOT_INTRA;
  3498. break;
  3499. case 2:
  3500. v->codingset = CS_MID_RATE_INTRA;
  3501. break;
  3502. }
  3503. switch(v->c_ac_table_index){
  3504. case 0:
  3505. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3506. break;
  3507. case 1:
  3508. v->codingset2 = CS_HIGH_MOT_INTER;
  3509. break;
  3510. case 2:
  3511. v->codingset2 = CS_MID_RATE_INTER;
  3512. break;
  3513. }
  3514. s->first_slice_line = 1;
  3515. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3516. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3517. ff_init_block_index(s);
  3518. ff_update_block_index(s);
  3519. s->dsp.clear_blocks(s->block[0]);
  3520. vc1_decode_b_mb(v);
  3521. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3522. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3523. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3524. return;
  3525. }
  3526. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3527. }
  3528. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3529. s->first_slice_line = 0;
  3530. }
  3531. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3532. }
  3533. static void vc1_decode_skip_blocks(VC1Context *v)
  3534. {
  3535. MpegEncContext *s = &v->s;
  3536. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3537. s->first_slice_line = 1;
  3538. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3539. s->mb_x = 0;
  3540. ff_init_block_index(s);
  3541. ff_update_block_index(s);
  3542. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3543. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3544. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3545. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3546. s->first_slice_line = 0;
  3547. }
  3548. s->pict_type = FF_P_TYPE;
  3549. }
  3550. static void vc1_decode_blocks(VC1Context *v)
  3551. {
  3552. v->s.esc3_level_length = 0;
  3553. if(v->x8_type){
  3554. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3555. }else{
  3556. switch(v->s.pict_type) {
  3557. case FF_I_TYPE:
  3558. if(v->profile == PROFILE_ADVANCED)
  3559. vc1_decode_i_blocks_adv(v);
  3560. else
  3561. vc1_decode_i_blocks(v);
  3562. break;
  3563. case FF_P_TYPE:
  3564. if(v->p_frame_skipped)
  3565. vc1_decode_skip_blocks(v);
  3566. else
  3567. vc1_decode_p_blocks(v);
  3568. break;
  3569. case FF_B_TYPE:
  3570. if(v->bi_type){
  3571. if(v->profile == PROFILE_ADVANCED)
  3572. vc1_decode_i_blocks_adv(v);
  3573. else
  3574. vc1_decode_i_blocks(v);
  3575. }else
  3576. vc1_decode_b_blocks(v);
  3577. break;
  3578. }
  3579. }
  3580. }
  3581. /** Find VC-1 marker in buffer
  3582. * @return position where next marker starts or end of buffer if no marker found
  3583. */
  3584. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3585. {
  3586. uint32_t mrk = 0xFFFFFFFF;
  3587. if(end-src < 4) return end;
  3588. while(src < end){
  3589. mrk = (mrk << 8) | *src++;
  3590. if(IS_MARKER(mrk))
  3591. return src-4;
  3592. }
  3593. return end;
  3594. }
  3595. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3596. {
  3597. int dsize = 0, i;
  3598. if(size < 4){
  3599. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3600. return size;
  3601. }
  3602. for(i = 0; i < size; i++, src++) {
  3603. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3604. dst[dsize++] = src[1];
  3605. src++;
  3606. i++;
  3607. } else
  3608. dst[dsize++] = *src;
  3609. }
  3610. return dsize;
  3611. }
  3612. /** Initialize a VC1/WMV3 decoder
  3613. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3614. * @todo TODO: Decypher remaining bits in extra_data
  3615. */
  3616. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3617. {
  3618. VC1Context *v = avctx->priv_data;
  3619. MpegEncContext *s = &v->s;
  3620. GetBitContext gb;
  3621. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3622. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3623. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  3624. else
  3625. avctx->pix_fmt = PIX_FMT_GRAY8;
  3626. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  3627. v->s.avctx = avctx;
  3628. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3629. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3630. if(avctx->idct_algo==FF_IDCT_AUTO){
  3631. avctx->idct_algo=FF_IDCT_WMV2;
  3632. }
  3633. if(ff_h263_decode_init(avctx) < 0)
  3634. return -1;
  3635. if (vc1_init_common(v) < 0) return -1;
  3636. avctx->coded_width = avctx->width;
  3637. avctx->coded_height = avctx->height;
  3638. if (avctx->codec_id == CODEC_ID_WMV3)
  3639. {
  3640. int count = 0;
  3641. // looks like WMV3 has a sequence header stored in the extradata
  3642. // advanced sequence header may be before the first frame
  3643. // the last byte of the extradata is a version number, 1 for the
  3644. // samples we can decode
  3645. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3646. if (decode_sequence_header(avctx, &gb) < 0)
  3647. return -1;
  3648. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3649. if (count>0)
  3650. {
  3651. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3652. count, get_bits(&gb, count));
  3653. }
  3654. else if (count < 0)
  3655. {
  3656. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3657. }
  3658. } else { // VC1/WVC1
  3659. const uint8_t *start = avctx->extradata;
  3660. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3661. const uint8_t *next;
  3662. int size, buf2_size;
  3663. uint8_t *buf2 = NULL;
  3664. int seq_initialized = 0, ep_initialized = 0;
  3665. if(avctx->extradata_size < 16) {
  3666. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3667. return -1;
  3668. }
  3669. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3670. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3671. next = start;
  3672. for(; next < end; start = next){
  3673. next = find_next_marker(start + 4, end);
  3674. size = next - start - 4;
  3675. if(size <= 0) continue;
  3676. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3677. init_get_bits(&gb, buf2, buf2_size * 8);
  3678. switch(AV_RB32(start)){
  3679. case VC1_CODE_SEQHDR:
  3680. if(decode_sequence_header(avctx, &gb) < 0){
  3681. av_free(buf2);
  3682. return -1;
  3683. }
  3684. seq_initialized = 1;
  3685. break;
  3686. case VC1_CODE_ENTRYPOINT:
  3687. if(decode_entry_point(avctx, &gb) < 0){
  3688. av_free(buf2);
  3689. return -1;
  3690. }
  3691. ep_initialized = 1;
  3692. break;
  3693. }
  3694. }
  3695. av_free(buf2);
  3696. if(!seq_initialized || !ep_initialized){
  3697. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3698. return -1;
  3699. }
  3700. }
  3701. avctx->has_b_frames= !!(avctx->max_b_frames);
  3702. s->low_delay = !avctx->has_b_frames;
  3703. s->mb_width = (avctx->coded_width+15)>>4;
  3704. s->mb_height = (avctx->coded_height+15)>>4;
  3705. /* Allocate mb bitplanes */
  3706. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3707. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3708. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3709. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3710. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3711. v->cbp = v->cbp_base + s->mb_stride;
  3712. /* allocate block type info in that way so it could be used with s->block_index[] */
  3713. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3714. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3715. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3716. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3717. /* Init coded blocks info */
  3718. if (v->profile == PROFILE_ADVANCED)
  3719. {
  3720. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3721. // return -1;
  3722. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3723. // return -1;
  3724. }
  3725. ff_intrax8_common_init(&v->x8,s);
  3726. return 0;
  3727. }
  3728. /** Decode a VC1/WMV3 frame
  3729. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3730. */
  3731. static int vc1_decode_frame(AVCodecContext *avctx,
  3732. void *data, int *data_size,
  3733. AVPacket *avpkt)
  3734. {
  3735. const uint8_t *buf = avpkt->data;
  3736. int buf_size = avpkt->size;
  3737. VC1Context *v = avctx->priv_data;
  3738. MpegEncContext *s = &v->s;
  3739. AVFrame *pict = data;
  3740. uint8_t *buf2 = NULL;
  3741. const uint8_t *buf_start = buf;
  3742. /* no supplementary picture */
  3743. if (buf_size == 0) {
  3744. /* special case for last picture */
  3745. if (s->low_delay==0 && s->next_picture_ptr) {
  3746. *pict= *(AVFrame*)s->next_picture_ptr;
  3747. s->next_picture_ptr= NULL;
  3748. *data_size = sizeof(AVFrame);
  3749. }
  3750. return 0;
  3751. }
  3752. /* We need to set current_picture_ptr before reading the header,
  3753. * otherwise we cannot store anything in there. */
  3754. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3755. int i= ff_find_unused_picture(s, 0);
  3756. s->current_picture_ptr= &s->picture[i];
  3757. }
  3758. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3759. if (v->profile < PROFILE_ADVANCED)
  3760. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3761. else
  3762. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3763. }
  3764. //for advanced profile we may need to parse and unescape data
  3765. if (avctx->codec_id == CODEC_ID_VC1) {
  3766. int buf_size2 = 0;
  3767. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3768. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3769. const uint8_t *start, *end, *next;
  3770. int size;
  3771. next = buf;
  3772. for(start = buf, end = buf + buf_size; next < end; start = next){
  3773. next = find_next_marker(start + 4, end);
  3774. size = next - start - 4;
  3775. if(size <= 0) continue;
  3776. switch(AV_RB32(start)){
  3777. case VC1_CODE_FRAME:
  3778. if (avctx->hwaccel ||
  3779. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3780. buf_start = start;
  3781. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3782. break;
  3783. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3784. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3785. init_get_bits(&s->gb, buf2, buf_size2*8);
  3786. decode_entry_point(avctx, &s->gb);
  3787. break;
  3788. case VC1_CODE_SLICE:
  3789. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3790. av_free(buf2);
  3791. return -1;
  3792. }
  3793. }
  3794. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3795. const uint8_t *divider;
  3796. divider = find_next_marker(buf, buf + buf_size);
  3797. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3798. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3799. av_free(buf2);
  3800. return -1;
  3801. }
  3802. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3803. // TODO
  3804. av_free(buf2);return -1;
  3805. }else{
  3806. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3807. }
  3808. init_get_bits(&s->gb, buf2, buf_size2*8);
  3809. } else
  3810. init_get_bits(&s->gb, buf, buf_size*8);
  3811. // do parse frame header
  3812. if(v->profile < PROFILE_ADVANCED) {
  3813. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3814. av_free(buf2);
  3815. return -1;
  3816. }
  3817. } else {
  3818. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3819. av_free(buf2);
  3820. return -1;
  3821. }
  3822. }
  3823. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3824. av_free(buf2);
  3825. return -1;
  3826. }
  3827. // for hurry_up==5
  3828. s->current_picture.pict_type= s->pict_type;
  3829. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3830. /* skip B-frames if we don't have reference frames */
  3831. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3832. av_free(buf2);
  3833. return -1;//buf_size;
  3834. }
  3835. /* skip b frames if we are in a hurry */
  3836. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3837. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3838. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3839. || avctx->skip_frame >= AVDISCARD_ALL) {
  3840. av_free(buf2);
  3841. return buf_size;
  3842. }
  3843. /* skip everything if we are in a hurry>=5 */
  3844. if(avctx->hurry_up>=5) {
  3845. av_free(buf2);
  3846. return -1;//buf_size;
  3847. }
  3848. if(s->next_p_frame_damaged){
  3849. if(s->pict_type==FF_B_TYPE)
  3850. return buf_size;
  3851. else
  3852. s->next_p_frame_damaged=0;
  3853. }
  3854. if(MPV_frame_start(s, avctx) < 0) {
  3855. av_free(buf2);
  3856. return -1;
  3857. }
  3858. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3859. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3860. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  3861. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3862. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3863. else if (avctx->hwaccel) {
  3864. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3865. return -1;
  3866. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3867. return -1;
  3868. if (avctx->hwaccel->end_frame(avctx) < 0)
  3869. return -1;
  3870. } else {
  3871. ff_er_frame_start(s);
  3872. v->bits = buf_size * 8;
  3873. vc1_decode_blocks(v);
  3874. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3875. // if(get_bits_count(&s->gb) > buf_size * 8)
  3876. // return -1;
  3877. ff_er_frame_end(s);
  3878. }
  3879. MPV_frame_end(s);
  3880. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3881. assert(s->current_picture.pict_type == s->pict_type);
  3882. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3883. *pict= *(AVFrame*)s->current_picture_ptr;
  3884. } else if (s->last_picture_ptr != NULL) {
  3885. *pict= *(AVFrame*)s->last_picture_ptr;
  3886. }
  3887. if(s->last_picture_ptr || s->low_delay){
  3888. *data_size = sizeof(AVFrame);
  3889. ff_print_debug_info(s, pict);
  3890. }
  3891. /* Return the Picture timestamp as the frame number */
  3892. /* we subtract 1 because it is added on utils.c */
  3893. avctx->frame_number = s->picture_number - 1;
  3894. av_free(buf2);
  3895. return buf_size;
  3896. }
  3897. /** Close a VC1/WMV3 decoder
  3898. * @warning Initial try at using MpegEncContext stuff
  3899. */
  3900. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3901. {
  3902. VC1Context *v = avctx->priv_data;
  3903. av_freep(&v->hrd_rate);
  3904. av_freep(&v->hrd_buffer);
  3905. MPV_common_end(&v->s);
  3906. av_freep(&v->mv_type_mb_plane);
  3907. av_freep(&v->direct_mb_plane);
  3908. av_freep(&v->acpred_plane);
  3909. av_freep(&v->over_flags_plane);
  3910. av_freep(&v->mb_type_base);
  3911. av_freep(&v->cbp_base);
  3912. ff_intrax8_common_end(&v->x8);
  3913. return 0;
  3914. }
  3915. AVCodec vc1_decoder = {
  3916. "vc1",
  3917. CODEC_TYPE_VIDEO,
  3918. CODEC_ID_VC1,
  3919. sizeof(VC1Context),
  3920. vc1_decode_init,
  3921. NULL,
  3922. vc1_decode_end,
  3923. vc1_decode_frame,
  3924. CODEC_CAP_DELAY,
  3925. NULL,
  3926. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3927. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3928. };
  3929. AVCodec wmv3_decoder = {
  3930. "wmv3",
  3931. CODEC_TYPE_VIDEO,
  3932. CODEC_ID_WMV3,
  3933. sizeof(VC1Context),
  3934. vc1_decode_init,
  3935. NULL,
  3936. vc1_decode_end,
  3937. vc1_decode_frame,
  3938. CODEC_CAP_DELAY,
  3939. NULL,
  3940. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3941. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3942. };
  3943. #if CONFIG_WMV3_VDPAU_DECODER
  3944. AVCodec wmv3_vdpau_decoder = {
  3945. "wmv3_vdpau",
  3946. CODEC_TYPE_VIDEO,
  3947. CODEC_ID_WMV3,
  3948. sizeof(VC1Context),
  3949. vc1_decode_init,
  3950. NULL,
  3951. vc1_decode_end,
  3952. vc1_decode_frame,
  3953. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3954. NULL,
  3955. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3956. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3957. };
  3958. #endif
  3959. #if CONFIG_VC1_VDPAU_DECODER
  3960. AVCodec vc1_vdpau_decoder = {
  3961. "vc1_vdpau",
  3962. CODEC_TYPE_VIDEO,
  3963. CODEC_ID_VC1,
  3964. sizeof(VC1Context),
  3965. vc1_decode_init,
  3966. NULL,
  3967. vc1_decode_end,
  3968. vc1_decode_frame,
  3969. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3970. NULL,
  3971. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3972. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3973. };
  3974. #endif