| 
							- /*
 -  * High quality image resampling with polyphase filters
 -  * Copyright (c) 2001 Fabrice Bellard.
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file imgresample_altivec.c
 -  * High quality image resampling with polyphase filters - AltiVec bits
 -  */
 - 
 - #include "gcc_fixes.h"
 - 
 - typedef         union {
 -     vector unsigned char v;
 -     unsigned char c[16];
 - } vec_uc_t;
 - 
 - typedef         union {
 -     vector signed short v;
 -     signed short s[8];
 - } vec_ss_t;
 - 
 - void v_resample16_altivec(uint8_t *dst, int dst_width, const uint8_t *src,
 -                           int wrap, int16_t *filter)
 - {
 -     int sum, i;
 -     const uint8_t *s;
 -     vector unsigned char *tv, tmp, dstv, zero;
 -     vec_ss_t srchv[4], srclv[4], fv[4];
 -     vector signed short zeros, sumhv, sumlv;
 -     s = src;
 - 
 -     for(i=0;i<4;i++)
 -     {
 -         /*
 -            The vec_madds later on does an implicit >>15 on the result.
 -            Since FILTER_BITS is 8, and we have 15 bits of magnitude in
 -            a signed short, we have just enough bits to pre-shift our
 -            filter constants <<7 to compensate for vec_madds.
 -         */
 -         fv[i].s[0] = filter[i] << (15-FILTER_BITS);
 -         fv[i].v = vec_splat(fv[i].v, 0);
 -     }
 - 
 -     zero = vec_splat_u8(0);
 -     zeros = vec_splat_s16(0);
 - 
 - 
 -     /*
 -        When we're resampling, we'd ideally like both our input buffers,
 -        and output buffers to be 16-byte aligned, so we can do both aligned
 -        reads and writes. Sadly we can't always have this at the moment, so
 -        we opt for aligned writes, as unaligned writes have a huge overhead.
 -        To do this, do enough scalar resamples to get dst 16-byte aligned.
 -     */
 -     i = (-(int)dst) & 0xf;
 -     while(i>0) {
 -         sum = s[0 * wrap] * filter[0] +
 -         s[1 * wrap] * filter[1] +
 -         s[2 * wrap] * filter[2] +
 -         s[3 * wrap] * filter[3];
 -         sum = sum >> FILTER_BITS;
 -         if (sum<0) sum = 0; else if (sum>255) sum=255;
 -         dst[0] = sum;
 -         dst++;
 -         s++;
 -         dst_width--;
 -         i--;
 -     }
 - 
 -     /* Do our altivec resampling on 16 pixels at once. */
 -     while(dst_width>=16) {
 -         /*
 -            Read 16 (potentially unaligned) bytes from each of
 -            4 lines into 4 vectors, and split them into shorts.
 -            Interleave the multipy/accumulate for the resample
 -            filter with the loads to hide the 3 cycle latency
 -            the vec_madds have.
 -         */
 -         tv = (vector unsigned char *) &s[0 * wrap];
 -         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[i * wrap]));
 -         srchv[0].v = (vector signed short) vec_mergeh(zero, tmp);
 -         srclv[0].v = (vector signed short) vec_mergel(zero, tmp);
 -         sumhv = vec_madds(srchv[0].v, fv[0].v, zeros);
 -         sumlv = vec_madds(srclv[0].v, fv[0].v, zeros);
 - 
 -         tv = (vector unsigned char *) &s[1 * wrap];
 -         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[1 * wrap]));
 -         srchv[1].v = (vector signed short) vec_mergeh(zero, tmp);
 -         srclv[1].v = (vector signed short) vec_mergel(zero, tmp);
 -         sumhv = vec_madds(srchv[1].v, fv[1].v, sumhv);
 -         sumlv = vec_madds(srclv[1].v, fv[1].v, sumlv);
 - 
 -         tv = (vector unsigned char *) &s[2 * wrap];
 -         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[2 * wrap]));
 -         srchv[2].v = (vector signed short) vec_mergeh(zero, tmp);
 -         srclv[2].v = (vector signed short) vec_mergel(zero, tmp);
 -         sumhv = vec_madds(srchv[2].v, fv[2].v, sumhv);
 -         sumlv = vec_madds(srclv[2].v, fv[2].v, sumlv);
 - 
 -         tv = (vector unsigned char *) &s[3 * wrap];
 -         tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[3 * wrap]));
 -         srchv[3].v = (vector signed short) vec_mergeh(zero, tmp);
 -         srclv[3].v = (vector signed short) vec_mergel(zero, tmp);
 -         sumhv = vec_madds(srchv[3].v, fv[3].v, sumhv);
 -         sumlv = vec_madds(srclv[3].v, fv[3].v, sumlv);
 - 
 -         /*
 -            Pack the results into our destination vector,
 -            and do an aligned write of that back to memory.
 -         */
 -         dstv = vec_packsu(sumhv, sumlv) ;
 -         vec_st(dstv, 0, (vector unsigned char *) dst);
 - 
 -         dst+=16;
 -         s+=16;
 -         dst_width-=16;
 -     }
 - 
 -     /*
 -        If there are any leftover pixels, resample them
 -        with the slow scalar method.
 -     */
 -     while(dst_width>0) {
 -         sum = s[0 * wrap] * filter[0] +
 -         s[1 * wrap] * filter[1] +
 -         s[2 * wrap] * filter[2] +
 -         s[3 * wrap] * filter[3];
 -         sum = sum >> FILTER_BITS;
 -         if (sum<0) sum = 0; else if (sum>255) sum=255;
 -         dst[0] = sum;
 -         dst++;
 -         s++;
 -         dst_width--;
 -     }
 - }
 
 
  |