You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

892 lines
34KB

  1. /*
  2. * AAC encoder
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * add sane pulse detection
  28. * add temporal noise shaping
  29. ***********************************/
  30. #include "libavutil/float_dsp.h"
  31. #include "libavutil/opt.h"
  32. #include "avcodec.h"
  33. #include "put_bits.h"
  34. #include "internal.h"
  35. #include "mpeg4audio.h"
  36. #include "kbdwin.h"
  37. #include "sinewin.h"
  38. #include "aac.h"
  39. #include "aactab.h"
  40. #include "aacenc.h"
  41. #include "aacenctab.h"
  42. #include "aacenc_utils.h"
  43. #include "psymodel.h"
  44. /**
  45. * Make AAC audio config object.
  46. * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
  47. */
  48. static void put_audio_specific_config(AVCodecContext *avctx)
  49. {
  50. PutBitContext pb;
  51. AACEncContext *s = avctx->priv_data;
  52. init_put_bits(&pb, avctx->extradata, avctx->extradata_size);
  53. put_bits(&pb, 5, s->profile+1); //profile
  54. put_bits(&pb, 4, s->samplerate_index); //sample rate index
  55. put_bits(&pb, 4, s->channels);
  56. //GASpecificConfig
  57. put_bits(&pb, 1, 0); //frame length - 1024 samples
  58. put_bits(&pb, 1, 0); //does not depend on core coder
  59. put_bits(&pb, 1, 0); //is not extension
  60. //Explicitly Mark SBR absent
  61. put_bits(&pb, 11, 0x2b7); //sync extension
  62. put_bits(&pb, 5, AOT_SBR);
  63. put_bits(&pb, 1, 0);
  64. flush_put_bits(&pb);
  65. }
  66. #define WINDOW_FUNC(type) \
  67. static void apply_ ##type ##_window(AVFloatDSPContext *fdsp, \
  68. SingleChannelElement *sce, \
  69. const float *audio)
  70. WINDOW_FUNC(only_long)
  71. {
  72. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  73. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  74. float *out = sce->ret_buf;
  75. fdsp->vector_fmul (out, audio, lwindow, 1024);
  76. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, pwindow, 1024);
  77. }
  78. WINDOW_FUNC(long_start)
  79. {
  80. const float *lwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  81. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  82. float *out = sce->ret_buf;
  83. fdsp->vector_fmul(out, audio, lwindow, 1024);
  84. memcpy(out + 1024, audio + 1024, sizeof(out[0]) * 448);
  85. fdsp->vector_fmul_reverse(out + 1024 + 448, audio + 1024 + 448, swindow, 128);
  86. memset(out + 1024 + 576, 0, sizeof(out[0]) * 448);
  87. }
  88. WINDOW_FUNC(long_stop)
  89. {
  90. const float *lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  91. const float *swindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  92. float *out = sce->ret_buf;
  93. memset(out, 0, sizeof(out[0]) * 448);
  94. fdsp->vector_fmul(out + 448, audio + 448, swindow, 128);
  95. memcpy(out + 576, audio + 576, sizeof(out[0]) * 448);
  96. fdsp->vector_fmul_reverse(out + 1024, audio + 1024, lwindow, 1024);
  97. }
  98. WINDOW_FUNC(eight_short)
  99. {
  100. const float *swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  101. const float *pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  102. const float *in = audio + 448;
  103. float *out = sce->ret_buf;
  104. int w;
  105. for (w = 0; w < 8; w++) {
  106. fdsp->vector_fmul (out, in, w ? pwindow : swindow, 128);
  107. out += 128;
  108. in += 128;
  109. fdsp->vector_fmul_reverse(out, in, swindow, 128);
  110. out += 128;
  111. }
  112. }
  113. static void (*const apply_window[4])(AVFloatDSPContext *fdsp,
  114. SingleChannelElement *sce,
  115. const float *audio) = {
  116. [ONLY_LONG_SEQUENCE] = apply_only_long_window,
  117. [LONG_START_SEQUENCE] = apply_long_start_window,
  118. [EIGHT_SHORT_SEQUENCE] = apply_eight_short_window,
  119. [LONG_STOP_SEQUENCE] = apply_long_stop_window
  120. };
  121. static void apply_window_and_mdct(AACEncContext *s, SingleChannelElement *sce,
  122. float *audio)
  123. {
  124. int i;
  125. float *output = sce->ret_buf;
  126. apply_window[sce->ics.window_sequence[0]](s->fdsp, sce, audio);
  127. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE)
  128. s->mdct1024.mdct_calc(&s->mdct1024, sce->coeffs, output);
  129. else
  130. for (i = 0; i < 1024; i += 128)
  131. s->mdct128.mdct_calc(&s->mdct128, &sce->coeffs[i], output + i*2);
  132. memcpy(audio, audio + 1024, sizeof(audio[0]) * 1024);
  133. memcpy(sce->pcoeffs, sce->coeffs, sizeof(sce->pcoeffs));
  134. }
  135. /**
  136. * Encode ics_info element.
  137. * @see Table 4.6 (syntax of ics_info)
  138. */
  139. static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
  140. {
  141. int w;
  142. put_bits(&s->pb, 1, 0); // ics_reserved bit
  143. put_bits(&s->pb, 2, info->window_sequence[0]);
  144. put_bits(&s->pb, 1, info->use_kb_window[0]);
  145. if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  146. put_bits(&s->pb, 6, info->max_sfb);
  147. put_bits(&s->pb, 1, !!info->predictor_present);
  148. } else {
  149. put_bits(&s->pb, 4, info->max_sfb);
  150. for (w = 1; w < 8; w++)
  151. put_bits(&s->pb, 1, !info->group_len[w]);
  152. }
  153. }
  154. /**
  155. * Encode MS data.
  156. * @see 4.6.8.1 "Joint Coding - M/S Stereo"
  157. */
  158. static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
  159. {
  160. int i, w;
  161. put_bits(pb, 2, cpe->ms_mode);
  162. if (cpe->ms_mode == 1)
  163. for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
  164. for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
  165. put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
  166. }
  167. /**
  168. * Produce integer coefficients from scalefactors provided by the model.
  169. */
  170. static void adjust_frame_information(ChannelElement *cpe, int chans)
  171. {
  172. int i, w, w2, g, ch;
  173. int maxsfb, cmaxsfb;
  174. IndividualChannelStream *ics;
  175. if (cpe->common_window) {
  176. ics = &cpe->ch[0].ics;
  177. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  178. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  179. int start = (w+w2) * 128;
  180. for (g = 0; g < ics->num_swb; g++) {
  181. //apply Intensity stereo coeffs transformation
  182. if (cpe->is_mask[w*16 + g]) {
  183. int p = -1 + 2 * (cpe->ch[1].band_type[w*16+g] - 14);
  184. float scale = cpe->ch[0].is_ener[w*16+g];
  185. for (i = 0; i < ics->swb_sizes[g]; i++) {
  186. cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + p*cpe->ch[1].coeffs[start+i]) * scale;
  187. cpe->ch[1].coeffs[start+i] = 0.0f;
  188. }
  189. } else if (cpe->ms_mask[w*16 + g] &&
  190. cpe->ch[0].band_type[w*16 + g] < NOISE_BT &&
  191. cpe->ch[1].band_type[w*16 + g] < NOISE_BT) {
  192. for (i = 0; i < ics->swb_sizes[g]; i++) {
  193. float L = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) * 0.5f;
  194. float R = L - cpe->ch[1].coeffs[start+i];
  195. cpe->ch[0].coeffs[start+i] = L;
  196. cpe->ch[1].coeffs[start+i] = R;
  197. }
  198. }
  199. start += ics->swb_sizes[g];
  200. }
  201. }
  202. }
  203. }
  204. for (ch = 0; ch < chans; ch++) {
  205. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  206. maxsfb = 0;
  207. cpe->ch[ch].pulse.num_pulse = 0;
  208. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  209. for (w2 = 0; w2 < ics->group_len[w]; w2++) {
  210. for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w*16+cmaxsfb-1]; cmaxsfb--)
  211. ;
  212. maxsfb = FFMAX(maxsfb, cmaxsfb);
  213. }
  214. }
  215. ics->max_sfb = maxsfb;
  216. //adjust zero bands for window groups
  217. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  218. for (g = 0; g < ics->max_sfb; g++) {
  219. i = 1;
  220. for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
  221. if (!cpe->ch[ch].zeroes[w2*16 + g]) {
  222. i = 0;
  223. break;
  224. }
  225. }
  226. cpe->ch[ch].zeroes[w*16 + g] = i;
  227. }
  228. }
  229. }
  230. if (chans > 1 && cpe->common_window) {
  231. IndividualChannelStream *ics0 = &cpe->ch[0].ics;
  232. IndividualChannelStream *ics1 = &cpe->ch[1].ics;
  233. int msc = 0;
  234. ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
  235. ics1->max_sfb = ics0->max_sfb;
  236. for (w = 0; w < ics0->num_windows*16; w += 16)
  237. for (i = 0; i < ics0->max_sfb; i++)
  238. if (cpe->ms_mask[w+i])
  239. msc++;
  240. if (msc == 0 || ics0->max_sfb == 0)
  241. cpe->ms_mode = 0;
  242. else
  243. cpe->ms_mode = msc < ics0->max_sfb * ics0->num_windows ? 1 : 2;
  244. }
  245. }
  246. /**
  247. * Encode scalefactor band coding type.
  248. */
  249. static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
  250. {
  251. int w;
  252. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  253. s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
  254. }
  255. /**
  256. * Encode scalefactors.
  257. */
  258. static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
  259. SingleChannelElement *sce)
  260. {
  261. int diff, off_sf = sce->sf_idx[0], off_pns = sce->sf_idx[0] - NOISE_OFFSET;
  262. int off_is = 0, noise_flag = 1;
  263. int i, w;
  264. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  265. for (i = 0; i < sce->ics.max_sfb; i++) {
  266. if (!sce->zeroes[w*16 + i]) {
  267. if (sce->band_type[w*16 + i] == NOISE_BT) {
  268. diff = sce->sf_idx[w*16 + i] - off_pns;
  269. off_pns = sce->sf_idx[w*16 + i];
  270. if (noise_flag-- > 0) {
  271. put_bits(&s->pb, NOISE_PRE_BITS, diff + NOISE_PRE);
  272. continue;
  273. }
  274. } else if (sce->band_type[w*16 + i] == INTENSITY_BT ||
  275. sce->band_type[w*16 + i] == INTENSITY_BT2) {
  276. diff = sce->sf_idx[w*16 + i] - off_is;
  277. off_is = sce->sf_idx[w*16 + i];
  278. } else {
  279. diff = sce->sf_idx[w*16 + i] - off_sf;
  280. off_sf = sce->sf_idx[w*16 + i];
  281. }
  282. diff += SCALE_DIFF_ZERO;
  283. av_assert0(diff >= 0 && diff <= 120);
  284. put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
  285. }
  286. }
  287. }
  288. }
  289. /**
  290. * Encode pulse data.
  291. */
  292. static void encode_pulses(AACEncContext *s, Pulse *pulse)
  293. {
  294. int i;
  295. put_bits(&s->pb, 1, !!pulse->num_pulse);
  296. if (!pulse->num_pulse)
  297. return;
  298. put_bits(&s->pb, 2, pulse->num_pulse - 1);
  299. put_bits(&s->pb, 6, pulse->start);
  300. for (i = 0; i < pulse->num_pulse; i++) {
  301. put_bits(&s->pb, 5, pulse->pos[i]);
  302. put_bits(&s->pb, 4, pulse->amp[i]);
  303. }
  304. }
  305. /**
  306. * Encode spectral coefficients processed by psychoacoustic model.
  307. */
  308. static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
  309. {
  310. int start, i, w, w2;
  311. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  312. start = 0;
  313. for (i = 0; i < sce->ics.max_sfb; i++) {
  314. if (sce->zeroes[w*16 + i]) {
  315. start += sce->ics.swb_sizes[i];
  316. continue;
  317. }
  318. for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++) {
  319. s->coder->quantize_and_encode_band(s, &s->pb,
  320. &sce->coeffs[start + w2*128],
  321. NULL, sce->ics.swb_sizes[i],
  322. sce->sf_idx[w*16 + i],
  323. sce->band_type[w*16 + i],
  324. s->lambda,
  325. sce->ics.window_clipping[w]);
  326. }
  327. start += sce->ics.swb_sizes[i];
  328. }
  329. }
  330. }
  331. /**
  332. * Downscale spectral coefficients for near-clipping windows to avoid artifacts
  333. */
  334. static void avoid_clipping(AACEncContext *s, SingleChannelElement *sce)
  335. {
  336. int start, i, j, w;
  337. if (sce->ics.clip_avoidance_factor < 1.0f) {
  338. for (w = 0; w < sce->ics.num_windows; w++) {
  339. start = 0;
  340. for (i = 0; i < sce->ics.max_sfb; i++) {
  341. float *swb_coeffs = &sce->coeffs[start + w*128];
  342. for (j = 0; j < sce->ics.swb_sizes[i]; j++)
  343. swb_coeffs[j] *= sce->ics.clip_avoidance_factor;
  344. start += sce->ics.swb_sizes[i];
  345. }
  346. }
  347. }
  348. }
  349. /**
  350. * Encode one channel of audio data.
  351. */
  352. static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
  353. SingleChannelElement *sce,
  354. int common_window)
  355. {
  356. put_bits(&s->pb, 8, sce->sf_idx[0]);
  357. if (!common_window) {
  358. put_ics_info(s, &sce->ics);
  359. if (s->coder->encode_main_pred)
  360. s->coder->encode_main_pred(s, sce);
  361. }
  362. encode_band_info(s, sce);
  363. encode_scale_factors(avctx, s, sce);
  364. encode_pulses(s, &sce->pulse);
  365. if (s->coder->encode_tns_info)
  366. s->coder->encode_tns_info(s, sce);
  367. else
  368. put_bits(&s->pb, 1, 0);
  369. put_bits(&s->pb, 1, 0); //ssr
  370. encode_spectral_coeffs(s, sce);
  371. return 0;
  372. }
  373. /**
  374. * Write some auxiliary information about the created AAC file.
  375. */
  376. static void put_bitstream_info(AACEncContext *s, const char *name)
  377. {
  378. int i, namelen, padbits;
  379. namelen = strlen(name) + 2;
  380. put_bits(&s->pb, 3, TYPE_FIL);
  381. put_bits(&s->pb, 4, FFMIN(namelen, 15));
  382. if (namelen >= 15)
  383. put_bits(&s->pb, 8, namelen - 14);
  384. put_bits(&s->pb, 4, 0); //extension type - filler
  385. padbits = -put_bits_count(&s->pb) & 7;
  386. avpriv_align_put_bits(&s->pb);
  387. for (i = 0; i < namelen - 2; i++)
  388. put_bits(&s->pb, 8, name[i]);
  389. put_bits(&s->pb, 12 - padbits, 0);
  390. }
  391. /*
  392. * Copy input samples.
  393. * Channels are reordered from libavcodec's default order to AAC order.
  394. */
  395. static void copy_input_samples(AACEncContext *s, const AVFrame *frame)
  396. {
  397. int ch;
  398. int end = 2048 + (frame ? frame->nb_samples : 0);
  399. const uint8_t *channel_map = aac_chan_maps[s->channels - 1];
  400. /* copy and remap input samples */
  401. for (ch = 0; ch < s->channels; ch++) {
  402. /* copy last 1024 samples of previous frame to the start of the current frame */
  403. memcpy(&s->planar_samples[ch][1024], &s->planar_samples[ch][2048], 1024 * sizeof(s->planar_samples[0][0]));
  404. /* copy new samples and zero any remaining samples */
  405. if (frame) {
  406. memcpy(&s->planar_samples[ch][2048],
  407. frame->extended_data[channel_map[ch]],
  408. frame->nb_samples * sizeof(s->planar_samples[0][0]));
  409. }
  410. memset(&s->planar_samples[ch][end], 0,
  411. (3072 - end) * sizeof(s->planar_samples[0][0]));
  412. }
  413. }
  414. static int aac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
  415. const AVFrame *frame, int *got_packet_ptr)
  416. {
  417. AACEncContext *s = avctx->priv_data;
  418. float **samples = s->planar_samples, *samples2, *la, *overlap;
  419. ChannelElement *cpe;
  420. SingleChannelElement *sce;
  421. int i, ch, w, g, chans, tag, start_ch, ret;
  422. int ms_mode = 0, is_mode = 0, tns_mode = 0, pred_mode = 0;
  423. int chan_el_counter[4];
  424. FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
  425. if (s->last_frame == 2)
  426. return 0;
  427. /* add current frame to queue */
  428. if (frame) {
  429. if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
  430. return ret;
  431. }
  432. copy_input_samples(s, frame);
  433. if (s->psypp)
  434. ff_psy_preprocess(s->psypp, s->planar_samples, s->channels);
  435. if (!avctx->frame_number)
  436. return 0;
  437. start_ch = 0;
  438. for (i = 0; i < s->chan_map[0]; i++) {
  439. FFPsyWindowInfo* wi = windows + start_ch;
  440. tag = s->chan_map[i+1];
  441. chans = tag == TYPE_CPE ? 2 : 1;
  442. cpe = &s->cpe[i];
  443. for (ch = 0; ch < chans; ch++) {
  444. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  445. int cur_channel = start_ch + ch;
  446. float clip_avoidance_factor;
  447. overlap = &samples[cur_channel][0];
  448. samples2 = overlap + 1024;
  449. la = samples2 + (448+64);
  450. if (!frame)
  451. la = NULL;
  452. if (tag == TYPE_LFE) {
  453. wi[ch].window_type[0] = ONLY_LONG_SEQUENCE;
  454. wi[ch].window_shape = 0;
  455. wi[ch].num_windows = 1;
  456. wi[ch].grouping[0] = 1;
  457. /* Only the lowest 12 coefficients are used in a LFE channel.
  458. * The expression below results in only the bottom 8 coefficients
  459. * being used for 11.025kHz to 16kHz sample rates.
  460. */
  461. ics->num_swb = s->samplerate_index >= 8 ? 1 : 3;
  462. } else {
  463. wi[ch] = s->psy.model->window(&s->psy, samples2, la, cur_channel,
  464. ics->window_sequence[0]);
  465. }
  466. ics->window_sequence[1] = ics->window_sequence[0];
  467. ics->window_sequence[0] = wi[ch].window_type[0];
  468. ics->use_kb_window[1] = ics->use_kb_window[0];
  469. ics->use_kb_window[0] = wi[ch].window_shape;
  470. ics->num_windows = wi[ch].num_windows;
  471. ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
  472. ics->num_swb = tag == TYPE_LFE ? ics->num_swb : s->psy.num_bands[ics->num_windows == 8];
  473. ics->swb_offset = wi[ch].window_type[0] == EIGHT_SHORT_SEQUENCE ?
  474. ff_swb_offset_128 [s->samplerate_index]:
  475. ff_swb_offset_1024[s->samplerate_index];
  476. clip_avoidance_factor = 0.0f;
  477. for (w = 0; w < ics->num_windows; w++)
  478. ics->group_len[w] = wi[ch].grouping[w];
  479. for (w = 0; w < ics->num_windows; w++) {
  480. if (wi[ch].clipping[w] > CLIP_AVOIDANCE_FACTOR) {
  481. ics->window_clipping[w] = 1;
  482. clip_avoidance_factor = FFMAX(clip_avoidance_factor, wi[ch].clipping[w]);
  483. } else {
  484. ics->window_clipping[w] = 0;
  485. }
  486. }
  487. if (clip_avoidance_factor > CLIP_AVOIDANCE_FACTOR) {
  488. ics->clip_avoidance_factor = CLIP_AVOIDANCE_FACTOR / clip_avoidance_factor;
  489. } else {
  490. ics->clip_avoidance_factor = 1.0f;
  491. }
  492. apply_window_and_mdct(s, &cpe->ch[ch], overlap);
  493. if (isnan(cpe->ch->coeffs[0])) {
  494. av_log(avctx, AV_LOG_ERROR, "Input contains NaN\n");
  495. return AVERROR(EINVAL);
  496. }
  497. avoid_clipping(s, &cpe->ch[ch]);
  498. }
  499. start_ch += chans;
  500. }
  501. if ((ret = ff_alloc_packet2(avctx, avpkt, 8192 * s->channels, 0)) < 0)
  502. return ret;
  503. do {
  504. int frame_bits;
  505. init_put_bits(&s->pb, avpkt->data, avpkt->size);
  506. if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & AV_CODEC_FLAG_BITEXACT))
  507. put_bitstream_info(s, LIBAVCODEC_IDENT);
  508. start_ch = 0;
  509. memset(chan_el_counter, 0, sizeof(chan_el_counter));
  510. for (i = 0; i < s->chan_map[0]; i++) {
  511. FFPsyWindowInfo* wi = windows + start_ch;
  512. const float *coeffs[2];
  513. tag = s->chan_map[i+1];
  514. chans = tag == TYPE_CPE ? 2 : 1;
  515. cpe = &s->cpe[i];
  516. memset(cpe->is_mask, 0, sizeof(cpe->is_mask));
  517. memset(cpe->ms_mask, 0, sizeof(cpe->ms_mask));
  518. put_bits(&s->pb, 3, tag);
  519. put_bits(&s->pb, 4, chan_el_counter[tag]++);
  520. for (ch = 0; ch < chans; ch++) {
  521. sce = &cpe->ch[ch];
  522. coeffs[ch] = sce->coeffs;
  523. sce->ics.predictor_present = 0;
  524. memset(&sce->ics.prediction_used, 0, sizeof(sce->ics.prediction_used));
  525. memset(&sce->tns, 0, sizeof(TemporalNoiseShaping));
  526. for (w = 0; w < 128; w++)
  527. if (sce->band_type[w] > RESERVED_BT)
  528. sce->band_type[w] = 0;
  529. }
  530. s->psy.model->analyze(&s->psy, start_ch, coeffs, wi);
  531. for (ch = 0; ch < chans; ch++) {
  532. s->cur_channel = start_ch + ch;
  533. s->coder->search_for_quantizers(avctx, s, &cpe->ch[ch], s->lambda);
  534. }
  535. cpe->common_window = 0;
  536. if (chans > 1
  537. && wi[0].window_type[0] == wi[1].window_type[0]
  538. && wi[0].window_shape == wi[1].window_shape) {
  539. cpe->common_window = 1;
  540. for (w = 0; w < wi[0].num_windows; w++) {
  541. if (wi[0].grouping[w] != wi[1].grouping[w]) {
  542. cpe->common_window = 0;
  543. break;
  544. }
  545. }
  546. }
  547. for (ch = 0; ch < chans; ch++) {
  548. sce = &cpe->ch[ch];
  549. s->cur_channel = start_ch + ch;
  550. if (s->options.pns && s->coder->search_for_pns)
  551. s->coder->search_for_pns(s, avctx, sce);
  552. if (s->options.tns && s->coder->search_for_tns)
  553. s->coder->search_for_tns(s, sce);
  554. if (sce->tns.present)
  555. tns_mode = 1;
  556. }
  557. s->cur_channel = start_ch;
  558. if (s->options.stereo_mode && cpe->common_window) {
  559. if (s->options.stereo_mode > 0) {
  560. IndividualChannelStream *ics = &cpe->ch[0].ics;
  561. for (w = 0; w < ics->num_windows; w += ics->group_len[w])
  562. for (g = 0; g < ics->num_swb; g++)
  563. cpe->ms_mask[w*16+g] = 1;
  564. } else if (s->coder->search_for_ms) {
  565. s->coder->search_for_ms(s, cpe);
  566. }
  567. }
  568. if (s->options.intensity_stereo && s->coder->search_for_is) {
  569. s->coder->search_for_is(s, avctx, cpe);
  570. if (cpe->is_mode) is_mode = 1;
  571. }
  572. if (s->coder->set_special_band_scalefactors)
  573. for (ch = 0; ch < chans; ch++)
  574. s->coder->set_special_band_scalefactors(s, &cpe->ch[ch]);
  575. adjust_frame_information(cpe, chans);
  576. for (ch = 0; ch < chans; ch++) {
  577. sce = &cpe->ch[ch];
  578. s->cur_channel = start_ch + ch;
  579. if (s->options.pred && s->coder->search_for_pred)
  580. s->coder->search_for_pred(s, sce);
  581. if (cpe->ch[ch].ics.predictor_present) pred_mode = 1;
  582. }
  583. if (s->options.pred && s->coder->adjust_common_prediction)
  584. s->coder->adjust_common_prediction(s, cpe);
  585. for (ch = 0; ch < chans; ch++) {
  586. sce = &cpe->ch[ch];
  587. s->cur_channel = start_ch + ch;
  588. if (s->options.pred && s->coder->apply_main_pred)
  589. s->coder->apply_main_pred(s, sce);
  590. }
  591. s->cur_channel = start_ch;
  592. if (chans == 2) {
  593. put_bits(&s->pb, 1, cpe->common_window);
  594. if (cpe->common_window) {
  595. put_ics_info(s, &cpe->ch[0].ics);
  596. if (s->coder->encode_main_pred)
  597. s->coder->encode_main_pred(s, &cpe->ch[0]);
  598. encode_ms_info(&s->pb, cpe);
  599. if (cpe->ms_mode) ms_mode = 1;
  600. }
  601. }
  602. for (ch = 0; ch < chans; ch++) {
  603. s->cur_channel = start_ch + ch;
  604. encode_individual_channel(avctx, s, &cpe->ch[ch], cpe->common_window);
  605. }
  606. start_ch += chans;
  607. }
  608. frame_bits = put_bits_count(&s->pb);
  609. if (frame_bits <= 6144 * s->channels - 3) {
  610. s->psy.bitres.bits = frame_bits / s->channels;
  611. break;
  612. }
  613. if (is_mode || ms_mode || tns_mode || pred_mode) {
  614. for (i = 0; i < s->chan_map[0]; i++) {
  615. // Must restore coeffs
  616. chans = tag == TYPE_CPE ? 2 : 1;
  617. cpe = &s->cpe[i];
  618. for (ch = 0; ch < chans; ch++)
  619. memcpy(cpe->ch[ch].coeffs, cpe->ch[ch].pcoeffs, sizeof(cpe->ch[ch].coeffs));
  620. }
  621. }
  622. s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
  623. } while (1);
  624. put_bits(&s->pb, 3, TYPE_END);
  625. flush_put_bits(&s->pb);
  626. avctx->frame_bits = put_bits_count(&s->pb);
  627. // rate control stuff
  628. if (!(avctx->flags & AV_CODEC_FLAG_QSCALE)) {
  629. float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
  630. s->lambda *= ratio;
  631. s->lambda = FFMIN(s->lambda, 65536.f);
  632. }
  633. if (!frame)
  634. s->last_frame++;
  635. ff_af_queue_remove(&s->afq, avctx->frame_size, &avpkt->pts,
  636. &avpkt->duration);
  637. avpkt->size = put_bits_count(&s->pb) >> 3;
  638. *got_packet_ptr = 1;
  639. return 0;
  640. }
  641. static av_cold int aac_encode_end(AVCodecContext *avctx)
  642. {
  643. AACEncContext *s = avctx->priv_data;
  644. ff_mdct_end(&s->mdct1024);
  645. ff_mdct_end(&s->mdct128);
  646. ff_psy_end(&s->psy);
  647. ff_lpc_end(&s->lpc);
  648. if (s->psypp)
  649. ff_psy_preprocess_end(s->psypp);
  650. av_freep(&s->buffer.samples);
  651. av_freep(&s->cpe);
  652. av_freep(&s->fdsp);
  653. ff_af_queue_close(&s->afq);
  654. return 0;
  655. }
  656. static av_cold int dsp_init(AVCodecContext *avctx, AACEncContext *s)
  657. {
  658. int ret = 0;
  659. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  660. if (!s->fdsp)
  661. return AVERROR(ENOMEM);
  662. // window init
  663. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  664. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  665. ff_init_ff_sine_windows(10);
  666. ff_init_ff_sine_windows(7);
  667. if ((ret = ff_mdct_init(&s->mdct1024, 11, 0, 32768.0)) < 0)
  668. return ret;
  669. if ((ret = ff_mdct_init(&s->mdct128, 8, 0, 32768.0)) < 0)
  670. return ret;
  671. return 0;
  672. }
  673. static av_cold int alloc_buffers(AVCodecContext *avctx, AACEncContext *s)
  674. {
  675. int ch;
  676. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->buffer.samples, s->channels, 3 * 1024 * sizeof(s->buffer.samples[0]), alloc_fail);
  677. FF_ALLOCZ_ARRAY_OR_GOTO(avctx, s->cpe, s->chan_map[0], sizeof(ChannelElement), alloc_fail);
  678. FF_ALLOCZ_OR_GOTO(avctx, avctx->extradata, 5 + AV_INPUT_BUFFER_PADDING_SIZE, alloc_fail);
  679. for(ch = 0; ch < s->channels; ch++)
  680. s->planar_samples[ch] = s->buffer.samples + 3 * 1024 * ch;
  681. return 0;
  682. alloc_fail:
  683. return AVERROR(ENOMEM);
  684. }
  685. static av_cold int aac_encode_init(AVCodecContext *avctx)
  686. {
  687. AACEncContext *s = avctx->priv_data;
  688. int i, ret = 0;
  689. const uint8_t *sizes[2];
  690. uint8_t grouping[AAC_MAX_CHANNELS];
  691. int lengths[2];
  692. avctx->frame_size = 1024;
  693. for (i = 0; i < 16; i++)
  694. if (avctx->sample_rate == avpriv_mpeg4audio_sample_rates[i])
  695. break;
  696. s->channels = avctx->channels;
  697. ERROR_IF(i == 16 || i >= ff_aac_swb_size_1024_len || i >= ff_aac_swb_size_128_len,
  698. "Unsupported sample rate %d\n", avctx->sample_rate);
  699. ERROR_IF(s->channels > AAC_MAX_CHANNELS,
  700. "Unsupported number of channels: %d\n", s->channels);
  701. WARN_IF(1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * s->channels,
  702. "Too many bits per frame requested, clamping to max\n");
  703. if (avctx->profile == FF_PROFILE_AAC_MAIN) {
  704. s->options.pred = 1;
  705. } else if ((avctx->profile == FF_PROFILE_AAC_LOW ||
  706. avctx->profile == FF_PROFILE_UNKNOWN) && s->options.pred) {
  707. s->profile = 0; /* Main */
  708. WARN_IF(1, "Prediction requested, changing profile to AAC-Main\n");
  709. } else if (avctx->profile == FF_PROFILE_AAC_LOW ||
  710. avctx->profile == FF_PROFILE_UNKNOWN) {
  711. s->profile = 1; /* Low */
  712. } else {
  713. ERROR_IF(1, "Unsupported profile %d\n", avctx->profile);
  714. }
  715. avctx->bit_rate = (int)FFMIN(
  716. 6144 * s->channels / 1024.0 * avctx->sample_rate,
  717. avctx->bit_rate);
  718. s->samplerate_index = i;
  719. s->chan_map = aac_chan_configs[s->channels-1];
  720. if ((ret = dsp_init(avctx, s)) < 0)
  721. goto fail;
  722. if ((ret = alloc_buffers(avctx, s)) < 0)
  723. goto fail;
  724. avctx->extradata_size = 5;
  725. put_audio_specific_config(avctx);
  726. sizes[0] = ff_aac_swb_size_1024[i];
  727. sizes[1] = ff_aac_swb_size_128[i];
  728. lengths[0] = ff_aac_num_swb_1024[i];
  729. lengths[1] = ff_aac_num_swb_128[i];
  730. for (i = 0; i < s->chan_map[0]; i++)
  731. grouping[i] = s->chan_map[i + 1] == TYPE_CPE;
  732. if ((ret = ff_psy_init(&s->psy, avctx, 2, sizes, lengths,
  733. s->chan_map[0], grouping)) < 0)
  734. goto fail;
  735. s->psypp = ff_psy_preprocess_init(avctx);
  736. s->coder = &ff_aac_coders[s->options.aac_coder];
  737. ff_lpc_init(&s->lpc, avctx->frame_size, TNS_MAX_ORDER, FF_LPC_TYPE_LEVINSON);
  738. if (HAVE_MIPSDSPR1)
  739. ff_aac_coder_init_mips(s);
  740. s->lambda = avctx->global_quality > 0 ? avctx->global_quality : 120;
  741. ff_aac_tableinit();
  742. avctx->initial_padding = 1024;
  743. ff_af_queue_init(avctx, &s->afq);
  744. return 0;
  745. fail:
  746. aac_encode_end(avctx);
  747. return ret;
  748. }
  749. #define AACENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
  750. static const AVOption aacenc_options[] = {
  751. {"stereo_mode", "Stereo coding method", offsetof(AACEncContext, options.stereo_mode), AV_OPT_TYPE_INT, {.i64 = 0}, -1, 1, AACENC_FLAGS, "stereo_mode"},
  752. {"auto", "Selected by the Encoder", 0, AV_OPT_TYPE_CONST, {.i64 = -1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  753. {"ms_off", "Disable Mid/Side coding", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  754. {"ms_force", "Force Mid/Side for the whole frame if possible", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "stereo_mode"},
  755. {"aac_coder", "Coding algorithm", offsetof(AACEncContext, options.aac_coder), AV_OPT_TYPE_INT, {.i64 = AAC_CODER_TWOLOOP}, 0, AAC_CODER_NB-1, AACENC_FLAGS, "aac_coder"},
  756. {"faac", "FAAC-inspired method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAAC}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  757. {"anmr", "ANMR method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_ANMR}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  758. {"twoloop", "Two loop searching method", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_TWOLOOP}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  759. {"fast", "Constant quantizer", 0, AV_OPT_TYPE_CONST, {.i64 = AAC_CODER_FAST}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_coder"},
  760. {"aac_pns", "Perceptual Noise Substitution", offsetof(AACEncContext, options.pns), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "aac_pns"},
  761. {"disable", "Disable perceptual noise substitution", 0, AV_OPT_TYPE_CONST, {.i64 = 0 }, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pns"},
  762. {"enable", "Enable perceptual noise substitution", 0, AV_OPT_TYPE_CONST, {.i64 = 1 }, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pns"},
  763. {"aac_is", "Intensity stereo coding", offsetof(AACEncContext, options.intensity_stereo), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "intensity_stereo"},
  764. {"disable", "Disable intensity stereo coding", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "intensity_stereo"},
  765. {"enable", "Enable intensity stereo coding", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "intensity_stereo"},
  766. {"aac_tns", "Temporal noise shaping", offsetof(AACEncContext, options.tns), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "aac_tns"},
  767. {"disable", "Disable temporal noise shaping", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_tns"},
  768. {"enable", "Enable temporal noise shaping", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_tns"},
  769. {"aac_pred", "AAC-Main prediction", offsetof(AACEncContext, options.pred), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, AACENC_FLAGS, "aac_pred"},
  770. {"disable", "Disable AAC-Main prediction", 0, AV_OPT_TYPE_CONST, {.i64 = 0}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pred"},
  771. {"enable", "Enable AAC-Main prediction", 0, AV_OPT_TYPE_CONST, {.i64 = 1}, INT_MIN, INT_MAX, AACENC_FLAGS, "aac_pred"},
  772. {NULL}
  773. };
  774. static const AVClass aacenc_class = {
  775. "AAC encoder",
  776. av_default_item_name,
  777. aacenc_options,
  778. LIBAVUTIL_VERSION_INT,
  779. };
  780. AVCodec ff_aac_encoder = {
  781. .name = "aac",
  782. .long_name = NULL_IF_CONFIG_SMALL("AAC (Advanced Audio Coding)"),
  783. .type = AVMEDIA_TYPE_AUDIO,
  784. .id = AV_CODEC_ID_AAC,
  785. .priv_data_size = sizeof(AACEncContext),
  786. .init = aac_encode_init,
  787. .encode2 = aac_encode_frame,
  788. .close = aac_encode_end,
  789. .supported_samplerates = mpeg4audio_sample_rates,
  790. .capabilities = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY |
  791. AV_CODEC_CAP_EXPERIMENTAL,
  792. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLTP,
  793. AV_SAMPLE_FMT_NONE },
  794. .priv_class = &aacenc_class,
  795. };