You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

946 lines
31KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(ff_wma_init(avctx, flags2)<0)
  91. return -1;
  92. /* init MDCT */
  93. for(i = 0; i < s->nb_block_sizes; i++)
  94. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  95. if (s->use_noise_coding) {
  96. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  97. ff_wma_hgain_huffbits, 1, 1,
  98. ff_wma_hgain_huffcodes, 2, 2, 0);
  99. }
  100. if (s->use_exp_vlc) {
  101. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  102. ff_aac_scalefactor_bits, 1, 1,
  103. ff_aac_scalefactor_code, 4, 4, 0);
  104. } else {
  105. wma_lsp_to_curve_init(s, s->frame_len);
  106. }
  107. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  108. return 0;
  109. }
  110. /**
  111. * compute x^-0.25 with an exponent and mantissa table. We use linear
  112. * interpolation to reduce the mantissa table size at a small speed
  113. * expense (linear interpolation approximately doubles the number of
  114. * bits of precision).
  115. */
  116. static inline float pow_m1_4(WMACodecContext *s, float x)
  117. {
  118. union {
  119. float f;
  120. unsigned int v;
  121. } u, t;
  122. unsigned int e, m;
  123. float a, b;
  124. u.f = x;
  125. e = u.v >> 23;
  126. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  127. /* build interpolation scale: 1 <= t < 2. */
  128. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  129. a = s->lsp_pow_m_table1[m];
  130. b = s->lsp_pow_m_table2[m];
  131. return s->lsp_pow_e_table[e] * (a + b * t.f);
  132. }
  133. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  134. {
  135. float wdel, a, b;
  136. int i, e, m;
  137. wdel = M_PI / frame_len;
  138. for(i=0;i<frame_len;i++)
  139. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  140. /* tables for x^-0.25 computation */
  141. for(i=0;i<256;i++) {
  142. e = i - 126;
  143. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  144. }
  145. /* NOTE: these two tables are needed to avoid two operations in
  146. pow_m1_4 */
  147. b = 1.0;
  148. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  149. m = (1 << LSP_POW_BITS) + i;
  150. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  151. a = pow(a, -0.25);
  152. s->lsp_pow_m_table1[i] = 2 * a - b;
  153. s->lsp_pow_m_table2[i] = b - a;
  154. b = a;
  155. }
  156. }
  157. /**
  158. * NOTE: We use the same code as Vorbis here
  159. * @todo optimize it further with SSE/3Dnow
  160. */
  161. static void wma_lsp_to_curve(WMACodecContext *s,
  162. float *out, float *val_max_ptr,
  163. int n, float *lsp)
  164. {
  165. int i, j;
  166. float p, q, w, v, val_max;
  167. val_max = 0;
  168. for(i=0;i<n;i++) {
  169. p = 0.5f;
  170. q = 0.5f;
  171. w = s->lsp_cos_table[i];
  172. for(j=1;j<NB_LSP_COEFS;j+=2){
  173. q *= w - lsp[j - 1];
  174. p *= w - lsp[j];
  175. }
  176. p *= p * (2.0f - w);
  177. q *= q * (2.0f + w);
  178. v = p + q;
  179. v = pow_m1_4(s, v);
  180. if (v > val_max)
  181. val_max = v;
  182. out[i] = v;
  183. }
  184. *val_max_ptr = val_max;
  185. }
  186. /**
  187. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  188. */
  189. static void decode_exp_lsp(WMACodecContext *s, int ch)
  190. {
  191. float lsp_coefs[NB_LSP_COEFS];
  192. int val, i;
  193. for(i = 0; i < NB_LSP_COEFS; i++) {
  194. if (i == 0 || i >= 8)
  195. val = get_bits(&s->gb, 3);
  196. else
  197. val = get_bits(&s->gb, 4);
  198. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  199. }
  200. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  201. s->block_len, lsp_coefs);
  202. }
  203. /** pow(10, i / 16.0) for i in -60..95 */
  204. static const float pow_tab[] = {
  205. 1.7782794100389e-04, 2.0535250264571e-04,
  206. 2.3713737056617e-04, 2.7384196342644e-04,
  207. 3.1622776601684e-04, 3.6517412725484e-04,
  208. 4.2169650342858e-04, 4.8696752516586e-04,
  209. 5.6234132519035e-04, 6.4938163157621e-04,
  210. 7.4989420933246e-04, 8.6596432336006e-04,
  211. 1.0000000000000e-03, 1.1547819846895e-03,
  212. 1.3335214321633e-03, 1.5399265260595e-03,
  213. 1.7782794100389e-03, 2.0535250264571e-03,
  214. 2.3713737056617e-03, 2.7384196342644e-03,
  215. 3.1622776601684e-03, 3.6517412725484e-03,
  216. 4.2169650342858e-03, 4.8696752516586e-03,
  217. 5.6234132519035e-03, 6.4938163157621e-03,
  218. 7.4989420933246e-03, 8.6596432336006e-03,
  219. 1.0000000000000e-02, 1.1547819846895e-02,
  220. 1.3335214321633e-02, 1.5399265260595e-02,
  221. 1.7782794100389e-02, 2.0535250264571e-02,
  222. 2.3713737056617e-02, 2.7384196342644e-02,
  223. 3.1622776601684e-02, 3.6517412725484e-02,
  224. 4.2169650342858e-02, 4.8696752516586e-02,
  225. 5.6234132519035e-02, 6.4938163157621e-02,
  226. 7.4989420933246e-02, 8.6596432336007e-02,
  227. 1.0000000000000e-01, 1.1547819846895e-01,
  228. 1.3335214321633e-01, 1.5399265260595e-01,
  229. 1.7782794100389e-01, 2.0535250264571e-01,
  230. 2.3713737056617e-01, 2.7384196342644e-01,
  231. 3.1622776601684e-01, 3.6517412725484e-01,
  232. 4.2169650342858e-01, 4.8696752516586e-01,
  233. 5.6234132519035e-01, 6.4938163157621e-01,
  234. 7.4989420933246e-01, 8.6596432336007e-01,
  235. 1.0000000000000e+00, 1.1547819846895e+00,
  236. 1.3335214321633e+00, 1.5399265260595e+00,
  237. 1.7782794100389e+00, 2.0535250264571e+00,
  238. 2.3713737056617e+00, 2.7384196342644e+00,
  239. 3.1622776601684e+00, 3.6517412725484e+00,
  240. 4.2169650342858e+00, 4.8696752516586e+00,
  241. 5.6234132519035e+00, 6.4938163157621e+00,
  242. 7.4989420933246e+00, 8.6596432336007e+00,
  243. 1.0000000000000e+01, 1.1547819846895e+01,
  244. 1.3335214321633e+01, 1.5399265260595e+01,
  245. 1.7782794100389e+01, 2.0535250264571e+01,
  246. 2.3713737056617e+01, 2.7384196342644e+01,
  247. 3.1622776601684e+01, 3.6517412725484e+01,
  248. 4.2169650342858e+01, 4.8696752516586e+01,
  249. 5.6234132519035e+01, 6.4938163157621e+01,
  250. 7.4989420933246e+01, 8.6596432336007e+01,
  251. 1.0000000000000e+02, 1.1547819846895e+02,
  252. 1.3335214321633e+02, 1.5399265260595e+02,
  253. 1.7782794100389e+02, 2.0535250264571e+02,
  254. 2.3713737056617e+02, 2.7384196342644e+02,
  255. 3.1622776601684e+02, 3.6517412725484e+02,
  256. 4.2169650342858e+02, 4.8696752516586e+02,
  257. 5.6234132519035e+02, 6.4938163157621e+02,
  258. 7.4989420933246e+02, 8.6596432336007e+02,
  259. 1.0000000000000e+03, 1.1547819846895e+03,
  260. 1.3335214321633e+03, 1.5399265260595e+03,
  261. 1.7782794100389e+03, 2.0535250264571e+03,
  262. 2.3713737056617e+03, 2.7384196342644e+03,
  263. 3.1622776601684e+03, 3.6517412725484e+03,
  264. 4.2169650342858e+03, 4.8696752516586e+03,
  265. 5.6234132519035e+03, 6.4938163157621e+03,
  266. 7.4989420933246e+03, 8.6596432336007e+03,
  267. 1.0000000000000e+04, 1.1547819846895e+04,
  268. 1.3335214321633e+04, 1.5399265260595e+04,
  269. 1.7782794100389e+04, 2.0535250264571e+04,
  270. 2.3713737056617e+04, 2.7384196342644e+04,
  271. 3.1622776601684e+04, 3.6517412725484e+04,
  272. 4.2169650342858e+04, 4.8696752516586e+04,
  273. 5.6234132519035e+04, 6.4938163157621e+04,
  274. 7.4989420933246e+04, 8.6596432336007e+04,
  275. 1.0000000000000e+05, 1.1547819846895e+05,
  276. 1.3335214321633e+05, 1.5399265260595e+05,
  277. 1.7782794100389e+05, 2.0535250264571e+05,
  278. 2.3713737056617e+05, 2.7384196342644e+05,
  279. 3.1622776601684e+05, 3.6517412725484e+05,
  280. 4.2169650342858e+05, 4.8696752516586e+05,
  281. 5.6234132519035e+05, 6.4938163157621e+05,
  282. 7.4989420933246e+05, 8.6596432336007e+05,
  283. };
  284. /**
  285. * decode exponents coded with VLC codes
  286. */
  287. static int decode_exp_vlc(WMACodecContext *s, int ch)
  288. {
  289. int last_exp, n, code;
  290. const uint16_t *ptr;
  291. float v, max_scale;
  292. uint32_t *q, *q_end, iv;
  293. const float *ptab = pow_tab + 60;
  294. const uint32_t *iptab = (const uint32_t*)ptab;
  295. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  296. q = (uint32_t *)s->exponents[ch];
  297. q_end = q + s->block_len;
  298. max_scale = 0;
  299. if (s->version == 1) {
  300. last_exp = get_bits(&s->gb, 5) + 10;
  301. v = ptab[last_exp];
  302. iv = iptab[last_exp];
  303. max_scale = v;
  304. n = *ptr++;
  305. switch (n & 3) do {
  306. case 0: *q++ = iv;
  307. case 3: *q++ = iv;
  308. case 2: *q++ = iv;
  309. case 1: *q++ = iv;
  310. } while ((n -= 4) > 0);
  311. }else
  312. last_exp = 36;
  313. while (q < q_end) {
  314. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  315. if (code < 0){
  316. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  317. return -1;
  318. }
  319. /* NOTE: this offset is the same as MPEG4 AAC ! */
  320. last_exp += code - 60;
  321. if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
  322. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  323. last_exp);
  324. return -1;
  325. }
  326. v = ptab[last_exp];
  327. iv = iptab[last_exp];
  328. if (v > max_scale)
  329. max_scale = v;
  330. n = *ptr++;
  331. switch (n & 3) do {
  332. case 0: *q++ = iv;
  333. case 3: *q++ = iv;
  334. case 2: *q++ = iv;
  335. case 1: *q++ = iv;
  336. } while ((n -= 4) > 0);
  337. }
  338. s->max_exponent[ch] = max_scale;
  339. return 0;
  340. }
  341. /**
  342. * Apply MDCT window and add into output.
  343. *
  344. * We ensure that when the windows overlap their squared sum
  345. * is always 1 (MDCT reconstruction rule).
  346. */
  347. static void wma_window(WMACodecContext *s, float *out)
  348. {
  349. float *in = s->output;
  350. int block_len, bsize, n;
  351. /* left part */
  352. if (s->block_len_bits <= s->prev_block_len_bits) {
  353. block_len = s->block_len;
  354. bsize = s->frame_len_bits - s->block_len_bits;
  355. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  356. out, block_len);
  357. } else {
  358. block_len = 1 << s->prev_block_len_bits;
  359. n = (s->block_len - block_len) / 2;
  360. bsize = s->frame_len_bits - s->prev_block_len_bits;
  361. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  362. out+n, block_len);
  363. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  364. }
  365. out += s->block_len;
  366. in += s->block_len;
  367. /* right part */
  368. if (s->block_len_bits <= s->next_block_len_bits) {
  369. block_len = s->block_len;
  370. bsize = s->frame_len_bits - s->block_len_bits;
  371. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  372. } else {
  373. block_len = 1 << s->next_block_len_bits;
  374. n = (s->block_len - block_len) / 2;
  375. bsize = s->frame_len_bits - s->next_block_len_bits;
  376. memcpy(out, in, n*sizeof(float));
  377. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  378. memset(out+n+block_len, 0, n*sizeof(float));
  379. }
  380. }
  381. /**
  382. * @return 0 if OK. 1 if last block of frame. return -1 if
  383. * unrecorrable error.
  384. */
  385. static int wma_decode_block(WMACodecContext *s)
  386. {
  387. int n, v, a, ch, bsize;
  388. int coef_nb_bits, total_gain;
  389. int nb_coefs[MAX_CHANNELS];
  390. float mdct_norm;
  391. FFTContext *mdct;
  392. #ifdef TRACE
  393. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  394. #endif
  395. /* compute current block length */
  396. if (s->use_variable_block_len) {
  397. n = av_log2(s->nb_block_sizes - 1) + 1;
  398. if (s->reset_block_lengths) {
  399. s->reset_block_lengths = 0;
  400. v = get_bits(&s->gb, n);
  401. if (v >= s->nb_block_sizes){
  402. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  403. return -1;
  404. }
  405. s->prev_block_len_bits = s->frame_len_bits - v;
  406. v = get_bits(&s->gb, n);
  407. if (v >= s->nb_block_sizes){
  408. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  409. return -1;
  410. }
  411. s->block_len_bits = s->frame_len_bits - v;
  412. } else {
  413. /* update block lengths */
  414. s->prev_block_len_bits = s->block_len_bits;
  415. s->block_len_bits = s->next_block_len_bits;
  416. }
  417. v = get_bits(&s->gb, n);
  418. if (v >= s->nb_block_sizes){
  419. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  420. return -1;
  421. }
  422. s->next_block_len_bits = s->frame_len_bits - v;
  423. } else {
  424. /* fixed block len */
  425. s->next_block_len_bits = s->frame_len_bits;
  426. s->prev_block_len_bits = s->frame_len_bits;
  427. s->block_len_bits = s->frame_len_bits;
  428. }
  429. /* now check if the block length is coherent with the frame length */
  430. s->block_len = 1 << s->block_len_bits;
  431. if ((s->block_pos + s->block_len) > s->frame_len){
  432. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  433. return -1;
  434. }
  435. if (s->nb_channels == 2) {
  436. s->ms_stereo = get_bits1(&s->gb);
  437. }
  438. v = 0;
  439. for(ch = 0; ch < s->nb_channels; ch++) {
  440. a = get_bits1(&s->gb);
  441. s->channel_coded[ch] = a;
  442. v |= a;
  443. }
  444. bsize = s->frame_len_bits - s->block_len_bits;
  445. /* if no channel coded, no need to go further */
  446. /* XXX: fix potential framing problems */
  447. if (!v)
  448. goto next;
  449. /* read total gain and extract corresponding number of bits for
  450. coef escape coding */
  451. total_gain = 1;
  452. for(;;) {
  453. a = get_bits(&s->gb, 7);
  454. total_gain += a;
  455. if (a != 127)
  456. break;
  457. }
  458. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  459. /* compute number of coefficients */
  460. n = s->coefs_end[bsize] - s->coefs_start;
  461. for(ch = 0; ch < s->nb_channels; ch++)
  462. nb_coefs[ch] = n;
  463. /* complex coding */
  464. if (s->use_noise_coding) {
  465. for(ch = 0; ch < s->nb_channels; ch++) {
  466. if (s->channel_coded[ch]) {
  467. int i, n, a;
  468. n = s->exponent_high_sizes[bsize];
  469. for(i=0;i<n;i++) {
  470. a = get_bits1(&s->gb);
  471. s->high_band_coded[ch][i] = a;
  472. /* if noise coding, the coefficients are not transmitted */
  473. if (a)
  474. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  475. }
  476. }
  477. }
  478. for(ch = 0; ch < s->nb_channels; ch++) {
  479. if (s->channel_coded[ch]) {
  480. int i, n, val, code;
  481. n = s->exponent_high_sizes[bsize];
  482. val = (int)0x80000000;
  483. for(i=0;i<n;i++) {
  484. if (s->high_band_coded[ch][i]) {
  485. if (val == (int)0x80000000) {
  486. val = get_bits(&s->gb, 7) - 19;
  487. } else {
  488. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  489. if (code < 0){
  490. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  491. return -1;
  492. }
  493. val += code - 18;
  494. }
  495. s->high_band_values[ch][i] = val;
  496. }
  497. }
  498. }
  499. }
  500. }
  501. /* exponents can be reused in short blocks. */
  502. if ((s->block_len_bits == s->frame_len_bits) ||
  503. get_bits1(&s->gb)) {
  504. for(ch = 0; ch < s->nb_channels; ch++) {
  505. if (s->channel_coded[ch]) {
  506. if (s->use_exp_vlc) {
  507. if (decode_exp_vlc(s, ch) < 0)
  508. return -1;
  509. } else {
  510. decode_exp_lsp(s, ch);
  511. }
  512. s->exponents_bsize[ch] = bsize;
  513. }
  514. }
  515. }
  516. /* parse spectral coefficients : just RLE encoding */
  517. for(ch = 0; ch < s->nb_channels; ch++) {
  518. if (s->channel_coded[ch]) {
  519. int tindex;
  520. WMACoef* ptr = &s->coefs1[ch][0];
  521. /* special VLC tables are used for ms stereo because
  522. there is potentially less energy there */
  523. tindex = (ch == 1 && s->ms_stereo);
  524. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  525. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  526. s->level_table[tindex], s->run_table[tindex],
  527. 0, ptr, 0, nb_coefs[ch],
  528. s->block_len, s->frame_len_bits, coef_nb_bits);
  529. }
  530. if (s->version == 1 && s->nb_channels >= 2) {
  531. align_get_bits(&s->gb);
  532. }
  533. }
  534. /* normalize */
  535. {
  536. int n4 = s->block_len / 2;
  537. mdct_norm = 1.0 / (float)n4;
  538. if (s->version == 1) {
  539. mdct_norm *= sqrt(n4);
  540. }
  541. }
  542. /* finally compute the MDCT coefficients */
  543. for(ch = 0; ch < s->nb_channels; ch++) {
  544. if (s->channel_coded[ch]) {
  545. WMACoef *coefs1;
  546. float *coefs, *exponents, mult, mult1, noise;
  547. int i, j, n, n1, last_high_band, esize;
  548. float exp_power[HIGH_BAND_MAX_SIZE];
  549. coefs1 = s->coefs1[ch];
  550. exponents = s->exponents[ch];
  551. esize = s->exponents_bsize[ch];
  552. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  553. mult *= mdct_norm;
  554. coefs = s->coefs[ch];
  555. if (s->use_noise_coding) {
  556. mult1 = mult;
  557. /* very low freqs : noise */
  558. for(i = 0;i < s->coefs_start; i++) {
  559. *coefs++ = s->noise_table[s->noise_index] *
  560. exponents[i<<bsize>>esize] * mult1;
  561. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  562. }
  563. n1 = s->exponent_high_sizes[bsize];
  564. /* compute power of high bands */
  565. exponents = s->exponents[ch] +
  566. (s->high_band_start[bsize]<<bsize>>esize);
  567. last_high_band = 0; /* avoid warning */
  568. for(j=0;j<n1;j++) {
  569. n = s->exponent_high_bands[s->frame_len_bits -
  570. s->block_len_bits][j];
  571. if (s->high_band_coded[ch][j]) {
  572. float e2, v;
  573. e2 = 0;
  574. for(i = 0;i < n; i++) {
  575. v = exponents[i<<bsize>>esize];
  576. e2 += v * v;
  577. }
  578. exp_power[j] = e2 / n;
  579. last_high_band = j;
  580. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  581. }
  582. exponents += n<<bsize>>esize;
  583. }
  584. /* main freqs and high freqs */
  585. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  586. for(j=-1;j<n1;j++) {
  587. if (j < 0) {
  588. n = s->high_band_start[bsize] -
  589. s->coefs_start;
  590. } else {
  591. n = s->exponent_high_bands[s->frame_len_bits -
  592. s->block_len_bits][j];
  593. }
  594. if (j >= 0 && s->high_band_coded[ch][j]) {
  595. /* use noise with specified power */
  596. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  597. /* XXX: use a table */
  598. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  599. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  600. mult1 *= mdct_norm;
  601. for(i = 0;i < n; i++) {
  602. noise = s->noise_table[s->noise_index];
  603. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  604. *coefs++ = noise *
  605. exponents[i<<bsize>>esize] * mult1;
  606. }
  607. exponents += n<<bsize>>esize;
  608. } else {
  609. /* coded values + small noise */
  610. for(i = 0;i < n; i++) {
  611. noise = s->noise_table[s->noise_index];
  612. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  613. *coefs++ = ((*coefs1++) + noise) *
  614. exponents[i<<bsize>>esize] * mult;
  615. }
  616. exponents += n<<bsize>>esize;
  617. }
  618. }
  619. /* very high freqs : noise */
  620. n = s->block_len - s->coefs_end[bsize];
  621. mult1 = mult * exponents[((-1<<bsize))>>esize];
  622. for(i = 0; i < n; i++) {
  623. *coefs++ = s->noise_table[s->noise_index] * mult1;
  624. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  625. }
  626. } else {
  627. /* XXX: optimize more */
  628. for(i = 0;i < s->coefs_start; i++)
  629. *coefs++ = 0.0;
  630. n = nb_coefs[ch];
  631. for(i = 0;i < n; i++) {
  632. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  633. }
  634. n = s->block_len - s->coefs_end[bsize];
  635. for(i = 0;i < n; i++)
  636. *coefs++ = 0.0;
  637. }
  638. }
  639. }
  640. #ifdef TRACE
  641. for(ch = 0; ch < s->nb_channels; ch++) {
  642. if (s->channel_coded[ch]) {
  643. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  644. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  645. }
  646. }
  647. #endif
  648. if (s->ms_stereo && s->channel_coded[1]) {
  649. /* nominal case for ms stereo: we do it before mdct */
  650. /* no need to optimize this case because it should almost
  651. never happen */
  652. if (!s->channel_coded[0]) {
  653. tprintf(s->avctx, "rare ms-stereo case happened\n");
  654. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  655. s->channel_coded[0] = 1;
  656. }
  657. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  658. }
  659. next:
  660. mdct = &s->mdct_ctx[bsize];
  661. for(ch = 0; ch < s->nb_channels; ch++) {
  662. int n4, index;
  663. n4 = s->block_len / 2;
  664. if(s->channel_coded[ch]){
  665. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  666. }else if(!(s->ms_stereo && ch==1))
  667. memset(s->output, 0, sizeof(s->output));
  668. /* multiply by the window and add in the frame */
  669. index = (s->frame_len / 2) + s->block_pos - n4;
  670. wma_window(s, &s->frame_out[ch][index]);
  671. }
  672. /* update block number */
  673. s->block_num++;
  674. s->block_pos += s->block_len;
  675. if (s->block_pos >= s->frame_len)
  676. return 1;
  677. else
  678. return 0;
  679. }
  680. /* decode a frame of frame_len samples */
  681. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  682. {
  683. int ret, n, ch, incr;
  684. const float *output[MAX_CHANNELS];
  685. #ifdef TRACE
  686. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  687. #endif
  688. /* read each block */
  689. s->block_num = 0;
  690. s->block_pos = 0;
  691. for(;;) {
  692. ret = wma_decode_block(s);
  693. if (ret < 0)
  694. return -1;
  695. if (ret)
  696. break;
  697. }
  698. /* convert frame to integer */
  699. n = s->frame_len;
  700. incr = s->nb_channels;
  701. for (ch = 0; ch < MAX_CHANNELS; ch++)
  702. output[ch] = s->frame_out[ch];
  703. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  704. for (ch = 0; ch < incr; ch++) {
  705. /* prepare for next block */
  706. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  707. }
  708. #ifdef TRACE
  709. dump_shorts(s, "samples", samples, n * s->nb_channels);
  710. #endif
  711. return 0;
  712. }
  713. static int wma_decode_superframe(AVCodecContext *avctx,
  714. void *data, int *data_size,
  715. AVPacket *avpkt)
  716. {
  717. const uint8_t *buf = avpkt->data;
  718. int buf_size = avpkt->size;
  719. WMACodecContext *s = avctx->priv_data;
  720. int nb_frames, bit_offset, i, pos, len;
  721. uint8_t *q;
  722. int16_t *samples;
  723. tprintf(avctx, "***decode_superframe:\n");
  724. if(buf_size==0){
  725. s->last_superframe_len = 0;
  726. return 0;
  727. }
  728. if (buf_size < s->block_align)
  729. return 0;
  730. buf_size = s->block_align;
  731. samples = data;
  732. init_get_bits(&s->gb, buf, buf_size*8);
  733. if (s->use_bit_reservoir) {
  734. /* read super frame header */
  735. skip_bits(&s->gb, 4); /* super frame index */
  736. nb_frames = get_bits(&s->gb, 4) - 1;
  737. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  738. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  739. goto fail;
  740. }
  741. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  742. if (s->last_superframe_len > 0) {
  743. // printf("skip=%d\n", s->last_bitoffset);
  744. /* add bit_offset bits to last frame */
  745. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  746. MAX_CODED_SUPERFRAME_SIZE)
  747. goto fail;
  748. q = s->last_superframe + s->last_superframe_len;
  749. len = bit_offset;
  750. while (len > 7) {
  751. *q++ = (get_bits)(&s->gb, 8);
  752. len -= 8;
  753. }
  754. if (len > 0) {
  755. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  756. }
  757. /* XXX: bit_offset bits into last frame */
  758. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  759. /* skip unused bits */
  760. if (s->last_bitoffset > 0)
  761. skip_bits(&s->gb, s->last_bitoffset);
  762. /* this frame is stored in the last superframe and in the
  763. current one */
  764. if (wma_decode_frame(s, samples) < 0)
  765. goto fail;
  766. samples += s->nb_channels * s->frame_len;
  767. }
  768. /* read each frame starting from bit_offset */
  769. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  770. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  771. len = pos & 7;
  772. if (len > 0)
  773. skip_bits(&s->gb, len);
  774. s->reset_block_lengths = 1;
  775. for(i=0;i<nb_frames;i++) {
  776. if (wma_decode_frame(s, samples) < 0)
  777. goto fail;
  778. samples += s->nb_channels * s->frame_len;
  779. }
  780. /* we copy the end of the frame in the last frame buffer */
  781. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  782. s->last_bitoffset = pos & 7;
  783. pos >>= 3;
  784. len = buf_size - pos;
  785. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  786. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  787. goto fail;
  788. }
  789. s->last_superframe_len = len;
  790. memcpy(s->last_superframe, buf + pos, len);
  791. } else {
  792. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  793. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  794. goto fail;
  795. }
  796. /* single frame decode */
  797. if (wma_decode_frame(s, samples) < 0)
  798. goto fail;
  799. samples += s->nb_channels * s->frame_len;
  800. }
  801. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  802. *data_size = (int8_t *)samples - (int8_t *)data;
  803. return s->block_align;
  804. fail:
  805. /* when error, we reset the bit reservoir */
  806. s->last_superframe_len = 0;
  807. return -1;
  808. }
  809. static av_cold void flush(AVCodecContext *avctx)
  810. {
  811. WMACodecContext *s = avctx->priv_data;
  812. s->last_bitoffset=
  813. s->last_superframe_len= 0;
  814. }
  815. AVCodec ff_wmav1_decoder =
  816. {
  817. "wmav1",
  818. AVMEDIA_TYPE_AUDIO,
  819. CODEC_ID_WMAV1,
  820. sizeof(WMACodecContext),
  821. wma_decode_init,
  822. NULL,
  823. ff_wma_end,
  824. wma_decode_superframe,
  825. .flush=flush,
  826. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  827. };
  828. AVCodec ff_wmav2_decoder =
  829. {
  830. "wmav2",
  831. AVMEDIA_TYPE_AUDIO,
  832. CODEC_ID_WMAV2,
  833. sizeof(WMACodecContext),
  834. wma_decode_init,
  835. NULL,
  836. ff_wma_end,
  837. wma_decode_superframe,
  838. .flush=flush,
  839. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  840. };