You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1072 lines
38KB

  1. /*
  2. * Copyright (c) 2003 The Libav Project
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.libav.org/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" //FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. /**
  56. * @file
  57. * svq3 decoder.
  58. */
  59. #define FULLPEL_MODE 1
  60. #define HALFPEL_MODE 2
  61. #define THIRDPEL_MODE 3
  62. #define PREDICT_MODE 4
  63. /* dual scan (from some older h264 draft)
  64. o-->o-->o o
  65. | /|
  66. o o o / o
  67. | / | |/ |
  68. o o o o
  69. /
  70. o-->o-->o-->o
  71. */
  72. static const uint8_t svq3_scan[16] = {
  73. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  74. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  75. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  76. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  77. };
  78. static const uint8_t svq3_pred_0[25][2] = {
  79. { 0, 0 },
  80. { 1, 0 }, { 0, 1 },
  81. { 0, 2 }, { 1, 1 }, { 2, 0 },
  82. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  83. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  84. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  85. { 2, 4 }, { 3, 3 }, { 4, 2 },
  86. { 4, 3 }, { 3, 4 },
  87. { 4, 4 }
  88. };
  89. static const int8_t svq3_pred_1[6][6][5] = {
  90. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  91. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  92. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  93. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  94. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  95. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  96. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  97. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  98. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  99. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  100. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  101. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  102. };
  103. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  104. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  105. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  106. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  107. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  108. };
  109. static const uint32_t svq3_dequant_coeff[32] = {
  110. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  111. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  112. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  113. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  114. };
  115. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *output, DCTELEM *input, int qp){
  116. const int qmul = svq3_dequant_coeff[qp];
  117. #define stride 16
  118. int i;
  119. int temp[16];
  120. static const uint8_t x_offset[4]={0, 1*stride, 4*stride, 5*stride};
  121. for(i=0; i<4; i++){
  122. const int z0 = 13*(input[4*i+0] + input[4*i+2]);
  123. const int z1 = 13*(input[4*i+0] - input[4*i+2]);
  124. const int z2 = 7* input[4*i+1] - 17*input[4*i+3];
  125. const int z3 = 17* input[4*i+1] + 7*input[4*i+3];
  126. temp[4*i+0] = z0+z3;
  127. temp[4*i+1] = z1+z2;
  128. temp[4*i+2] = z1-z2;
  129. temp[4*i+3] = z0-z3;
  130. }
  131. for(i=0; i<4; i++){
  132. const int offset= x_offset[i];
  133. const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
  134. const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
  135. const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
  136. const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
  137. output[stride* 0+offset] = ((z0 + z3)*qmul + 0x80000) >> 20;
  138. output[stride* 2+offset] = ((z1 + z2)*qmul + 0x80000) >> 20;
  139. output[stride* 8+offset] = ((z1 - z2)*qmul + 0x80000) >> 20;
  140. output[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20;
  141. }
  142. }
  143. #undef stride
  144. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp,
  145. int dc)
  146. {
  147. const int qmul = svq3_dequant_coeff[qp];
  148. int i;
  149. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  150. if (dc) {
  151. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  152. block[0] = 0;
  153. }
  154. for (i = 0; i < 4; i++) {
  155. const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]);
  156. const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]);
  157. const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i];
  158. const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i];
  159. block[0 + 4*i] = z0 + z3;
  160. block[1 + 4*i] = z1 + z2;
  161. block[2 + 4*i] = z1 - z2;
  162. block[3 + 4*i] = z0 - z3;
  163. }
  164. for (i = 0; i < 4; i++) {
  165. const int z0 = 13*(block[i + 4*0] + block[i + 4*2]);
  166. const int z1 = 13*(block[i + 4*0] - block[i + 4*2]);
  167. const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3];
  168. const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3];
  169. const int rr = (dc + 0x80000);
  170. dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  171. dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  172. dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  173. dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  174. }
  175. }
  176. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  177. int index, const int type)
  178. {
  179. static const uint8_t *const scan_patterns[4] =
  180. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  181. int run, level, sign, vlc, limit;
  182. const int intra = (3 * type) >> 2;
  183. const uint8_t *const scan = scan_patterns[type];
  184. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  185. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  186. if (vlc == INVALID_VLC)
  187. return -1;
  188. sign = (vlc & 0x1) - 1;
  189. vlc = (vlc + 1) >> 1;
  190. if (type == 3) {
  191. if (vlc < 3) {
  192. run = 0;
  193. level = vlc;
  194. } else if (vlc < 4) {
  195. run = 1;
  196. level = 1;
  197. } else {
  198. run = (vlc & 0x3);
  199. level = ((vlc + 9) >> 2) - run;
  200. }
  201. } else {
  202. if (vlc < 16) {
  203. run = svq3_dct_tables[intra][vlc].run;
  204. level = svq3_dct_tables[intra][vlc].level;
  205. } else if (intra) {
  206. run = (vlc & 0x7);
  207. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  208. } else {
  209. run = (vlc & 0xF);
  210. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  211. }
  212. }
  213. if ((index += run) >= limit)
  214. return -1;
  215. block[scan[index]] = (level ^ sign) - sign;
  216. }
  217. if (type != 2) {
  218. break;
  219. }
  220. }
  221. return 0;
  222. }
  223. static inline void svq3_mc_dir_part(MpegEncContext *s,
  224. int x, int y, int width, int height,
  225. int mx, int my, int dxy,
  226. int thirdpel, int dir, int avg)
  227. {
  228. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  229. uint8_t *src, *dest;
  230. int i, emu = 0;
  231. int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2
  232. mx += x;
  233. my += y;
  234. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  235. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  236. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  237. emu = 1;
  238. }
  239. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  240. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  241. }
  242. /* form component predictions */
  243. dest = s->current_picture.data[0] + x + y*s->linesize;
  244. src = pic->data[0] + mx + my*s->linesize;
  245. if (emu) {
  246. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  247. mx, my, s->h_edge_pos, s->v_edge_pos);
  248. src = s->edge_emu_buffer;
  249. }
  250. if (thirdpel)
  251. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  252. else
  253. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  254. if (!(s->flags & CODEC_FLAG_GRAY)) {
  255. mx = (mx + (mx < (int) x)) >> 1;
  256. my = (my + (my < (int) y)) >> 1;
  257. width = (width >> 1);
  258. height = (height >> 1);
  259. blocksize++;
  260. for (i = 1; i < 3; i++) {
  261. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  262. src = pic->data[i] + mx + my*s->uvlinesize;
  263. if (emu) {
  264. s->dsp.emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  265. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  266. src = s->edge_emu_buffer;
  267. }
  268. if (thirdpel)
  269. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  270. else
  271. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  272. }
  273. }
  274. }
  275. static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir,
  276. int avg)
  277. {
  278. int i, j, k, mx, my, dx, dy, x, y;
  279. MpegEncContext *const s = (MpegEncContext *) h;
  280. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  281. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  282. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  283. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  284. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  285. for (i = 0; i < 16; i += part_height) {
  286. for (j = 0; j < 16; j += part_width) {
  287. const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride;
  288. int dxy;
  289. x = 16*s->mb_x + j;
  290. y = 16*s->mb_y + i;
  291. k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8);
  292. if (mode != PREDICT_MODE) {
  293. pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my);
  294. } else {
  295. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  296. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  297. if (dir == 0) {
  298. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  299. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  300. } else {
  301. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  302. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  303. }
  304. }
  305. /* clip motion vector prediction to frame border */
  306. mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x);
  307. my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y);
  308. /* get (optional) motion vector differential */
  309. if (mode == PREDICT_MODE) {
  310. dx = dy = 0;
  311. } else {
  312. dy = svq3_get_se_golomb(&s->gb);
  313. dx = svq3_get_se_golomb(&s->gb);
  314. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  315. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  316. return -1;
  317. }
  318. }
  319. /* compute motion vector */
  320. if (mode == THIRDPEL_MODE) {
  321. int fx, fy;
  322. mx = ((mx + 1)>>1) + dx;
  323. my = ((my + 1)>>1) + dy;
  324. fx = ((unsigned)(mx + 0x3000))/3 - 0x1000;
  325. fy = ((unsigned)(my + 0x3000))/3 - 0x1000;
  326. dxy = (mx - 3*fx) + 4*(my - 3*fy);
  327. svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  328. mx += mx;
  329. my += my;
  330. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  331. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  332. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  333. dxy = (mx&1) + 2*(my&1);
  334. svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  335. mx *= 3;
  336. my *= 3;
  337. } else {
  338. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  339. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  340. svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  341. mx *= 6;
  342. my *= 6;
  343. }
  344. /* update mv_cache */
  345. if (mode != PREDICT_MODE) {
  346. int32_t mv = pack16to32(mx,my);
  347. if (part_height == 8 && i < 8) {
  348. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  349. if (part_width == 8 && j < 8) {
  350. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  351. }
  352. }
  353. if (part_width == 8 && j < 8) {
  354. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  355. }
  356. if (part_width == 4 || part_height == 4) {
  357. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  358. }
  359. }
  360. /* write back motion vectors */
  361. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  362. }
  363. }
  364. return 0;
  365. }
  366. static int svq3_decode_mb(H264Context *h, unsigned int mb_type)
  367. {
  368. int i, j, k, m, dir, mode;
  369. int cbp = 0;
  370. uint32_t vlc;
  371. int8_t *top, *left;
  372. MpegEncContext *const s = (MpegEncContext *) h;
  373. const int mb_xy = h->mb_xy;
  374. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  375. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  376. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  377. h->topright_samples_available = 0xFFFF;
  378. if (mb_type == 0) { /* SKIP */
  379. if (s->pict_type == AV_PICTURE_TYPE_P || s->next_picture.mb_type[mb_xy] == -1) {
  380. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  381. if (s->pict_type == AV_PICTURE_TYPE_B) {
  382. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  383. }
  384. mb_type = MB_TYPE_SKIP;
  385. } else {
  386. mb_type = FFMIN(s->next_picture.mb_type[mb_xy], 6);
  387. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  388. return -1;
  389. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  390. return -1;
  391. mb_type = MB_TYPE_16x16;
  392. }
  393. } else if (mb_type < 8) { /* INTER */
  394. if (h->thirdpel_flag && h->halfpel_flag == !get_bits1 (&s->gb)) {
  395. mode = THIRDPEL_MODE;
  396. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits1 (&s->gb)) {
  397. mode = HALFPEL_MODE;
  398. } else {
  399. mode = FULLPEL_MODE;
  400. }
  401. /* fill caches */
  402. /* note ref_cache should contain here:
  403. ????????
  404. ???11111
  405. N??11111
  406. N??11111
  407. N??11111
  408. */
  409. for (m = 0; m < 2; m++) {
  410. if (s->mb_x > 0 && h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6] != -1) {
  411. for (i = 0; i < 4; i++) {
  412. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  413. }
  414. } else {
  415. for (i = 0; i < 4; i++) {
  416. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  417. }
  418. }
  419. if (s->mb_y > 0) {
  420. memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  421. memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  422. if (s->mb_x < (s->mb_width - 1)) {
  423. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  424. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  425. (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride + 1]+6] == -1 ||
  426. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride ] ] == -1) ? PART_NOT_AVAILABLE : 1;
  427. }else
  428. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  429. if (s->mb_x > 0) {
  430. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  431. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] == -1) ? PART_NOT_AVAILABLE : 1;
  432. }else
  433. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  434. }else
  435. memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  436. if (s->pict_type != AV_PICTURE_TYPE_B)
  437. break;
  438. }
  439. /* decode motion vector(s) and form prediction(s) */
  440. if (s->pict_type == AV_PICTURE_TYPE_P) {
  441. if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0)
  442. return -1;
  443. } else { /* AV_PICTURE_TYPE_B */
  444. if (mb_type != 2) {
  445. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  446. return -1;
  447. } else {
  448. for (i = 0; i < 4; i++) {
  449. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  450. }
  451. }
  452. if (mb_type != 1) {
  453. if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0)
  454. return -1;
  455. } else {
  456. for (i = 0; i < 4; i++) {
  457. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  458. }
  459. }
  460. }
  461. mb_type = MB_TYPE_16x16;
  462. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  463. memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  464. if (mb_type == 8) {
  465. if (s->mb_x > 0) {
  466. for (i = 0; i < 4; i++) {
  467. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - 1]+6-i];
  468. }
  469. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  470. h->left_samples_available = 0x5F5F;
  471. }
  472. }
  473. if (s->mb_y > 0) {
  474. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+0];
  475. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+1];
  476. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+2];
  477. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride]+3];
  478. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  479. h->top_samples_available = 0x33FF;
  480. }
  481. }
  482. /* decode prediction codes for luma blocks */
  483. for (i = 0; i < 16; i+=2) {
  484. vlc = svq3_get_ue_golomb(&s->gb);
  485. if (vlc >= 25){
  486. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  487. return -1;
  488. }
  489. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  490. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  491. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  492. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  493. if (left[1] == -1 || left[2] == -1){
  494. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  495. return -1;
  496. }
  497. }
  498. } else { /* mb_type == 33, DC_128_PRED block type */
  499. for (i = 0; i < 4; i++) {
  500. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  501. }
  502. }
  503. ff_h264_write_back_intra_pred_mode(h);
  504. if (mb_type == 8) {
  505. ff_h264_check_intra4x4_pred_mode(h);
  506. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  507. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  508. } else {
  509. for (i = 0; i < 4; i++) {
  510. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  511. }
  512. h->top_samples_available = 0x33FF;
  513. h->left_samples_available = 0x5F5F;
  514. }
  515. mb_type = MB_TYPE_INTRA4x4;
  516. } else { /* INTRA16x16 */
  517. dir = i_mb_type_info[mb_type - 8].pred_mode;
  518. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  519. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir)) == -1){
  520. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  521. return -1;
  522. }
  523. cbp = i_mb_type_info[mb_type - 8].cbp;
  524. mb_type = MB_TYPE_INTRA16x16;
  525. }
  526. if (!IS_INTER(mb_type) && s->pict_type != AV_PICTURE_TYPE_I) {
  527. for (i = 0; i < 4; i++) {
  528. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  529. }
  530. if (s->pict_type == AV_PICTURE_TYPE_B) {
  531. for (i = 0; i < 4; i++) {
  532. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  533. }
  534. }
  535. }
  536. if (!IS_INTRA4x4(mb_type)) {
  537. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy], DC_PRED, 8);
  538. }
  539. if (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B) {
  540. memset(h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  541. s->dsp.clear_blocks(h->mb);
  542. }
  543. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == AV_PICTURE_TYPE_B)) {
  544. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48){
  545. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  546. return -1;
  547. }
  548. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  549. }
  550. if (IS_INTRA16x16(mb_type) || (s->pict_type != AV_PICTURE_TYPE_I && s->adaptive_quant && cbp)) {
  551. s->qscale += svq3_get_se_golomb(&s->gb);
  552. if (s->qscale > 31){
  553. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  554. return -1;
  555. }
  556. }
  557. if (IS_INTRA16x16(mb_type)) {
  558. AV_ZERO128(h->mb_luma_dc+0);
  559. AV_ZERO128(h->mb_luma_dc+8);
  560. if (svq3_decode_block(&s->gb, h->mb_luma_dc, 0, 1)){
  561. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  562. return -1;
  563. }
  564. }
  565. if (cbp) {
  566. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  567. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  568. for (i = 0; i < 4; i++) {
  569. if ((cbp & (1 << i))) {
  570. for (j = 0; j < 4; j++) {
  571. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  572. h->non_zero_count_cache[ scan8[k] ] = 1;
  573. if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){
  574. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  575. return -1;
  576. }
  577. }
  578. }
  579. }
  580. if ((cbp & 0x30)) {
  581. for (i = 0; i < 2; ++i) {
  582. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  583. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  584. return -1;
  585. }
  586. }
  587. if ((cbp & 0x20)) {
  588. for (i = 0; i < 8; i++) {
  589. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  590. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  591. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  592. return -1;
  593. }
  594. }
  595. }
  596. }
  597. }
  598. h->cbp= cbp;
  599. s->current_picture.mb_type[mb_xy] = mb_type;
  600. if (IS_INTRA(mb_type)) {
  601. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8);
  602. }
  603. return 0;
  604. }
  605. static int svq3_decode_slice_header(H264Context *h)
  606. {
  607. MpegEncContext *const s = (MpegEncContext *) h;
  608. const int mb_xy = h->mb_xy;
  609. int i, header;
  610. header = get_bits(&s->gb, 8);
  611. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  612. /* TODO: what? */
  613. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  614. return -1;
  615. } else {
  616. int length = (header >> 5) & 3;
  617. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length;
  618. if (h->next_slice_index > s->gb.size_in_bits) {
  619. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  620. return -1;
  621. }
  622. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  623. skip_bits(&s->gb, 8);
  624. if (h->svq3_watermark_key) {
  625. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
  626. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ h->svq3_watermark_key);
  627. }
  628. if (length > 0) {
  629. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  630. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  631. }
  632. skip_bits_long(&s->gb, 0);
  633. }
  634. if ((i = svq3_get_ue_golomb(&s->gb)) == INVALID_VLC || i >= 3){
  635. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  636. return -1;
  637. }
  638. h->slice_type = golomb_to_pict_type[i];
  639. if ((header & 0x9F) == 2) {
  640. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  641. s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  642. } else {
  643. skip_bits1(&s->gb);
  644. s->mb_skip_run = 0;
  645. }
  646. h->slice_num = get_bits(&s->gb, 8);
  647. s->qscale = get_bits(&s->gb, 5);
  648. s->adaptive_quant = get_bits1(&s->gb);
  649. /* unknown fields */
  650. skip_bits1(&s->gb);
  651. if (h->unknown_svq3_flag) {
  652. skip_bits1(&s->gb);
  653. }
  654. skip_bits1(&s->gb);
  655. skip_bits(&s->gb, 2);
  656. while (get_bits1(&s->gb)) {
  657. skip_bits(&s->gb, 8);
  658. }
  659. /* reset intra predictors and invalidate motion vector references */
  660. if (s->mb_x > 0) {
  661. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - 1 ]+3, -1, 4*sizeof(int8_t));
  662. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_x] , -1, 8*sizeof(int8_t)*s->mb_x);
  663. }
  664. if (s->mb_y > 0) {
  665. memset(h->intra4x4_pred_mode+h->mb2br_xy[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  666. if (s->mb_x > 0) {
  667. h->intra4x4_pred_mode[h->mb2br_xy[mb_xy - s->mb_stride - 1]+3] = -1;
  668. }
  669. }
  670. return 0;
  671. }
  672. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  673. {
  674. MpegEncContext *const s = avctx->priv_data;
  675. H264Context *const h = avctx->priv_data;
  676. int m;
  677. unsigned char *extradata;
  678. unsigned int size;
  679. if (ff_h264_decode_init(avctx) < 0)
  680. return -1;
  681. s->flags = avctx->flags;
  682. s->flags2 = avctx->flags2;
  683. s->unrestricted_mv = 1;
  684. h->is_complex=1;
  685. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  686. if (!s->context_initialized) {
  687. s->width = avctx->width;
  688. s->height = avctx->height;
  689. h->halfpel_flag = 1;
  690. h->thirdpel_flag = 1;
  691. h->unknown_svq3_flag = 0;
  692. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  693. if (MPV_common_init(s) < 0)
  694. return -1;
  695. h->b_stride = 4*s->mb_width;
  696. ff_h264_alloc_tables(h);
  697. /* prowl for the "SEQH" marker in the extradata */
  698. extradata = (unsigned char *)avctx->extradata;
  699. for (m = 0; m < avctx->extradata_size; m++) {
  700. if (!memcmp(extradata, "SEQH", 4))
  701. break;
  702. extradata++;
  703. }
  704. /* if a match was found, parse the extra data */
  705. if (extradata && !memcmp(extradata, "SEQH", 4)) {
  706. GetBitContext gb;
  707. int frame_size_code;
  708. size = AV_RB32(&extradata[4]);
  709. init_get_bits(&gb, extradata + 8, size*8);
  710. /* 'frame size code' and optional 'width, height' */
  711. frame_size_code = get_bits(&gb, 3);
  712. switch (frame_size_code) {
  713. case 0: avctx->width = 160; avctx->height = 120; break;
  714. case 1: avctx->width = 128; avctx->height = 96; break;
  715. case 2: avctx->width = 176; avctx->height = 144; break;
  716. case 3: avctx->width = 352; avctx->height = 288; break;
  717. case 4: avctx->width = 704; avctx->height = 576; break;
  718. case 5: avctx->width = 240; avctx->height = 180; break;
  719. case 6: avctx->width = 320; avctx->height = 240; break;
  720. case 7:
  721. avctx->width = get_bits(&gb, 12);
  722. avctx->height = get_bits(&gb, 12);
  723. break;
  724. }
  725. h->halfpel_flag = get_bits1(&gb);
  726. h->thirdpel_flag = get_bits1(&gb);
  727. /* unknown fields */
  728. skip_bits1(&gb);
  729. skip_bits1(&gb);
  730. skip_bits1(&gb);
  731. skip_bits1(&gb);
  732. s->low_delay = get_bits1(&gb);
  733. /* unknown field */
  734. skip_bits1(&gb);
  735. while (get_bits1(&gb)) {
  736. skip_bits(&gb, 8);
  737. }
  738. h->unknown_svq3_flag = get_bits1(&gb);
  739. avctx->has_b_frames = !s->low_delay;
  740. if (h->unknown_svq3_flag) {
  741. #if CONFIG_ZLIB
  742. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  743. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  744. int u1 = svq3_get_ue_golomb(&gb);
  745. int u2 = get_bits(&gb, 8);
  746. int u3 = get_bits(&gb, 2);
  747. int u4 = svq3_get_ue_golomb(&gb);
  748. unsigned long buf_len = watermark_width*watermark_height*4;
  749. int offset = (get_bits_count(&gb)+7)>>3;
  750. uint8_t *buf;
  751. if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  752. return -1;
  753. buf = av_malloc(buf_len);
  754. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
  755. av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
  756. if (uncompress(buf, &buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
  757. av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
  758. av_free(buf);
  759. return -1;
  760. }
  761. h->svq3_watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  762. h->svq3_watermark_key = h->svq3_watermark_key << 16 | h->svq3_watermark_key;
  763. av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", h->svq3_watermark_key);
  764. av_free(buf);
  765. #else
  766. av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
  767. return -1;
  768. #endif
  769. }
  770. }
  771. }
  772. return 0;
  773. }
  774. static int svq3_decode_frame(AVCodecContext *avctx,
  775. void *data, int *data_size,
  776. AVPacket *avpkt)
  777. {
  778. const uint8_t *buf = avpkt->data;
  779. int buf_size = avpkt->size;
  780. MpegEncContext *const s = avctx->priv_data;
  781. H264Context *const h = avctx->priv_data;
  782. int m, mb_type;
  783. /* special case for last picture */
  784. if (buf_size == 0) {
  785. if (s->next_picture_ptr && !s->low_delay) {
  786. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  787. s->next_picture_ptr = NULL;
  788. *data_size = sizeof(AVFrame);
  789. }
  790. return 0;
  791. }
  792. init_get_bits (&s->gb, buf, 8*buf_size);
  793. s->mb_x = s->mb_y = h->mb_xy = 0;
  794. if (svq3_decode_slice_header(h))
  795. return -1;
  796. s->pict_type = h->slice_type;
  797. s->picture_number = h->slice_num;
  798. if (avctx->debug&FF_DEBUG_PICT_INFO){
  799. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  800. av_get_picture_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  801. s->adaptive_quant, s->qscale, h->slice_num);
  802. }
  803. /* for skipping the frame */
  804. s->current_picture.pict_type = s->pict_type;
  805. s->current_picture.key_frame = (s->pict_type == AV_PICTURE_TYPE_I);
  806. /* Skip B-frames if we do not have reference frames. */
  807. if (s->last_picture_ptr == NULL && s->pict_type == AV_PICTURE_TYPE_B)
  808. return 0;
  809. if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B)
  810. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I)
  811. || avctx->skip_frame >= AVDISCARD_ALL)
  812. return 0;
  813. if (s->next_p_frame_damaged) {
  814. if (s->pict_type == AV_PICTURE_TYPE_B)
  815. return 0;
  816. else
  817. s->next_p_frame_damaged = 0;
  818. }
  819. if (ff_h264_frame_start(h) < 0)
  820. return -1;
  821. if (s->pict_type == AV_PICTURE_TYPE_B) {
  822. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  823. if (h->frame_num_offset < 0) {
  824. h->frame_num_offset += 256;
  825. }
  826. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  827. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  828. return -1;
  829. }
  830. } else {
  831. h->prev_frame_num = h->frame_num;
  832. h->frame_num = h->slice_num;
  833. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  834. if (h->prev_frame_num_offset < 0) {
  835. h->prev_frame_num_offset += 256;
  836. }
  837. }
  838. for (m = 0; m < 2; m++){
  839. int i;
  840. for (i = 0; i < 4; i++){
  841. int j;
  842. for (j = -1; j < 4; j++)
  843. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  844. if (i < 3)
  845. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  846. }
  847. }
  848. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  849. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  850. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  851. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  852. ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  853. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  854. s->gb.size_in_bits = 8*buf_size;
  855. if (svq3_decode_slice_header(h))
  856. return -1;
  857. /* TODO: support s->mb_skip_run */
  858. }
  859. mb_type = svq3_get_ue_golomb(&s->gb);
  860. if (s->pict_type == AV_PICTURE_TYPE_I) {
  861. mb_type += 8;
  862. } else if (s->pict_type == AV_PICTURE_TYPE_B && mb_type >= 4) {
  863. mb_type += 4;
  864. }
  865. if (mb_type > 33 || svq3_decode_mb(h, mb_type)) {
  866. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  867. return -1;
  868. }
  869. if (mb_type != 0) {
  870. ff_h264_hl_decode_mb (h);
  871. }
  872. if (s->pict_type != AV_PICTURE_TYPE_B && !s->low_delay) {
  873. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  874. (s->pict_type == AV_PICTURE_TYPE_P && mb_type < 8) ? (mb_type - 1) : -1;
  875. }
  876. }
  877. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  878. }
  879. MPV_frame_end(s);
  880. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay) {
  881. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  882. } else {
  883. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  884. }
  885. /* Do not output the last pic after seeking. */
  886. if (s->last_picture_ptr || s->low_delay) {
  887. *data_size = sizeof(AVFrame);
  888. }
  889. return buf_size;
  890. }
  891. AVCodec ff_svq3_decoder = {
  892. "svq3",
  893. AVMEDIA_TYPE_VIDEO,
  894. CODEC_ID_SVQ3,
  895. sizeof(H264Context),
  896. svq3_decode_init,
  897. NULL,
  898. ff_h264_decode_end,
  899. svq3_decode_frame,
  900. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  901. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  902. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUVJ420P, PIX_FMT_NONE},
  903. };