You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

317 lines
11KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003-2010 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 DSP functions.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #define BIT_DEPTH 8
  27. #define pixel uint8_t
  28. #define av_clip_pixel av_clip_uint8
  29. #define FUNCC(a) a ## _c
  30. #define op_scale1(x) block[x] = av_clip_pixel( (block[x]*weight + offset) >> log2_denom )
  31. #define op_scale2(x) dst[x] = av_clip_pixel( (src[x]*weights + dst[x]*weightd + offset) >> (log2_denom+1))
  32. #define H264_WEIGHT(W,H) \
  33. static void FUNCC(weight_h264_pixels ## W ## x ## H)(uint8_t *_block, int stride, int log2_denom, int weight, int offset){ \
  34. int y; \
  35. pixel *block = (pixel*)_block; \
  36. stride /= sizeof(pixel); \
  37. offset <<= (log2_denom + (BIT_DEPTH-8)); \
  38. if(log2_denom) offset += 1<<(log2_denom-1); \
  39. for(y=0; y<H; y++, block += stride){ \
  40. op_scale1(0); \
  41. op_scale1(1); \
  42. if(W==2) continue; \
  43. op_scale1(2); \
  44. op_scale1(3); \
  45. if(W==4) continue; \
  46. op_scale1(4); \
  47. op_scale1(5); \
  48. op_scale1(6); \
  49. op_scale1(7); \
  50. if(W==8) continue; \
  51. op_scale1(8); \
  52. op_scale1(9); \
  53. op_scale1(10); \
  54. op_scale1(11); \
  55. op_scale1(12); \
  56. op_scale1(13); \
  57. op_scale1(14); \
  58. op_scale1(15); \
  59. } \
  60. } \
  61. static void FUNCC(biweight_h264_pixels ## W ## x ## H)(uint8_t *_dst, uint8_t *_src, int stride, int log2_denom, int weightd, int weights, int offset){ \
  62. int y; \
  63. pixel *dst = (pixel*)_dst; \
  64. pixel *src = (pixel*)_src; \
  65. stride /= sizeof(pixel); \
  66. offset = ((offset + 1) | 1) << log2_denom; \
  67. for(y=0; y<H; y++, dst += stride, src += stride){ \
  68. op_scale2(0); \
  69. op_scale2(1); \
  70. if(W==2) continue; \
  71. op_scale2(2); \
  72. op_scale2(3); \
  73. if(W==4) continue; \
  74. op_scale2(4); \
  75. op_scale2(5); \
  76. op_scale2(6); \
  77. op_scale2(7); \
  78. if(W==8) continue; \
  79. op_scale2(8); \
  80. op_scale2(9); \
  81. op_scale2(10); \
  82. op_scale2(11); \
  83. op_scale2(12); \
  84. op_scale2(13); \
  85. op_scale2(14); \
  86. op_scale2(15); \
  87. } \
  88. }
  89. H264_WEIGHT(16,16)
  90. H264_WEIGHT(16,8)
  91. H264_WEIGHT(8,16)
  92. H264_WEIGHT(8,8)
  93. H264_WEIGHT(8,4)
  94. H264_WEIGHT(4,8)
  95. H264_WEIGHT(4,4)
  96. H264_WEIGHT(4,2)
  97. H264_WEIGHT(2,4)
  98. H264_WEIGHT(2,2)
  99. #undef op_scale1
  100. #undef op_scale2
  101. #undef H264_WEIGHT
  102. static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
  103. {
  104. pixel *pix = (pixel*)_pix;
  105. int i, d;
  106. xstride /= sizeof(pixel);
  107. ystride /= sizeof(pixel);
  108. alpha <<= BIT_DEPTH - 8;
  109. beta <<= BIT_DEPTH - 8;
  110. for( i = 0; i < 4; i++ ) {
  111. const int tc_orig = tc0[i] << (BIT_DEPTH - 8);
  112. if( tc_orig < 0 ) {
  113. pix += inner_iters*ystride;
  114. continue;
  115. }
  116. for( d = 0; d < inner_iters; d++ ) {
  117. const int p0 = pix[-1*xstride];
  118. const int p1 = pix[-2*xstride];
  119. const int p2 = pix[-3*xstride];
  120. const int q0 = pix[0];
  121. const int q1 = pix[1*xstride];
  122. const int q2 = pix[2*xstride];
  123. if( FFABS( p0 - q0 ) < alpha &&
  124. FFABS( p1 - p0 ) < beta &&
  125. FFABS( q1 - q0 ) < beta ) {
  126. int tc = tc_orig;
  127. int i_delta;
  128. if( FFABS( p2 - p0 ) < beta ) {
  129. if(tc_orig)
  130. pix[-2*xstride] = p1 + av_clip( (( p2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - p1, -tc_orig, tc_orig );
  131. tc++;
  132. }
  133. if( FFABS( q2 - q0 ) < beta ) {
  134. if(tc_orig)
  135. pix[ xstride] = q1 + av_clip( (( q2 + ( ( p0 + q0 + 1 ) >> 1 ) ) >> 1) - q1, -tc_orig, tc_orig );
  136. tc++;
  137. }
  138. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  139. pix[-xstride] = av_clip_pixel( p0 + i_delta ); /* p0' */
  140. pix[0] = av_clip_pixel( q0 - i_delta ); /* q0' */
  141. }
  142. pix += ystride;
  143. }
  144. }
  145. }
  146. static void FUNCC(h264_v_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
  147. {
  148. FUNCC(h264_loop_filter_luma)(pix, stride, sizeof(pixel), 4, alpha, beta, tc0);
  149. }
  150. static void FUNCC(h264_h_loop_filter_luma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
  151. {
  152. FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 4, alpha, beta, tc0);
  153. }
  154. static void FUNCC(h264_h_loop_filter_luma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
  155. {
  156. FUNCC(h264_loop_filter_luma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
  157. }
  158. static av_always_inline av_flatten void FUNCC(h264_loop_filter_luma_intra)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
  159. {
  160. pixel *pix = (pixel*)_pix;
  161. int d;
  162. xstride /= sizeof(pixel);
  163. ystride /= sizeof(pixel);
  164. alpha <<= BIT_DEPTH - 8;
  165. beta <<= BIT_DEPTH - 8;
  166. for( d = 0; d < 4 * inner_iters; d++ ) {
  167. const int p2 = pix[-3*xstride];
  168. const int p1 = pix[-2*xstride];
  169. const int p0 = pix[-1*xstride];
  170. const int q0 = pix[ 0*xstride];
  171. const int q1 = pix[ 1*xstride];
  172. const int q2 = pix[ 2*xstride];
  173. if( FFABS( p0 - q0 ) < alpha &&
  174. FFABS( p1 - p0 ) < beta &&
  175. FFABS( q1 - q0 ) < beta ) {
  176. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  177. if( FFABS( p2 - p0 ) < beta)
  178. {
  179. const int p3 = pix[-4*xstride];
  180. /* p0', p1', p2' */
  181. pix[-1*xstride] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  182. pix[-2*xstride] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  183. pix[-3*xstride] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  184. } else {
  185. /* p0' */
  186. pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  187. }
  188. if( FFABS( q2 - q0 ) < beta)
  189. {
  190. const int q3 = pix[3*xstride];
  191. /* q0', q1', q2' */
  192. pix[0*xstride] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  193. pix[1*xstride] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  194. pix[2*xstride] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  195. } else {
  196. /* q0' */
  197. pix[0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  198. }
  199. }else{
  200. /* p0', q0' */
  201. pix[-1*xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  202. pix[ 0*xstride] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  203. }
  204. }
  205. pix += ystride;
  206. }
  207. }
  208. static void FUNCC(h264_v_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
  209. {
  210. FUNCC(h264_loop_filter_luma_intra)(pix, stride, sizeof(pixel), 4, alpha, beta);
  211. }
  212. static void FUNCC(h264_h_loop_filter_luma_intra)(uint8_t *pix, int stride, int alpha, int beta)
  213. {
  214. FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 4, alpha, beta);
  215. }
  216. static void FUNCC(h264_h_loop_filter_luma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
  217. {
  218. FUNCC(h264_loop_filter_luma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
  219. }
  220. static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta, int8_t *tc0)
  221. {
  222. pixel *pix = (pixel*)_pix;
  223. int i, d;
  224. xstride /= sizeof(pixel);
  225. ystride /= sizeof(pixel);
  226. alpha <<= BIT_DEPTH - 8;
  227. beta <<= BIT_DEPTH - 8;
  228. for( i = 0; i < 4; i++ ) {
  229. const int tc = ((tc0[i] - 1) << (BIT_DEPTH - 8)) + 1;
  230. if( tc <= 0 ) {
  231. pix += inner_iters*ystride;
  232. continue;
  233. }
  234. for( d = 0; d < inner_iters; d++ ) {
  235. const int p0 = pix[-1*xstride];
  236. const int p1 = pix[-2*xstride];
  237. const int q0 = pix[0];
  238. const int q1 = pix[1*xstride];
  239. if( FFABS( p0 - q0 ) < alpha &&
  240. FFABS( p1 - p0 ) < beta &&
  241. FFABS( q1 - q0 ) < beta ) {
  242. int delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  243. pix[-xstride] = av_clip_pixel( p0 + delta ); /* p0' */
  244. pix[0] = av_clip_pixel( q0 - delta ); /* q0' */
  245. }
  246. pix += ystride;
  247. }
  248. }
  249. }
  250. static void FUNCC(h264_v_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
  251. {
  252. FUNCC(h264_loop_filter_chroma)(pix, stride, sizeof(pixel), 2, alpha, beta, tc0);
  253. }
  254. static void FUNCC(h264_h_loop_filter_chroma)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
  255. {
  256. FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 2, alpha, beta, tc0);
  257. }
  258. static void FUNCC(h264_h_loop_filter_chroma_mbaff)(uint8_t *pix, int stride, int alpha, int beta, int8_t *tc0)
  259. {
  260. FUNCC(h264_loop_filter_chroma)(pix, sizeof(pixel), stride, 1, alpha, beta, tc0);
  261. }
  262. static av_always_inline av_flatten void FUNCC(h264_loop_filter_chroma_intra)(uint8_t *_pix, int xstride, int ystride, int inner_iters, int alpha, int beta)
  263. {
  264. pixel *pix = (pixel*)_pix;
  265. int d;
  266. xstride /= sizeof(pixel);
  267. ystride /= sizeof(pixel);
  268. alpha <<= BIT_DEPTH - 8;
  269. beta <<= BIT_DEPTH - 8;
  270. for( d = 0; d < 4 * inner_iters; d++ ) {
  271. const int p0 = pix[-1*xstride];
  272. const int p1 = pix[-2*xstride];
  273. const int q0 = pix[0];
  274. const int q1 = pix[1*xstride];
  275. if( FFABS( p0 - q0 ) < alpha &&
  276. FFABS( p1 - p0 ) < beta &&
  277. FFABS( q1 - q0 ) < beta ) {
  278. pix[-xstride] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  279. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  280. }
  281. pix += ystride;
  282. }
  283. }
  284. static void FUNCC(h264_v_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
  285. {
  286. FUNCC(h264_loop_filter_chroma_intra)(pix, stride, sizeof(pixel), 2, alpha, beta);
  287. }
  288. static void FUNCC(h264_h_loop_filter_chroma_intra)(uint8_t *pix, int stride, int alpha, int beta)
  289. {
  290. FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 2, alpha, beta);
  291. }
  292. static void FUNCC(h264_h_loop_filter_chroma_mbaff_intra)(uint8_t *pix, int stride, int alpha, int beta)
  293. {
  294. FUNCC(h264_loop_filter_chroma_intra)(pix, sizeof(pixel), stride, 1, alpha, beta);
  295. }